Search (15 results, page 1 of 1)

  • × subject_ss:"Semantic Web"
  1. Fensel, D.: Ontologies : a silver bullet for knowledge management and electronic commerce (2004) 0.08
    0.08450886 = product of:
      0.19718733 = sum of:
        0.003661892 = product of:
          0.01830946 = sum of:
            0.01830946 = weight(_text_:retrieval in 1949) [ClassicSimilarity], result of:
              0.01830946 = score(doc=1949,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.16710453 = fieldWeight in 1949, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1949)
          0.2 = coord(1/5)
        0.17617446 = weight(_text_:abfrage in 1949) [ClassicSimilarity], result of:
          0.17617446 = score(doc=1949,freq=4.0), product of:
            0.28580084 = queryWeight, product of:
              7.890225 = idf(docFreq=44, maxDocs=44218)
              0.03622214 = queryNorm
            0.61642385 = fieldWeight in 1949, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              7.890225 = idf(docFreq=44, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1949)
        0.017350987 = product of:
          0.034701973 = sum of:
            0.034701973 = weight(_text_:22 in 1949) [ClassicSimilarity], result of:
              0.034701973 = score(doc=1949,freq=4.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.27358043 = fieldWeight in 1949, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1949)
          0.5 = coord(1/2)
      0.42857143 = coord(3/7)
    
    Abstract
    The author systematically introduces the notion of ontologies to the non-expert reader and demonstrates in detail how to apply this conceptual framework for improved intranet retrieval of corporate information and knowledge and for enhanced Internetbased electronic commerce. He also describes ontology languages (XML, RDF, and OWL) and ontology tools, and the application of ontologies. In addition to structural improvements, the second edition covers recent developments relating to the Semantic Web, and emerging web-based standard languages.
    Classification
    004.67/8 22
    DDC
    004.67/8 22
    RSWK
    World Wide Web / Datenbanksystem / Abfrage / Inferenz <Künstliche Intelligenz>
    Subject
    World Wide Web / Datenbanksystem / Abfrage / Inferenz <Künstliche Intelligenz>
  2. Fensel, D.: Ontologies : a silver bullet for knowledge management and electronic commerce (2001) 0.05
    0.05181519 = product of:
      0.18135315 = sum of:
        0.005178697 = product of:
          0.025893483 = sum of:
            0.025893483 = weight(_text_:retrieval in 163) [ClassicSimilarity], result of:
              0.025893483 = score(doc=163,freq=4.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.23632148 = fieldWeight in 163, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=163)
          0.2 = coord(1/5)
        0.17617446 = weight(_text_:abfrage in 163) [ClassicSimilarity], result of:
          0.17617446 = score(doc=163,freq=4.0), product of:
            0.28580084 = queryWeight, product of:
              7.890225 = idf(docFreq=44, maxDocs=44218)
              0.03622214 = queryNorm
            0.61642385 = fieldWeight in 163, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              7.890225 = idf(docFreq=44, maxDocs=44218)
              0.0390625 = fieldNorm(doc=163)
      0.2857143 = coord(2/7)
    
    Abstract
    Ontologies have been developed and investigated for quite a while now in artificial intelligente and natural language processing to facilitate knowledge sharing and reuse. More recently, the notion of ontologies has attracied attention from fields such as intelligent information integration, cooperative information systems, information retrieval, electronic commerce, and knowledge management. The author systematicaliy introduces the notion of ontologies to the non-expert reader and demonstrates in detail how to apply this conceptual framework for improved intranet retrieval of corporate information and knowledge and for enhanced Internet-based electronic commerce. In the second part of the book, the author presents a more technical view an emerging Web standards, like XML, RDF, XSL-T, or XQL, allowing for structural and semantic modeling and description of data and information.
    RSWK
    World Wide Web / Datenbanksystem / Abfrage / Inferenz <Künstliche Intelligenz>
    Subject
    World Wide Web / Datenbanksystem / Abfrage / Inferenz <Künstliche Intelligenz>
  3. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.01
    0.00752827 = product of:
      0.026348945 = sum of:
        0.011626146 = product of:
          0.058130726 = sum of:
            0.058130726 = weight(_text_:retrieval in 987) [ClassicSimilarity], result of:
              0.058130726 = score(doc=987,freq=14.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.5305404 = fieldWeight in 987, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.2 = coord(1/5)
        0.0147228 = product of:
          0.0294456 = sum of:
            0.0294456 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.0294456 = score(doc=987,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Content
    Introduction: envisioning semantic information spacesIndexing and knowledge organization -- Semantic technologies for knowledge representation -- Information retrieval and knowledge exploration -- Approaches to handle heterogeneity -- Problems with establishing semantic interoperability -- Formalization in indexing languages -- Typification of semantic relations -- Inferences in retrieval processes -- Semantic interoperability and inferences -- Remaining research questions.
    Date
    23. 7.2017 13:49:22
    LCSH
    Information retrieval
    RSWK
    Information Retrieval
    Subject
    Information retrieval
    Information Retrieval
  4. Multimedia content and the Semantic Web : methods, standards, and tools (2005) 0.01
    0.007308805 = product of:
      0.025580816 = sum of:
        0.01495555 = product of:
          0.037388876 = sum of:
            0.027464187 = weight(_text_:retrieval in 150) [ClassicSimilarity], result of:
              0.027464187 = score(doc=150,freq=18.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.25065678 = fieldWeight in 150, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=150)
            0.00992469 = weight(_text_:system in 150) [ClassicSimilarity], result of:
              0.00992469 = score(doc=150,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.08699492 = fieldWeight in 150, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=150)
          0.4 = coord(2/5)
        0.0106252665 = product of:
          0.021250533 = sum of:
            0.021250533 = weight(_text_:22 in 150) [ClassicSimilarity], result of:
              0.021250533 = score(doc=150,freq=6.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.16753313 = fieldWeight in 150, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=150)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Classification
    006.7 22
    Date
    7. 3.2007 19:30:22
    DDC
    006.7 22
    Footnote
    Rez. in: JASIST 58(2007) no.3, S.457-458 (A.M.A. Ahmad): "The concept of the semantic web has emerged because search engines and text-based searching are no longer adequate, as these approaches involve an extensive information retrieval process. The deployed searching and retrieving descriptors arc naturally subjective and their deployment is often restricted to the specific application domain for which the descriptors were configured. The new era of information technology imposes different kinds of requirements and challenges. Automatic extracted audiovisual features are required, as these features are more objective, domain-independent, and more native to audiovisual content. This book is a useful guide for researchers, experts, students, and practitioners; it is a very valuable reference and can lead them through their exploration and research in multimedia content and the semantic web. The book is well organized, and introduces the concept of the semantic web and multimedia content analysis to the reader through a logical sequence from standards and hypotheses through system examples, presenting relevant tools and methods. But in some chapters readers will need a good technical background to understand some of the details. Readers may attain sufficient knowledge here to start projects or research related to the book's theme; recent results and articles related to the active research area of integrating multimedia with semantic web technologies are included. This book includes full descriptions of approaches to specific problem domains such as content search, indexing, and retrieval. This book will be very useful to researchers in the multimedia content analysis field who wish to explore the benefits of emerging semantic web technologies in applying multimedia content approaches. The first part of the book covers the definition of the two basic terms multimedia content and semantic web. The Moving Picture Experts Group standards MPEG7 and MPEG21 are quoted extensively. In addition, the means of multimedia content description are elaborated upon and schematically drawn. This extensive description is introduced by authors who are actively involved in those standards and have been participating in the work of the International Organization for Standardization (ISO)/MPEG for many years. On the other hand, this results in bias against the ad hoc or nonstandard tools for multimedia description in favor of the standard approaches. This is a general book for multimedia content; more emphasis on the general multimedia description and extraction could be provided.
    The final part of the book discusses research in multimedia content management systems and the semantic web, and presents examples and applications for semantic multimedia analysis in search and retrieval systems. These chapters describe example systems in which current projects have been implemented, and include extensive results and real demonstrations. For example, real case scenarios such as ECommerce medical applications and Web services have been introduced. Topics in natural language, speech and image processing techniques and their application for multimedia indexing, and content-based retrieval have been elaborated upon with extensive examples and deployment methods. The editors of the book themselves provide the readers with a chapter about their latest research results on knowledge-based multimedia content indexing and retrieval. Some interesting applications for multimedia content and the semantic web are introduced. Applications that have taken advantage of the metadata provided by MPEG7 in order to realize advance-access services for multimedia content have been provided. The applications discussed in the third part of the book provide useful guidance to researchers and practitioners properly planning to implement semantic multimedia analysis techniques in new research and development projects in both academia and industry. A fourth part should be added to this book: performance measurements for integrated approaches of multimedia analysis and the semantic web. Performance of the semantic approach is a very sophisticated issue and requires extensive elaboration and effort. Measuring the semantic search is an ongoing research area; several chapters concerning performance measurement and analysis would be required to adequately cover this area and introduce it to readers."
    LCSH
    Information storage and retrieval systems
    RSWK
    Semantic Web / Multimedia / Automatische Indexierung / Information Retrieval
    Subject
    Semantic Web / Multimedia / Automatische Indexierung / Information Retrieval
    Information storage and retrieval systems
  5. Semantic applications (2018) 0.00
    0.004166863 = product of:
      0.029168038 = sum of:
        0.029168038 = product of:
          0.07292009 = sum of:
            0.04484883 = weight(_text_:retrieval in 5204) [ClassicSimilarity], result of:
              0.04484883 = score(doc=5204,freq=12.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.40932083 = fieldWeight in 5204, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5204)
            0.028071264 = weight(_text_:system in 5204) [ClassicSimilarity], result of:
              0.028071264 = score(doc=5204,freq=4.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.24605882 = fieldWeight in 5204, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5204)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    LCSH
    Information storage and retrieval
    Information Storage and Retrieval
    RSWK
    Wissensbasiertes System
    Information Retrieval
    Subject
    Wissensbasiertes System
    Information Retrieval
    Information storage and retrieval
    Information Storage and Retrieval
  6. Manning, C.D.; Raghavan, P.; Schütze, H.: Introduction to information retrieval (2008) 0.00
    0.0041491026 = product of:
      0.029043717 = sum of:
        0.029043717 = product of:
          0.07260929 = sum of:
            0.056729782 = weight(_text_:retrieval in 4041) [ClassicSimilarity], result of:
              0.056729782 = score(doc=4041,freq=30.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.51775444 = fieldWeight in 4041, product of:
                  5.477226 = tf(freq=30.0), with freq of:
                    30.0 = termFreq=30.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4041)
            0.015879504 = weight(_text_:system in 4041) [ClassicSimilarity], result of:
              0.015879504 = score(doc=4041,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.13919188 = fieldWeight in 4041, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4041)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Class-tested and coherent, this textbook teaches information retrieval, including web search, text classification, and text clustering from basic concepts. Ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students. Slides and additional exercises are available for lecturers. - This book provides what Salton and Van Rijsbergen both failed to achieve. Even more important, unlike some other books in IR, the authors appear to care about making the theory as accessible as possible to the reader, on occasion including short primers to certain topics or choosing to explain difficult concepts using simplified approaches. Its coverage [is] excellent, the quality of writing high and I was surprised how much I learned from reading it. I think the online resources are impressive.
    Content
    Inhalt: Boolean retrieval - The term vocabulary & postings lists - Dictionaries and tolerant retrieval - Index construction - Index compression - Scoring, term weighting & the vector space model - Computing scores in a complete search system - Evaluation in information retrieval - Relevance feedback & query expansion - XML retrieval - Probabilistic information retrieval - Language models for information retrieval - Text classification & Naive Bayes - Vector space classification - Support vector machines & machine learning on documents - Flat clustering - Hierarchical clustering - Matrix decompositions & latent semantic indexing - Web search basics - Web crawling and indexes - Link analysis Vgl. die digitale Fassung unter: http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf.
    LCSH
    Information retrieval
    RSWK
    Dokumentverarbeitung / Information Retrieval / Abfrageverarbeitung (GBV)
    Information Retrieval / Einführung (BVB)
    Subject
    Dokumentverarbeitung / Information Retrieval / Abfrageverarbeitung (GBV)
    Information Retrieval / Einführung (BVB)
    Information retrieval
  7. Suman, A.: From knowledge abstraction to management : using Ranganathan's faceted schema to develop conceptual frameworks for digital libraries (2014) 0.00
    0.003136654 = product of:
      0.021956576 = sum of:
        0.021956576 = product of:
          0.054891437 = sum of:
            0.03107218 = weight(_text_:retrieval in 2032) [ClassicSimilarity], result of:
              0.03107218 = score(doc=2032,freq=4.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.2835858 = fieldWeight in 2032, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2032)
            0.023819257 = weight(_text_:system in 2032) [ClassicSimilarity], result of:
              0.023819257 = score(doc=2032,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.20878783 = fieldWeight in 2032, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2032)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    The increasing volume of information in the contemporary world entails demand for efficient knowledge management (KM) systems; a logical method of information organization that will allow proper semantic querying to identify things that match meaning in natural language. On this concept, the role of an information manager goes beyond implementing a search and clustering system, to the ability to map and logically present the subject domain and related cross domains. From Knowledge Abstraction to Management answers this need by analysing ontology tools and techniques, helping the reader develop
    LCSH
    Information storage and retrieval systems
    Subject
    Information storage and retrieval systems
  8. Keyser, P. de: Indexing : from thesauri to the Semantic Web (2012) 0.00
    0.0021032572 = product of:
      0.0147228 = sum of:
        0.0147228 = product of:
          0.0294456 = sum of:
            0.0294456 = weight(_text_:22 in 3197) [ClassicSimilarity], result of:
              0.0294456 = score(doc=3197,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.23214069 = fieldWeight in 3197, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3197)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    24. 8.2016 14:03:22
  9. Daconta, M.C.; Oberst, L.J.; Smith, K.T.: ¬The Semantic Web : A guide to the future of XML, Web services and knowledge management (2003) 0.00
    0.0014021716 = product of:
      0.0098152 = sum of:
        0.0098152 = product of:
          0.0196304 = sum of:
            0.0196304 = weight(_text_:22 in 320) [ClassicSimilarity], result of:
              0.0196304 = score(doc=320,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.15476047 = fieldWeight in 320, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=320)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    22. 5.2007 10:37:38
  10. Stuckenschmidt, H.; Harmelen, F. van: Information sharing on the semantic web (2005) 0.00
    0.0010462549 = product of:
      0.007323784 = sum of:
        0.007323784 = product of:
          0.03661892 = sum of:
            0.03661892 = weight(_text_:retrieval in 2789) [ClassicSimilarity], result of:
              0.03661892 = score(doc=2789,freq=8.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.33420905 = fieldWeight in 2789, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2789)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    LCSH
    Ontologies (Information retrieval)
    RSWK
    Semantic Web / Ontologie <Wissensverarbeitung> / Information Retrieval / Verteilung / Metadaten / Datenintegration
    Subject
    Semantic Web / Ontologie <Wissensverarbeitung> / Information Retrieval / Verteilung / Metadaten / Datenintegration
    Ontologies (Information retrieval)
  11. Chaudhury, S.; Mallik, A.; Ghosh, H.: Multimedia ontology : representation and applications (2016) 0.00
    9.0608327E-4 = product of:
      0.0063425824 = sum of:
        0.0063425824 = product of:
          0.031712912 = sum of:
            0.031712912 = weight(_text_:retrieval in 2801) [ClassicSimilarity], result of:
              0.031712912 = score(doc=2801,freq=6.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.28943354 = fieldWeight in 2801, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2801)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    The book covers multimedia ontology in heritage preservation with intellectual explorations of various themes of Indian cultural heritage. The result of more than 15 years of collective research, Multimedia Ontology: Representation and Applications provides a theoretical foundation for understanding the nature of media data and the principles involved in its interpretation. The book presents a unified approach to recent advances in multimedia and explains how a multimedia ontology can fill the semantic gap between concepts and the media world. It relays real-life examples of implementations in different domains to illustrate how this gap can be filled. The book contains information that helps with building semantic, content-based search and retrieval engines and also with developing vertical application-specific search applications. It guides you in designing multimedia tools that aid in logical and conceptual organization of large amounts of multimedia data. As a practical demonstration, it showcases multimedia applications in cultural heritage preservation efforts and the creation of virtual museums. The book describes the limitations of existing ontology techniques in semantic multimedia data processing, as well as some open problems in the representations and applications of multimedia ontology. As an antidote, it introduces new ontology representation and reasoning schemes that overcome these limitations. The long, compiled efforts reflected in Multimedia Ontology: Representation and Applications are a signpost for new achievements and developments in efficiency and accessibility in the field.
    LCSH
    Information storage and retrieval systems
    Subject
    Information storage and retrieval systems
  12. Sakr, S.; Wylot, M.; Mutharaju, R.; Le-Phuoc, D.; Fundulaki, I.: Linked data : storing, querying, and reasoning (2018) 0.00
    5.918511E-4 = product of:
      0.0041429573 = sum of:
        0.0041429573 = product of:
          0.020714786 = sum of:
            0.020714786 = weight(_text_:retrieval in 5329) [ClassicSimilarity], result of:
              0.020714786 = score(doc=5329,freq=4.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.18905719 = fieldWeight in 5329, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5329)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    LCSH
    Information storage and retrieval
    Subject
    Information storage and retrieval
  13. Semantic digital libraries (2009) 0.00
    4.1850194E-4 = product of:
      0.0029295133 = sum of:
        0.0029295133 = product of:
          0.014647567 = sum of:
            0.014647567 = weight(_text_:retrieval in 3371) [ClassicSimilarity], result of:
              0.014647567 = score(doc=3371,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.13368362 = fieldWeight in 3371, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3371)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Libraries have always been an inspiration for the standards and technologies developed by semantic web activities. However, except for the Dublin Core specification, semantic web and social networking technologies have not been widely adopted and further developed by major digital library initiatives and projects. Yet semantic technologies offer a new level of flexibility, interoperability, and relationships for digital repositories. Kruk and McDaniel present semantic web-related aspects of current digital library activities, and introduce their functionality; they show examples ranging from general architectural descriptions to detailed usages of specific ontologies, and thus stimulate the awareness of researchers, engineers, and potential users of those technologies. Their presentation is completed by chapters on existing prototype systems such as JeromeDL, BRICKS, and Greenstone, as well as a look into the possible future of semantic digital libraries. This book is aimed at researchers and graduate students in areas like digital libraries, the semantic web, social networks, and information retrieval. This audience will benefit from detailed descriptions of both today's possibilities and also the shortcomings of applying semantic web technologies to large digital repositories of often unstructured data.
  14. Spinning the Semantic Web : bringing the World Wide Web to its full potential (2003) 0.00
    3.661892E-4 = product of:
      0.0025633243 = sum of:
        0.0025633243 = product of:
          0.012816621 = sum of:
            0.012816621 = weight(_text_:retrieval in 1981) [ClassicSimilarity], result of:
              0.012816621 = score(doc=1981,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.11697317 = fieldWeight in 1981, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1981)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    As the World Wide Web continues to expand, it becomes increasingly difficult for users to obtain information efficiently. Because most search engines read format languages such as HTML or SGML, search results reflect formatting tags more than actual page content, which is expressed in natural language. Spinning the Semantic Web describes an exciting new type of hierarchy and standardization that will replace the current "Web of links" with a "Web of meaning." Using a flexible set of languages and tools, the Semantic Web will make all available information - display elements, metadata, services, images, and especially content - accessible. The result will be an immense repository of information accessible for a wide range of new applications. This first handbook for the Semantic Web covers, among other topics, software agents that can negotiate and collect information, markup languages that can tag many more types of information in a document, and knowledge systems that enable machines to read Web pages and determine their reliability. The truly interdisciplinary Semantic Web combines aspects of artificial intelligence, markup languages, natural language processing, information retrieval, knowledge representation, intelligent agents, and databases.
  15. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.00
    3.661892E-4 = product of:
      0.0025633243 = sum of:
        0.0025633243 = product of:
          0.012816621 = sum of:
            0.012816621 = weight(_text_:retrieval in 4515) [ClassicSimilarity], result of:
              0.012816621 = score(doc=4515,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.11697317 = fieldWeight in 4515, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4515)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Footnote
    Rez. in: iwp 62(2011) H.4, S.205-206 (C. Carstens): "Welche Arten der Wissensrepräsentation existieren im Web, wie ausgeprägt sind semantische Strukturen in diesem Kontext, und wie können soziale Aktivitäten im Sinne des Web 2.0 zur Strukturierung von Wissen im Web beitragen? Diesen Fragen widmet sich Wellers Buch mit dem Titel Knowledge Representation in the Social Semantic Web. Der Begriff Social Semantic Web spielt einerseits auf die semantische Strukturierung von Daten im Sinne des Semantic Web an und deutet andererseits auf die zunehmend kollaborative Inhaltserstellung im Social Web hin. Weller greift die Entwicklungen in diesen beiden Bereichen auf und beleuchtet die Möglichkeiten und Herausforderungen, die aus der Kombination der Aktivitäten im Semantic Web und im Social Web entstehen. Der Fokus des Buches liegt dabei primär auf den konzeptuellen Herausforderungen, die sich in diesem Kontext ergeben. So strebt die originäre Vision des Semantic Web die Annotation aller Webinhalte mit ausdrucksstarken, hochformalisierten Ontologien an. Im Social Web hingegen werden große Mengen an Daten von Nutzern erstellt, die häufig mithilfe von unkontrollierten Tags in Folksonomies annotiert werden. Weller sieht in derartigen kollaborativ erstellten Inhalten und Annotationen großes Potenzial für die semantische Indexierung, eine wichtige Voraussetzung für das Retrieval im Web. Das Hauptinteresse des Buches besteht daher darin, eine Brücke zwischen den Wissensrepräsentations-Methoden im Social Web und im Semantic Web zu schlagen. Um dieser Fragestellung nachzugehen, gliedert sich das Buch in drei Teile. . . .

Types

  • m 15
  • s 4

Subjects

Classifications