Search (12752 results, page 2 of 638)

  1. Hüsken, P.: Informationssuche im Semantic Web : Methoden des Information Retrieval für die Wissensrepräsentation (2006) 0.15
    0.14960833 = product of:
      0.24934721 = sum of:
        0.06278135 = weight(_text_:retrieval in 4332) [ClassicSimilarity], result of:
          0.06278135 = score(doc=4332,freq=10.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.44838852 = fieldWeight in 4332, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4332)
        0.1403486 = weight(_text_:semantic in 4332) [ClassicSimilarity], result of:
          0.1403486 = score(doc=4332,freq=14.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.7292479 = fieldWeight in 4332, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=4332)
        0.046217266 = product of:
          0.09243453 = sum of:
            0.09243453 = weight(_text_:web in 4332) [ClassicSimilarity], result of:
              0.09243453 = score(doc=4332,freq=16.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.6119082 = fieldWeight in 4332, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4332)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Das Semantic Web bezeichnet ein erweitertes World Wide Web (WWW), das die Bedeutung von präsentierten Inhalten in neuen standardisierten Sprachen wie RDF Schema und OWL modelliert. Diese Arbeit befasst sich mit dem Aspekt des Information Retrieval, d.h. es wird untersucht, in wie weit Methoden der Informationssuche sich auf modelliertes Wissen übertragen lassen. Die kennzeichnenden Merkmale von IR-Systemen wie vage Anfragen sowie die Unterstützung unsicheren Wissens werden im Kontext des Semantic Web behandelt. Im Fokus steht die Suche nach Fakten innerhalb einer Wissensdomäne, die entweder explizit modelliert sind oder implizit durch die Anwendung von Inferenz abgeleitet werden können. Aufbauend auf der an der Universität Duisburg-Essen entwickelten Retrievalmaschine PIRE wird die Anwendung unsicherer Inferenz mit probabilistischer Prädikatenlogik (pDatalog) implementiert.
    Footnote
    Zugl.: Dortmund, Univ., Dipl.-Arb., 2006 u.d.T.: Hüsken, Peter: Information-Retrieval im Semantic-Web.
    RSWK
    Information Retrieval / Semantic Web
    Subject
    Information Retrieval / Semantic Web
    Theme
    Semantic Web
  2. Franklin, R.A.: Re-inventing subject access for the semantic web (2003) 0.15
    0.1464293 = product of:
      0.24404883 = sum of:
        0.028076671 = weight(_text_:retrieval in 2556) [ClassicSimilarity], result of:
          0.028076671 = score(doc=2556,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.20052543 = fieldWeight in 2556, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2556)
        0.091879725 = weight(_text_:semantic in 2556) [ClassicSimilarity], result of:
          0.091879725 = score(doc=2556,freq=6.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.47740483 = fieldWeight in 2556, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=2556)
        0.12409244 = sum of:
          0.0864646 = weight(_text_:web in 2556) [ClassicSimilarity], result of:
            0.0864646 = score(doc=2556,freq=14.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.57238775 = fieldWeight in 2556, product of:
                3.7416575 = tf(freq=14.0), with freq of:
                  14.0 = termFreq=14.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=2556)
          0.03762784 = weight(_text_:22 in 2556) [ClassicSimilarity], result of:
            0.03762784 = score(doc=2556,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.23214069 = fieldWeight in 2556, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2556)
      0.6 = coord(3/5)
    
    Abstract
    First generation scholarly research on the Web lacked a firm system of authority control. Second generation Web research is beginning to model subject access with library science principles of bibliographic control and cataloguing. Harnessing the Web and organising the intellectual content with standards and controlled vocabulary provides precise search and retrieval capability, increasing relevance and efficient use of technology. Dublin Core metadata standards permit a full evaluation and cataloguing of Web resources appropriate to highly specific research needs and discovery. Current research points to a type of structure based on a system of faceted classification. This system allows the semantic and syntactic relationships to be defined. Controlled vocabulary, such as the Library of Congress Subject Headings, can be assigned, not in a hierarchical structure, but rather as descriptive facets of relating concepts. Web design features such as this are adding value to discovery and filtering out data that lack authority. The system design allows for scalability and extensibility, two technical features that are integral to future development of the digital library and resource discovery.
    Date
    30.12.2008 18:22:46
    Theme
    Semantic Web
  3. Semantic applications (2018) 0.14
    0.14236757 = product of:
      0.23727927 = sum of:
        0.057311267 = weight(_text_:retrieval in 5204) [ClassicSimilarity], result of:
          0.057311267 = score(doc=5204,freq=12.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.40932083 = fieldWeight in 5204, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5204)
        0.14661357 = weight(_text_:semantic in 5204) [ClassicSimilarity], result of:
          0.14661357 = score(doc=5204,freq=22.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.7618005 = fieldWeight in 5204, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5204)
        0.03335444 = product of:
          0.06670888 = sum of:
            0.06670888 = weight(_text_:web in 5204) [ClassicSimilarity], result of:
              0.06670888 = score(doc=5204,freq=12.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.4416067 = fieldWeight in 5204, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5204)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    This book describes proven methodologies for developing semantic applications: software applications which explicitly or implicitly uses the semantics (i.e., the meaning) of a domain terminology in order to improve usability, correctness, and completeness. An example is semantic search, where synonyms and related terms are used for enriching the results of a simple text-based search. Ontologies, thesauri or controlled vocabularies are the centerpiece of semantic applications. The book includes technological and architectural best practices for corporate use.
    Content
    Introduction.- Ontology Development.- Compliance using Metadata.- Variety Management for Big Data.- Text Mining in Economics.- Generation of Natural Language Texts.- Sentiment Analysis.- Building Concise Text Corpora from Web Contents.- Ontology-Based Modelling of Web Content.- Personalized Clinical Decision Support for Cancer Care.- Applications of Temporal Conceptual Semantic Systems.- Context-Aware Documentation in the Smart Factory.- Knowledge-Based Production Planning for Industry 4.0.- Information Exchange in Jurisdiction.- Supporting Automated License Clearing.- Managing cultural assets: Implementing typical cultural heritage archive's usage scenarios via Semantic Web technologies.- Semantic Applications for Process Management.- Domain-Specific Semantic Search Applications.
    LCSH
    Information storage and retrieval
    Information Storage and Retrieval
    RSWK
    Information Retrieval
    Semantic Web
    Subject
    Information Retrieval
    Semantic Web
    Information storage and retrieval
    Information Storage and Retrieval
    Theme
    Semantic Web
  4. Semantic digital libraries (2009) 0.14
    0.13900207 = product of:
      0.2316701 = sum of:
        0.01871778 = weight(_text_:retrieval in 3371) [ClassicSimilarity], result of:
          0.01871778 = score(doc=3371,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.13368362 = fieldWeight in 3371, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=3371)
        0.17682262 = weight(_text_:semantic in 3371) [ClassicSimilarity], result of:
          0.17682262 = score(doc=3371,freq=50.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.918766 = fieldWeight in 3371, product of:
              7.071068 = tf(freq=50.0), with freq of:
                50.0 = termFreq=50.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.03125 = fieldNorm(doc=3371)
        0.036129702 = product of:
          0.072259404 = sum of:
            0.072259404 = weight(_text_:web in 3371) [ClassicSimilarity], result of:
              0.072259404 = score(doc=3371,freq=22.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.47835067 = fieldWeight in 3371, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3371)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Libraries have always been an inspiration for the standards and technologies developed by semantic web activities. However, except for the Dublin Core specification, semantic web and social networking technologies have not been widely adopted and further developed by major digital library initiatives and projects. Yet semantic technologies offer a new level of flexibility, interoperability, and relationships for digital repositories. Kruk and McDaniel present semantic web-related aspects of current digital library activities, and introduce their functionality; they show examples ranging from general architectural descriptions to detailed usages of specific ontologies, and thus stimulate the awareness of researchers, engineers, and potential users of those technologies. Their presentation is completed by chapters on existing prototype systems such as JeromeDL, BRICKS, and Greenstone, as well as a look into the possible future of semantic digital libraries. This book is aimed at researchers and graduate students in areas like digital libraries, the semantic web, social networks, and information retrieval. This audience will benefit from detailed descriptions of both today's possibilities and also the shortcomings of applying semantic web technologies to large digital repositories of often unstructured data.
    Content
    Inhalt: Introduction to Digital Libraries and Semantic Web: Introduction / Bill McDaniel and Sebastian Ryszard Kruk - Digital Libraries and Knowledge Organization / Dagobert Soergel - Semantic Web and Ontologies / Marcin Synak, Maciej Dabrowski and Sebastian Ryszard Kruk - Social Semantic Information Spaces / John G. Breslin A Vision of Semantic Digital Libraries: Goals of Semantic Digital Libraries / Sebastian Ryszard Kruk and Bill McDaniel - Architecture of Semantic Digital Libraries / Sebastian Ryszard Kruk, Adam Westerki and Ewelina Kruk - Long-time Preservation / Markus Reis Ontologies for Semantic Digital Libraries: Bibliographic Ontology / Maciej Dabrowski, Macin Synak and Sebastian Ryszard Kruk - Community-aware Ontologies / Slawomir Grzonkowski, Sebastian Ryszard Kruk, Adam Gzella, Jakub Demczuk and Bill McDaniel Prototypes of Semantic Digital Libraries: JeromeDL: The Social Semantic Digital Library / Sebastian Ryszard Kruk, Mariusz Cygan, Adam Gzella, Tomasz Woroniecki and Maciej Dabrowski - The BRICKS Digital Library Infrastructure / Bernhard Haslhofer and Predrag Knezevié - Semantics in Greenstone / Annika Hinze, George Buchanan, David Bainbridge and Ian Witten Building the Future - Semantic Digital Libraries in Use: Hyperbooks / Gilles Falquet, Luka Nerima and Jean-Claude Ziswiler - Semantic Digital Libraries for Archiving / Bill McDaniel - Evaluation of Semantic and Social Technologies for Digital Libraries / Sebastian Ryszard Kruk, Ewelina Kruk and Katarzyna Stankiewicz - Conclusions: The Future of Semantic Digital Libraries / Sebastian Ryszard Kruk and Bill McDaniel
    LCSH
    Semantic Web
    RSWK
    Elektronische Bibliothek / Semantic Web / Ontologie <Wissensverarbeitung> / Aufsatzsammlung
    Subject
    Elektronische Bibliothek / Semantic Web / Ontologie <Wissensverarbeitung> / Aufsatzsammlung
    Semantic Web
  5. Gödert, W.; Lepsky, K.: Informationelle Kompetenz : ein humanistischer Entwurf (2019) 0.14
    0.13723119 = product of:
      0.34307796 = sum of:
        0.08576949 = product of:
          0.25730845 = sum of:
            0.25730845 = weight(_text_:3a in 5955) [ClassicSimilarity], result of:
              0.25730845 = score(doc=5955,freq=2.0), product of:
                0.39242527 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.04628742 = queryNorm
                0.65568775 = fieldWeight in 5955, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5955)
          0.33333334 = coord(1/3)
        0.25730845 = weight(_text_:2f in 5955) [ClassicSimilarity], result of:
          0.25730845 = score(doc=5955,freq=2.0), product of:
            0.39242527 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.04628742 = queryNorm
            0.65568775 = fieldWeight in 5955, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5955)
      0.4 = coord(2/5)
    
    Footnote
    Rez. in: Philosophisch-ethische Rezensionen vom 09.11.2019 (Jürgen Czogalla), Unter: https://philosophisch-ethische-rezensionen.de/rezension/Goedert1.html. In: B.I.T. online 23(2020) H.3, S.345-347 (W. Sühl-Strohmenger) [Unter: https%3A%2F%2Fwww.b-i-t-online.de%2Fheft%2F2020-03-rezensionen.pdf&usg=AOvVaw0iY3f_zNcvEjeZ6inHVnOK]. In: Open Password Nr. 805 vom 14.08.2020 (H.-C. Hobohm) [Unter: https://www.password-online.de/?mailpoet_router&endpoint=view_in_browser&action=view&data=WzE0MywiOGI3NjZkZmNkZjQ1IiwwLDAsMTMxLDFd].
  6. Atanassova, I.; Bertin, M.: Semantic facets for scientific information retrieval (2014) 0.14
    0.13643564 = product of:
      0.22739272 = sum of:
        0.05673526 = weight(_text_:retrieval in 4471) [ClassicSimilarity], result of:
          0.05673526 = score(doc=4471,freq=6.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.40520695 = fieldWeight in 4471, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4471)
        0.1515938 = weight(_text_:semantic in 4471) [ClassicSimilarity], result of:
          0.1515938 = score(doc=4471,freq=12.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.78767776 = fieldWeight in 4471, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4471)
        0.019063652 = product of:
          0.038127303 = sum of:
            0.038127303 = weight(_text_:web in 4471) [ClassicSimilarity], result of:
              0.038127303 = score(doc=4471,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.25239927 = fieldWeight in 4471, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4471)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    We present an Information Retrieval System for scientific publications that provides the possibility to filter results according to semantic facets. We use sentence-level semantic annotations that identify specific semantic relations in texts, such as methods, definitions, hypotheses, that correspond to common information needs related to scientific literature. The semantic annotations are obtained using a rule-based method that identifies linguistic clues organized into a linguistic ontology. The system is implemented using Solr Search Server and offers efficient search and navigation in scientific papers.
    Source
    Semantic Web Evaluation Challenge. SemWebEval 2014 at ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014, Revised Selected Papers. Eds.: V. Presutti et al
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  7. Multimedia content and the Semantic Web : methods, standards, and tools (2005) 0.14
    0.13561465 = product of:
      0.2260244 = sum of:
        0.035095837 = weight(_text_:retrieval in 150) [ClassicSimilarity], result of:
          0.035095837 = score(doc=150,freq=18.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.25065678 = fieldWeight in 150, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.10600142 = weight(_text_:semantic in 150) [ClassicSimilarity], result of:
          0.10600142 = score(doc=150,freq=46.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.55078083 = fieldWeight in 150, product of:
              6.78233 = tf(freq=46.0), with freq of:
                46.0 = termFreq=46.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.01953125 = fieldNorm(doc=150)
        0.08492714 = sum of:
          0.057771582 = weight(_text_:web in 150) [ClassicSimilarity], result of:
            0.057771582 = score(doc=150,freq=36.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.38244262 = fieldWeight in 150, product of:
                6.0 = tf(freq=36.0), with freq of:
                  36.0 = termFreq=36.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.01953125 = fieldNorm(doc=150)
          0.027155556 = weight(_text_:22 in 150) [ClassicSimilarity], result of:
            0.027155556 = score(doc=150,freq=6.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.16753313 = fieldWeight in 150, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.01953125 = fieldNorm(doc=150)
      0.6 = coord(3/5)
    
    Classification
    006.7 22
    Date
    7. 3.2007 19:30:22
    DDC
    006.7 22
    Footnote
    Rez. in: JASIST 58(2007) no.3, S.457-458 (A.M.A. Ahmad): "The concept of the semantic web has emerged because search engines and text-based searching are no longer adequate, as these approaches involve an extensive information retrieval process. The deployed searching and retrieving descriptors arc naturally subjective and their deployment is often restricted to the specific application domain for which the descriptors were configured. The new era of information technology imposes different kinds of requirements and challenges. Automatic extracted audiovisual features are required, as these features are more objective, domain-independent, and more native to audiovisual content. This book is a useful guide for researchers, experts, students, and practitioners; it is a very valuable reference and can lead them through their exploration and research in multimedia content and the semantic web. The book is well organized, and introduces the concept of the semantic web and multimedia content analysis to the reader through a logical sequence from standards and hypotheses through system examples, presenting relevant tools and methods. But in some chapters readers will need a good technical background to understand some of the details. Readers may attain sufficient knowledge here to start projects or research related to the book's theme; recent results and articles related to the active research area of integrating multimedia with semantic web technologies are included. This book includes full descriptions of approaches to specific problem domains such as content search, indexing, and retrieval. This book will be very useful to researchers in the multimedia content analysis field who wish to explore the benefits of emerging semantic web technologies in applying multimedia content approaches. The first part of the book covers the definition of the two basic terms multimedia content and semantic web. The Moving Picture Experts Group standards MPEG7 and MPEG21 are quoted extensively. In addition, the means of multimedia content description are elaborated upon and schematically drawn. This extensive description is introduced by authors who are actively involved in those standards and have been participating in the work of the International Organization for Standardization (ISO)/MPEG for many years. On the other hand, this results in bias against the ad hoc or nonstandard tools for multimedia description in favor of the standard approaches. This is a general book for multimedia content; more emphasis on the general multimedia description and extraction could be provided.
    Semantic web technologies are explained, and ontology representation is emphasized. There is an excellent summary of the fundamental theory behind applying a knowledge-engineering approach to vision problems. This summary represents the concept of the semantic web and multimedia content analysis. A definition of the fuzzy knowledge representation that can be used for realization in multimedia content applications has been provided, with a comprehensive analysis. The second part of the book introduces the multimedia content analysis approaches and applications. In addition, some examples of methods applicable to multimedia content analysis are presented. Multimedia content analysis is a very diverse field and concerns many other research fields at the same time; this creates strong diversity issues, as everything from low-level features (e.g., colors, DCT coefficients, motion vectors, etc.) up to the very high and semantic level (e.g., Object, Events, Tracks, etc.) are involved. The second part includes topics on structure identification (e.g., shot detection for video sequences), and object-based video indexing. These conventional analysis methods are supplemented by results on semantic multimedia analysis, including three detailed chapters on the development and use of knowledge models for automatic multimedia analysis. Starting from object-based indexing and continuing with machine learning, these three chapters are very logically organized. Because of the diversity of this research field, including several chapters of recent research results is not sufficient to cover the state of the art of multimedia. The editors of the book should write an introductory chapter about multimedia content analysis approaches, basic problems, and technical issues and challenges, and try to survey the state of the art of the field and thus introduce the field to the reader.
    The final part of the book discusses research in multimedia content management systems and the semantic web, and presents examples and applications for semantic multimedia analysis in search and retrieval systems. These chapters describe example systems in which current projects have been implemented, and include extensive results and real demonstrations. For example, real case scenarios such as ECommerce medical applications and Web services have been introduced. Topics in natural language, speech and image processing techniques and their application for multimedia indexing, and content-based retrieval have been elaborated upon with extensive examples and deployment methods. The editors of the book themselves provide the readers with a chapter about their latest research results on knowledge-based multimedia content indexing and retrieval. Some interesting applications for multimedia content and the semantic web are introduced. Applications that have taken advantage of the metadata provided by MPEG7 in order to realize advance-access services for multimedia content have been provided. The applications discussed in the third part of the book provide useful guidance to researchers and practitioners properly planning to implement semantic multimedia analysis techniques in new research and development projects in both academia and industry. A fourth part should be added to this book: performance measurements for integrated approaches of multimedia analysis and the semantic web. Performance of the semantic approach is a very sophisticated issue and requires extensive elaboration and effort. Measuring the semantic search is an ongoing research area; several chapters concerning performance measurement and analysis would be required to adequately cover this area and introduce it to readers."
    LCSH
    Semantic Web
    Information storage and retrieval systems
    RSWK
    Semantic Web / Multimedia / Automatische Indexierung / Information Retrieval
    Subject
    Semantic Web / Multimedia / Automatische Indexierung / Information Retrieval
    Semantic Web
    Information storage and retrieval systems
    Theme
    Semantic Web
  8. Brunetti, J.M.; Roberto García, R.: User-centered design and evaluation of overview components for semantic data exploration (2014) 0.13
    0.13363014 = product of:
      0.22271688 = sum of:
        0.01871778 = weight(_text_:retrieval in 1626) [ClassicSimilarity], result of:
          0.01871778 = score(doc=1626,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.13368362 = fieldWeight in 1626, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=1626)
        0.117290854 = weight(_text_:semantic in 1626) [ClassicSimilarity], result of:
          0.117290854 = score(doc=1626,freq=22.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.60944045 = fieldWeight in 1626, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.03125 = fieldNorm(doc=1626)
        0.08670825 = sum of:
          0.061623022 = weight(_text_:web in 1626) [ClassicSimilarity], result of:
            0.061623022 = score(doc=1626,freq=16.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.4079388 = fieldWeight in 1626, product of:
                4.0 = tf(freq=16.0), with freq of:
                  16.0 = termFreq=16.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.03125 = fieldNorm(doc=1626)
          0.025085226 = weight(_text_:22 in 1626) [ClassicSimilarity], result of:
            0.025085226 = score(doc=1626,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.15476047 = fieldWeight in 1626, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1626)
      0.6 = coord(3/5)
    
    Abstract
    Purpose - The growing volumes of semantic data available in the web result in the need for handling the information overload phenomenon. The potential of this amount of data is enormous but in most cases it is very difficult for users to visualize, explore and use this data, especially for lay-users without experience with Semantic Web technologies. The paper aims to discuss these issues. Design/methodology/approach - The Visual Information-Seeking Mantra "Overview first, zoom and filter, then details-on-demand" proposed by Shneiderman describes how data should be presented in different stages to achieve an effective exploration. The overview is the first user task when dealing with a data set. The objective is that the user is capable of getting an idea about the overall structure of the data set. Different information architecture (IA) components supporting the overview tasks have been developed, so they are automatically generated from semantic data, and evaluated with end-users. Findings - The chosen IA components are well known to web users, as they are present in most web pages: navigation bars, site maps and site indexes. The authors complement them with Treemaps, a visualization technique for displaying hierarchical data. These components have been developed following an iterative User-Centered Design methodology. Evaluations with end-users have shown that they get easily used to them despite the fact that they are generated automatically from structured data, without requiring knowledge about the underlying semantic technologies, and that the different overview components complement each other as they focus on different information search needs. Originality/value - Obtaining semantic data sets overviews cannot be easily done with the current semantic web browsers. Overviews become difficult to achieve with large heterogeneous data sets, which is typical in the Semantic Web, because traditional IA techniques do not easily scale to large data sets. There is little or no support to obtain overview information quickly and easily at the beginning of the exploration of a new data set. This can be a serious limitation when exploring a data set for the first time, especially for lay-users. The proposal is to reuse and adapt existing IA components to provide this overview to users and show that they can be generated automatically from the thesaurus and ontologies that structure semantic data while providing a comparable user experience to traditional web sites.
    Date
    20. 1.2015 18:30:22
    Series
    Special issue: Semantic search
    Theme
    Semantic Web
    Semantisches Umfeld in Indexierung u. Retrieval
  9. Prasad, A.R.D.; Madalli, D.P.: Faceted infrastructure for semantic digital libraries (2008) 0.13
    0.13353398 = product of:
      0.22255664 = sum of:
        0.052317787 = weight(_text_:retrieval in 1905) [ClassicSimilarity], result of:
          0.052317787 = score(doc=1905,freq=10.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.37365708 = fieldWeight in 1905, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1905)
        0.13979055 = weight(_text_:semantic in 1905) [ClassicSimilarity], result of:
          0.13979055 = score(doc=1905,freq=20.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.7263483 = fieldWeight in 1905, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1905)
        0.030448299 = product of:
          0.060896598 = sum of:
            0.060896598 = weight(_text_:web in 1905) [ClassicSimilarity], result of:
              0.060896598 = score(doc=1905,freq=10.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.40312994 = fieldWeight in 1905, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1905)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Purpose - The paper aims to argue that digital library retrieval should be based on semantic representations and propose a semantic infrastructure for digital libraries. Design/methodology/approach - The approach taken is formal model based on subject representation for digital libraries. Findings - Search engines and search techniques have fallen short of user expectations as they do not give context based retrieval. Deploying semantic web technologies would lead to efficient and more precise representation of digital library content and hence better retrieval. Though digital libraries often have metadata of information resources which can be accessed through OAI-PMH, much remains to be accomplished in making digital libraries semantic web compliant. This paper presents a semantic infrastructure for digital libraries, that will go a long way in providing them and web based information services with products highly customised to users needs. Research limitations/implications - Here only a model for semantic infrastructure is proposed. This model is proposed after studying current user-centric, top-down models adopted in digital library service architectures. Originality/value - This paper gives a generic model for building semantic infrastructure for digital libraries. Faceted ontologies for digital libraries is just one approach. But the same may be adopted by groups working with different approaches in building ontologies to realise efficient retrieval in digital libraries.
    Footnote
    Beitrag eines Themenheftes "Digital libraries and the semantic web: context, applications and research".
    Theme
    Semantic Web
    Semantisches Umfeld in Indexierung u. Retrieval
  10. Brasethvik, T.: ¬A semantic modeling approach to metadata (1998) 0.13
    0.13085888 = product of:
      0.21809813 = sum of:
        0.032756116 = weight(_text_:retrieval in 5165) [ClassicSimilarity], result of:
          0.032756116 = score(doc=5165,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.23394634 = fieldWeight in 5165, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5165)
        0.08752273 = weight(_text_:semantic in 5165) [ClassicSimilarity], result of:
          0.08752273 = score(doc=5165,freq=4.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.45476598 = fieldWeight in 5165, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5165)
        0.09781929 = sum of:
          0.053920146 = weight(_text_:web in 5165) [ClassicSimilarity], result of:
            0.053920146 = score(doc=5165,freq=4.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.35694647 = fieldWeight in 5165, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0546875 = fieldNorm(doc=5165)
          0.043899145 = weight(_text_:22 in 5165) [ClassicSimilarity], result of:
            0.043899145 = score(doc=5165,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.2708308 = fieldWeight in 5165, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=5165)
      0.6 = coord(3/5)
    
    Abstract
    States that heterogeneous project groups today may be expected to use the mechanisms of the Web for sharing information. Metadata has been proposed as a mechanism for expressing the semantics of information and, hence, facilitate information retrieval, understanding and use. Presents an approach to sharing information which aims to use a semantic modeling language as the basis for expressing the semantics of information and designing metadata schemes. Functioning on the borderline between human and computer understandability, the modeling language would be able to express the semantics of published Web documents. Reporting on work in progress, presents the overall framework and ideas
    Date
    9. 9.2000 17:22:23
  11. Blumauer, A.; Pellegrini, T.: Semantic Web Revisited : Eine kurze Einführung in das Social Semantic Web (2009) 0.13
    0.12877877 = product of:
      0.32194692 = sum of:
        0.1515938 = weight(_text_:semantic in 4855) [ClassicSimilarity], result of:
          0.1515938 = score(doc=4855,freq=12.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.78767776 = fieldWeight in 4855, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4855)
        0.1703531 = sum of:
          0.12645395 = weight(_text_:web in 4855) [ClassicSimilarity], result of:
            0.12645395 = score(doc=4855,freq=22.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.8371137 = fieldWeight in 4855, product of:
                4.690416 = tf(freq=22.0), with freq of:
                  22.0 = termFreq=22.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0546875 = fieldNorm(doc=4855)
          0.043899145 = weight(_text_:22 in 4855) [ClassicSimilarity], result of:
            0.043899145 = score(doc=4855,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.2708308 = fieldWeight in 4855, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=4855)
      0.4 = coord(2/5)
    
    Abstract
    Während in den vergangenen Monaten Themen wie Web 2.0 und Social Software ein erstaunliches Konjunkturhoch erlebt haben, vollzieht sich weitgehend abseits der öffentlichen Wahrnehmung eine technologische Komplementärinnovation. Die wachsende Adaption semantischer Technologien zu Zwecken der strukturierten Erschließung von "Web 2.0 Content", aber auch der Einsatz von Social Software zur kollaborativen Anreicherung von Web Content mit maschinenlesbaren Metadaten sind Ausdruck eines Trends in Richtung "Social Semantic Web". Bezeichnendes Merkmal dieser Entwicklung ist die voranschreitende Konvergenz zwischen Social Software und Semantic Web Technologien. Dieser Beitrag hat das Ziel ein allgemeines Bewusstsein und Verständnis dieser Entwicklung zu schaffen und nähert sich dem Phänomen aus einer nichttechnischen Perspektive.
    Object
    Web 2.0
    Pages
    S.3-22
    Source
    Social Semantic Web: Web 2.0, was nun? Hrsg.: A. Blumauer u. T. Pellegrini
    Theme
    Semantic Web
  12. Corporate Semantic Web : wie semantische Anwendungen in Unternehmen Nutzen stiften (2015) 0.13
    0.1286838 = product of:
      0.214473 = sum of:
        0.026470939 = weight(_text_:retrieval in 2246) [ClassicSimilarity], result of:
          0.026470939 = score(doc=2246,freq=4.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.18905719 = fieldWeight in 2246, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=2246)
        0.14581165 = weight(_text_:semantic in 2246) [ClassicSimilarity], result of:
          0.14581165 = score(doc=2246,freq=34.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.7576338 = fieldWeight in 2246, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.03125 = fieldNorm(doc=2246)
        0.0421904 = product of:
          0.0843808 = sum of:
            0.0843808 = weight(_text_:web in 2246) [ClassicSimilarity], result of:
              0.0843808 = score(doc=2246,freq=30.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.5585932 = fieldWeight in 2246, product of:
                  5.477226 = tf(freq=30.0), with freq of:
                    30.0 = termFreq=30.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2246)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Beim Corporate Semantic Web betrachtet man Semantic Web-Anwendungen, die innerhalb eines Unternehmens oder einer Organisation - kommerziell und nicht kommerziell - eingesetzt werden, von Mitarbeitern, von Kunden oder Partnern. Die Autoren erläutern prägende Erfahrungen in der Entwicklung von Semantic Web-Anwendungen. Sie berichten über Software-Architektur, Methodik, Technologieauswahl, Linked Open Data Sets, Lizenzfragen etc. Anwendungen aus den Branchen Banken, Versicherungen, Telekommunikation, Medien, Energie, Maschinenbau, Logistik, Touristik, Spielwaren, Bibliothekswesen und Kultur werden vorgestellt. Der Leser erhält so einen umfassenden Überblick über die Semantic Web-Einsatzbereiche sowie konkrete Umsetzungshinweise für eigene Vorhaben.
    Content
    Kapitel 1; Corporate Semantic Web; 1.1 Das Semantic Web; 1.2 Semantische Anwendungen im Unternehmenseinsatz; 1.3 Bereitstellen von Linked Data reicht nicht; 1.4 Eine global vernetzte Wissensbasis -- Fiktion oder Realität?; 1.5 Semantik)=)RDF?; 1.6 Richtig vorgehen; 1.7 Modellieren ist einfach (?!); 1.8 Juristische Fragen; 1.9 Semantische Anwendungen stiften Nutzen in Unternehmen -- nachweislich!; 1.10 Fazit; Literatur; Kapitel 2; Einordnung und Abgrenzung des Corporate Semantic Webs; 2.1 Grundlegende Begriffe; 2.2 Corporate Semantic Web 2.3 Public Semantic Web2.4 Social Semantic Web 3.0; 2.5 Pragmatic Web; 2.6 Zusammenfassung und Ausblick "Ubiquitous Pragmatic Web 4.0"; Literatur; Kapitel 3; Marktstudie: Welche Standards und Tools werden in Unternehmen eingesetzt?; 3.1 Einleitung; 3.2 Semantische Suche in Webarchiven (Quantinum AG); 3.2.1 Kundenanforderungen; 3.2.2 Technische Umsetzung; 3.2.3 Erfahrungswerte; 3.3 Semantische Analyse und Suche in Kundenspezifikationen (Ontos AG); 3.3.1 Kundenanforderungen; 3.3.2 Technische Umsetzung; 3.3.3 Erfahrungswerte 3.4 Sicherheit für Banken im Risikomanagement (VICO Research & Consulting GmbH)3.4.1 Kundenanforderungen; 3.4.2 Technische Umsetzung; 3.4.3 Erfahrungswerte; 3.5 Interaktive Fahrzeugdiagnose (semafora GmbH); 3.5.1 Kundenanforderungen; 3.5.2 Technische Umsetzung; 3.5.3 Erfahrungswerte; 3.6 Quo Vadis?; 3.7 Umfrage-Ergebnisse; 3.8 Semantic Web Standards & Tools; 3.9 Ausblick; Literatur; Kapitel 4; Modellierung des Sprachraums von Unternehmen; 4.1 Hintergrund; 4.2 Eine Frage der Bedeutung; 4.3 Bedeutung von Begriffen im Unternehmenskontext; 4.3.1 Website-Suche bei einem Industrieunternehmen 4.3.2 Extranet-Suche bei einem Marktforschungsunternehmen4.3.3 Intranet-Suche bei einem Fernsehsender; 4.4 Variabilität unserer Sprache und unseres Sprachgebrauchs; 4.4.1 Konsequenzen des Sprachgebrauchs; 4.5 Terminologiemanagement und Unternehmensthesaurus; 4.5.1 Unternehmensthesaurus; 4.5.2 Mut zur Lücke: Arbeiten mit unvollständigen Terminologien; 4.6 Pragmatischer Aufbau von Unternehmensthesauri; 4.6.1 Begriffsanalyse des Anwendungsbereichs; 4.6.2 Informationsquellen; 4.6.3 Häufigkeitsverteilung; 4.6.4 Aufwand und Nutzen; Literatur; Kapitel 5 Schlendern durch digitale Museen und Bibliotheken5.1 Einleitung; 5.2 Anwendungsfall 1: Schlendern durch das Digitale Museum; 5.3 Anwendungsfall 2: Literatur in Bibliotheken finden; 5.4 Herausforderungen; 5.5 Die Anforderungen treiben die Architektur; 5.5.1 Semantic ETL; 5.5.2 Semantic Logic; 5.5.3 Client; 5.6 Diskussion; 5.7 Empfehlungen und Fazit; Literatur; Kapitel 6; Semantische Suche im Bereich der Energieforschungsförderung; 6.1 Das Projekt EnArgus®; 6.2 Die Fachontologie; 6.2.1 Semantische Suche; 6.2.2 Repräsentation der semantischen Relationen in der Fachontologie
    LCSH
    Information storage and retrieval system
    RSWK
    Unternehmen / Semantic Web / Aufsatzsammlung
    Subject
    Unternehmen / Semantic Web / Aufsatzsammlung
    Information storage and retrieval system
    Theme
    Semantic Web
  13. Shah, U.; Finin, T.; Joshi, A.; Cost, R.S.; Mayfield, J.: Information retrieval on the Semantic Web (2002) 0.13
    0.12811817 = product of:
      0.21353029 = sum of:
        0.05673526 = weight(_text_:retrieval in 696) [ClassicSimilarity], result of:
          0.05673526 = score(doc=696,freq=6.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.40520695 = fieldWeight in 696, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=696)
        0.12377582 = weight(_text_:semantic in 696) [ClassicSimilarity], result of:
          0.12377582 = score(doc=696,freq=8.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.64313614 = fieldWeight in 696, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0546875 = fieldNorm(doc=696)
        0.03301921 = product of:
          0.06603842 = sum of:
            0.06603842 = weight(_text_:web in 696) [ClassicSimilarity], result of:
              0.06603842 = score(doc=696,freq=6.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.43716836 = fieldWeight in 696, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=696)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    We describe an apporach to retrieval of documents that consist of both free text and semantically enriched markup. In particular, we present the design and implementation prototype of a framework in which both documents and queries can be marked up with statements in the DAML+OIL semantic web language. These statement provide both structured and semi-structured information about the documents and their content. We claim that indexing text and semantic markup will significantly improve retrieval performance. Outr approach allows inferencing to be done over this information at several points: when a document is indexed,when a query is processed and when query results are evaluated.
    Theme
    Semantic Web
  14. Ding, L.; Finin, T.; Joshi, A.; Peng, Y.; Cost, R.S.; Sachs, J.; Pan, R.; Reddivari, P.; Doshi, V.: Swoogle : a Semantic Web search and metadata engine (2004) 0.13
    0.12772577 = product of:
      0.21287626 = sum of:
        0.03970641 = weight(_text_:retrieval in 4704) [ClassicSimilarity], result of:
          0.03970641 = score(doc=4704,freq=4.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.2835858 = fieldWeight in 4704, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4704)
        0.12993754 = weight(_text_:semantic in 4704) [ClassicSimilarity], result of:
          0.12993754 = score(doc=4704,freq=12.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.67515236 = fieldWeight in 4704, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.046875 = fieldNorm(doc=4704)
        0.0432323 = product of:
          0.0864646 = sum of:
            0.0864646 = weight(_text_:web in 4704) [ClassicSimilarity], result of:
              0.0864646 = score(doc=4704,freq=14.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.57238775 = fieldWeight in 4704, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4704)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Swoogle is a crawler-based indexing and retrieval system for the Semantic Web, i.e., for Web documents in RDF or OWL. It extracts metadata for each discovered document, and computes relations between documents. Discovered documents are also indexed by an information retrieval system which can use either character N-Gram or URIrefs as keywords to find relevant documents and to compute the similarity among a set of documents. One of the interesting properties we compute is rank, a measure of the importance of a Semantic Web document.
    Content
    Vgl. unter: http://www.dblab.ntua.gr/~bikakis/LD/5.pdf Vgl. auch: http://swoogle.umbc.edu/. Vgl. auch: http://ebiquity.umbc.edu/paper/html/id/183/. Vgl. auch: Radhakrishnan, A.: Swoogle : An Engine for the Semantic Web unter: http://www.searchenginejournal.com/swoogle-an-engine-for-the-semantic-web/5469/.
    Theme
    Semantic Web
  15. Spinning the Semantic Web : bringing the World Wide Web to its full potential (2003) 0.13
    0.12675123 = product of:
      0.21125205 = sum of:
        0.016378058 = weight(_text_:retrieval in 1981) [ClassicSimilarity], result of:
          0.016378058 = score(doc=1981,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.11697317 = fieldWeight in 1981, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1981)
        0.14180303 = weight(_text_:semantic in 1981) [ClassicSimilarity], result of:
          0.14180303 = score(doc=1981,freq=42.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.7368051 = fieldWeight in 1981, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1981)
        0.05307096 = product of:
          0.10614192 = sum of:
            0.10614192 = weight(_text_:web in 1981) [ClassicSimilarity], result of:
              0.10614192 = score(doc=1981,freq=62.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.70264983 = fieldWeight in 1981, product of:
                  7.8740077 = tf(freq=62.0), with freq of:
                    62.0 = termFreq=62.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1981)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    As the World Wide Web continues to expand, it becomes increasingly difficult for users to obtain information efficiently. Because most search engines read format languages such as HTML or SGML, search results reflect formatting tags more than actual page content, which is expressed in natural language. Spinning the Semantic Web describes an exciting new type of hierarchy and standardization that will replace the current "Web of links" with a "Web of meaning." Using a flexible set of languages and tools, the Semantic Web will make all available information - display elements, metadata, services, images, and especially content - accessible. The result will be an immense repository of information accessible for a wide range of new applications. This first handbook for the Semantic Web covers, among other topics, software agents that can negotiate and collect information, markup languages that can tag many more types of information in a document, and knowledge systems that enable machines to read Web pages and determine their reliability. The truly interdisciplinary Semantic Web combines aspects of artificial intelligence, markup languages, natural language processing, information retrieval, knowledge representation, intelligent agents, and databases.
    Content
    Inhalt: Tim Bemers-Lee: The Original Dream - Re-enter Machines - Where Are We Now? - The World Wide Web Consortium - Where Is the Web Going Next? / Dieter Fensel, James Hendler, Henry Lieberman, and Wolfgang Wahlster: Why Is There a Need for the Semantic Web and What Will It Provide? - How the Semantic Web Will Be Possible / Jeff Heflin, James Hendler, and Sean Luke: SHOE: A Blueprint for the Semantic Web / Deborah L. McGuinness, Richard Fikes, Lynn Andrea Stein, and James Hendler: DAML-ONT: An Ontology Language for the Semantic Web / Michel Klein, Jeen Broekstra, Dieter Fensel, Frank van Harmelen, and Ian Horrocks: Ontologies and Schema Languages on the Web / Borys Omelayenko, Monica Crubezy, Dieter Fensel, Richard Benjamins, Bob Wielinga, Enrico Motta, Mark Musen, and Ying Ding: UPML: The Language and Tool Support for Making the Semantic Web Alive / Deborah L. McGuinness: Ontologies Come of Age / Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen: Sesame: An Architecture for Storing and Querying RDF Data and Schema Information / Rob Jasper and Mike Uschold: Enabling Task-Centered Knowledge Support through Semantic Markup / Yolanda Gil: Knowledge Mobility: Semantics for the Web as a White Knight for Knowledge-Based Systems / Sanjeev Thacker, Amit Sheth, and Shuchi Patel: Complex Relationships for the Semantic Web / Alexander Maedche, Steffen Staab, Nenad Stojanovic, Rudi Studer, and York Sure: SEmantic portAL: The SEAL Approach / Ora Lassila and Mark Adler: Semantic Gadgets: Ubiquitous Computing Meets the Semantic Web / Christopher Frye, Mike Plusch, and Henry Lieberman: Static and Dynamic Semantics of the Web / Masahiro Hori: Semantic Annotation for Web Content Adaptation / Austin Tate, Jeff Dalton, John Levine, and Alex Nixon: Task-Achieving Agents on the World Wide Web
    LCSH
    Semantic Web
    World Wide Web
    RSWK
    Semantic Web
    Subject
    Semantic Web
    Semantic Web
    World Wide Web
    Theme
    Semantic Web
  16. Fensel, D.: Ontologies : a silver bullet for knowledge management and electronic commerce (2004) 0.13
    0.12661043 = product of:
      0.21101737 = sum of:
        0.023397226 = weight(_text_:retrieval in 1949) [ClassicSimilarity], result of:
          0.023397226 = score(doc=1949,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.16710453 = fieldWeight in 1949, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1949)
        0.076566435 = weight(_text_:semantic in 1949) [ClassicSimilarity], result of:
          0.076566435 = score(doc=1949,freq=6.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.39783734 = fieldWeight in 1949, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1949)
        0.111053705 = sum of:
          0.06670888 = weight(_text_:web in 1949) [ClassicSimilarity], result of:
            0.06670888 = score(doc=1949,freq=12.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.4416067 = fieldWeight in 1949, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1949)
          0.04434483 = weight(_text_:22 in 1949) [ClassicSimilarity], result of:
            0.04434483 = score(doc=1949,freq=4.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.27358043 = fieldWeight in 1949, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1949)
      0.6 = coord(3/5)
    
    Abstract
    The author systematically introduces the notion of ontologies to the non-expert reader and demonstrates in detail how to apply this conceptual framework for improved intranet retrieval of corporate information and knowledge and for enhanced Internetbased electronic commerce. He also describes ontology languages (XML, RDF, and OWL) and ontology tools, and the application of ontologies. In addition to structural improvements, the second edition covers recent developments relating to the Semantic Web, and emerging web-based standard languages.
    Classification
    004.67/8 22
    DDC
    004.67/8 22
    LCSH
    Semantic Web
    RSWK
    World Wide Web / Datenbanksystem / Abfrage / Inferenz <Künstliche Intelligenz>
    Subject
    World Wide Web / Datenbanksystem / Abfrage / Inferenz <Künstliche Intelligenz>
    Semantic Web
  17. Herb, U.; Beucke, D.: ¬Die Zukunft der Impact-Messung : Social Media, Nutzung und Zitate im World Wide Web (2013) 0.13
    0.12634152 = product of:
      0.3158538 = sum of:
        0.2940668 = weight(_text_:2f in 2188) [ClassicSimilarity], result of:
          0.2940668 = score(doc=2188,freq=2.0), product of:
            0.39242527 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.04628742 = queryNorm
            0.7493574 = fieldWeight in 2188, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0625 = fieldNorm(doc=2188)
        0.021787029 = product of:
          0.043574058 = sum of:
            0.043574058 = weight(_text_:web in 2188) [ClassicSimilarity], result of:
              0.043574058 = score(doc=2188,freq=2.0), product of:
                0.15105948 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.04628742 = queryNorm
                0.2884563 = fieldWeight in 2188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2188)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Content
    Vgl. unter: https://www.leibniz-science20.de%2Fforschung%2Fprojekte%2Faltmetrics-in-verschiedenen-wissenschaftsdisziplinen%2F&ei=2jTgVaaXGcK4Udj1qdgB&usg=AFQjCNFOPdONj4RKBDf9YDJOLuz3lkGYlg&sig2=5YI3KWIGxBmk5_kv0P_8iQ.
  18. Marcondes, C.H.; Costa, L.C da.: ¬A model to represent and process scientific knowledge in biomedical articles with semantic Web technologies (2016) 0.12
    0.12484091 = product of:
      0.20806818 = sum of:
        0.023397226 = weight(_text_:retrieval in 2829) [ClassicSimilarity], result of:
          0.023397226 = score(doc=2829,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.16710453 = fieldWeight in 2829, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2829)
        0.09884685 = weight(_text_:semantic in 2829) [ClassicSimilarity], result of:
          0.09884685 = score(doc=2829,freq=10.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.51360583 = fieldWeight in 2829, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2829)
        0.0858241 = sum of:
          0.054467574 = weight(_text_:web in 2829) [ClassicSimilarity], result of:
            0.054467574 = score(doc=2829,freq=8.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.36057037 = fieldWeight in 2829, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2829)
          0.031356532 = weight(_text_:22 in 2829) [ClassicSimilarity], result of:
            0.031356532 = score(doc=2829,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.19345059 = fieldWeight in 2829, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2829)
      0.6 = coord(3/5)
    
    Abstract
    Knowledge organization faces the challenge of managing the amount of knowledge available on the Web. Published literature in biomedical sciences is a huge source of knowledge, which can only efficiently be managed through automatic methods. The conventional channel for reporting scientific results is Web electronic publishing. Despite its advances, scientific articles are still published in print formats such as portable document format (PDF). Semantic Web and Linked Data technologies provides new opportunities for communicating, sharing, and integrating scientific knowledge that can overcome the limitations of the current print format. Here is proposed a semantic model of scholarly electronic articles in biomedical sciences that can overcome the limitations of traditional flat records formats. Scientific knowledge consists of claims made throughout article texts, especially when semantic elements such as questions, hypotheses and conclusions are stated. These elements, although having different roles, express relationships between phenomena. Once such knowledge units are extracted and represented with technologies such as RDF (Resource Description Framework) and linked data, they may be integrated in reasoning chains. Thereby, the results of scientific research can be published and shared in structured formats, enabling crawling by software agents, semantic retrieval, knowledge reuse, validation of scientific results, and identification of traces of scientific discoveries.
    Date
    12. 3.2016 13:17:22
  19. Sun, A.; Lim, E.-P.: Web unit-based mining of homepage relationships (2006) 0.12
    0.124632314 = product of:
      0.20772052 = sum of:
        0.033088673 = weight(_text_:retrieval in 5274) [ClassicSimilarity], result of:
          0.033088673 = score(doc=5274,freq=4.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.23632148 = fieldWeight in 5274, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5274)
        0.076566435 = weight(_text_:semantic in 5274) [ClassicSimilarity], result of:
          0.076566435 = score(doc=5274,freq=6.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.39783734 = fieldWeight in 5274, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5274)
        0.098065406 = sum of:
          0.06670888 = weight(_text_:web in 5274) [ClassicSimilarity], result of:
            0.06670888 = score(doc=5274,freq=12.0), product of:
              0.15105948 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.04628742 = queryNorm
              0.4416067 = fieldWeight in 5274, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5274)
          0.031356532 = weight(_text_:22 in 5274) [ClassicSimilarity], result of:
            0.031356532 = score(doc=5274,freq=2.0), product of:
              0.16209066 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04628742 = queryNorm
              0.19345059 = fieldWeight in 5274, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5274)
      0.6 = coord(3/5)
    
    Abstract
    Homepages usually describe important semantic information about conceptual or physical entities; hence, they are the main targets for searching and browsing. To facilitate semantic-based information retrieval (IR) at a Web site, homepages can be identified and classified under some predefined concepts and these concepts are then used in query or browsing criteria, e.g., finding professor homepages containing information retrieval. In some Web sites, relationships may also exist among homepages. These relationship instances (also known as homepage relationships) enrich our knowledge about these Web sites and allow more expressive semantic-based IR. In this article, we investigate the features to be used in mining homepage relationships. We systematically develop different classes of inter-homepage features, namely, navigation, relative-location, and common-item features. We also propose deriving for each homepage a set of support pages to obtain richer and more complete content about the entity described by the homepage. The homepage together with its support pages are known to be a Web unit. By extracting inter-homepage features from Web units, our experiments on the WebKB dataset show that better homepage relationship mining accuracies can be achieved.
    Date
    22. 7.2006 16:18:25
  20. Lund, K.; Burgess, C.; Atchley, R.A.: Semantic and associative priming in high-dimensional semantic space (1995) 0.12
    0.12377971 = product of:
      0.2062995 = sum of:
        0.032756116 = weight(_text_:retrieval in 2151) [ClassicSimilarity], result of:
          0.032756116 = score(doc=2151,freq=2.0), product of:
            0.14001551 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.04628742 = queryNorm
            0.23394634 = fieldWeight in 2151, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2151)
        0.1515938 = weight(_text_:semantic in 2151) [ClassicSimilarity], result of:
          0.1515938 = score(doc=2151,freq=12.0), product of:
            0.19245663 = queryWeight, product of:
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.04628742 = queryNorm
            0.78767776 = fieldWeight in 2151, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.1578603 = idf(docFreq=1879, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2151)
        0.021949572 = product of:
          0.043899145 = sum of:
            0.043899145 = weight(_text_:22 in 2151) [ClassicSimilarity], result of:
              0.043899145 = score(doc=2151,freq=2.0), product of:
                0.16209066 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04628742 = queryNorm
                0.2708308 = fieldWeight in 2151, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2151)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    We present a model of semantic memory that utilizes a high dimensional semantic space constructed from a co-occurrence matrix. This matrix was formed by analyzing a lot) million word corpus. Word vectors were then obtained by extracting rows and columns of this matrix, These vectors were subjected to multidimensional scaling. Words were found to cluster semantically. suggesting that interword distance may be interpretable as a measure of semantic similarity, In attempting to replicate with our simulation the semantic and ...
    Source
    Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society: July 22 - 25, 1995, University of Pittsburgh / ed. by Johanna D. Moore and Jill Fain Lehmann
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval

Authors

Languages

Types

  • a 10683
  • m 1085
  • el 724
  • s 511
  • x 158
  • r 105
  • b 50
  • i 45
  • n 27
  • p 21
  • d 18
  • ? 11
  • h 4
  • u 4
  • z 2
  • A 1
  • EL 1
  • au 1
  • fi 1
  • l 1
  • More… Less…

Themes

Subjects

Classifications