Search (5 results, page 1 of 1)

  • × author_ss:"Bates, M.J."
  • × year_i:[1980 TO 1990}
  1. Bates, M.J.: Rethinking subject cataloging in the online environment (1989) 0.00
    0.0016740077 = product of:
      0.011718053 = sum of:
        0.011718053 = product of:
          0.058590267 = sum of:
            0.058590267 = weight(_text_:retrieval in 119) [ClassicSimilarity], result of:
              0.058590267 = score(doc=119,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.5347345 = fieldWeight in 119, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.125 = fieldNorm(doc=119)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Theme
    Verbale Doksprachen im Online-Retrieval
  2. Bates, M.J.: Subject access in online catalogs: a design model (1986) 0.00
    0.0014647568 = product of:
      0.010253297 = sum of:
        0.010253297 = product of:
          0.051266484 = sum of:
            0.051266484 = weight(_text_:retrieval in 120) [ClassicSimilarity], result of:
              0.051266484 = score(doc=120,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.46789268 = fieldWeight in 120, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.109375 = fieldNorm(doc=120)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Theme
    Verbale Doksprachen im Online-Retrieval
  3. Bates, M.J.: ¬An explanatory paradigm for online information retrieval (1986) 0.00
    0.0012555057 = product of:
      0.00878854 = sum of:
        0.00878854 = product of:
          0.0439427 = sum of:
            0.0439427 = weight(_text_:retrieval in 733) [ClassicSimilarity], result of:
              0.0439427 = score(doc=733,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.40105087 = fieldWeight in 733, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.09375 = fieldNorm(doc=733)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
  4. Bates, M.J.: How to use controlled vocabularies more effectively in online searching (1989) 0.00
    0.0010357393 = product of:
      0.007250175 = sum of:
        0.007250175 = product of:
          0.036250874 = sum of:
            0.036250874 = weight(_text_:retrieval in 2883) [ClassicSimilarity], result of:
              0.036250874 = score(doc=2883,freq=4.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.33085006 = fieldWeight in 2883, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2883)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Optimal retrieval in on-line searching can be achieved through combined use of both natural language and controlled vocabularies. However, there is a large variety of types of controlled vocabulary in data bases and often more than one in a single data base. Optimal use of these vocabularies requires understanding what types of languages are involved, and taking advantage of the particular mix of vocabularies in a given data base. Examples 4 major types of indexing and classification used in data bases and puts these 4 in the context of 3 other approaches to subject access. Discusses how to evaluate a new data base for various forms of subject access.
    Theme
    Verbale Doksprachen im Online-Retrieval
  5. Bates, M.J.: How to use controlled vocabularies more effectively in online searching (1989) 0.00
    0.0010357393 = product of:
      0.007250175 = sum of:
        0.007250175 = product of:
          0.036250874 = sum of:
            0.036250874 = weight(_text_:retrieval in 207) [ClassicSimilarity], result of:
              0.036250874 = score(doc=207,freq=4.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.33085006 = fieldWeight in 207, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=207)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Optimal retrieval in on-line searching can be achieved through combined use of both natural language and controlled vocabularies. However, there is a large variety of types of controlled vocabulary in data bases and often more than one in a single data base. Optimal use of these vocabularies requires understanding what types of languages are involved, and taking advantage of the particular mix of vocabularies in a given data base. Examples 4 major types of indexing and classification used in data bases and puts these 4 in the context of 3 other approaches to subject access. Discusses how to evaluate a new data base for various forms of subject access.
    Theme
    Verbale Doksprachen im Online-Retrieval