Search (2 results, page 1 of 1)

  • × theme_ss:"Informetrie"
  • × author_ss:"Stock, W.G."
  1. Stock, W.G.; Weber, S.: Facets of informetrics : Preface (2006) 0.00
    0.0028660125 = product of:
      0.020062087 = sum of:
        0.020062087 = product of:
          0.05015522 = sum of:
            0.014647567 = weight(_text_:retrieval in 76) [ClassicSimilarity], result of:
              0.014647567 = score(doc=76,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.13368362 = fieldWeight in 76, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=76)
            0.035507653 = weight(_text_:system in 76) [ClassicSimilarity], result of:
              0.035507653 = score(doc=76,freq=10.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.31124252 = fieldWeight in 76, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03125 = fieldNorm(doc=76)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    According to Jean M. Tague-Sutcliffe "informetrics" is "the study of the quantitative aspects of information in any form, not just records or bibliographies, and in any social group, not just scientists" (Tague-Sutcliffe, 1992, 1). Leo Egghe also defines "informetrics" in a very broad sense. "(W)e will use the term' informetrics' as the broad term comprising all-metrics studies related to information science, including bibliometrics (bibliographies, libraries,...), scientometrics (science policy, citation analysis, research evaluation,...), webometrics (metrics of the web, the Internet or other social networks such as citation or collaboration networks), ..." (Egghe, 2005b,1311). According to Concepcion S. Wilson "informetrics" is "the quantitative study of collections of moderatesized units of potentially informative text, directed to the scientific understanding of information processes at the social level" (Wilson, 1999, 211). We should add to Wilson's units of text also digital collections of images, videos, spoken documents and music. Dietmar Wolfram divides "informetrics" into two aspects, "system-based characteristics that arise from the documentary content of IR systems and how they are indexed, and usage-based characteristics that arise how users interact with system content and the system interfaces that provide access to the content" (Wolfram, 2003, 6). We would like to follow Tague-Sutcliffe, Egghe, Wilson and Wolfram (and others, for example Björneborn & Ingwersen, 2004) and call this broad research of empirical information science "informetrics". Informetrics includes therefore all quantitative studies in information science. If a scientist performs scientific investigations empirically, e.g. on information users' behavior, on scientific impact of academic journals, on the development of the patent application activity of a company, on links of Web pages, on the temporal distribution of blog postings discussing a given topic, on availability, recall and precision of retrieval systems, on usability of Web sites, and so on, he or she contributes to informetrics. We see three subject areas in information science in which such quantitative research takes place, - information users and information usage, - evaluation of information systems, - information itself, Following Wolfram's article, we divide his system-based characteristics into the "information itself "-category and the "information system"-category. Figure 1 is a simplistic graph of subjects and research areas of informetrics as an empirical information science.
  2. Stock, W.G.: ¬Die Wichtigkeit wissenschaftlicher Dokumente relativ zu gegebenen Thematiken (1981) 0.00
    7.323784E-4 = product of:
      0.0051266486 = sum of:
        0.0051266486 = product of:
          0.025633242 = sum of:
            0.025633242 = weight(_text_:retrieval in 13) [ClassicSimilarity], result of:
              0.025633242 = score(doc=13,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.23394634 = fieldWeight in 13, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=13)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Scientific documents are more or less important in relation to give subjects and this importance can be measured. An empirical investigation into philosophical information was carried out using a weighting algorithm developed by N. Henrichs which results in a distribution by weighting of documents on an average philosophical subject. With the aid of statistical methods a threshold value can be obtained that separates the important and unimportant documents on a subject. The knowledge of theis threshold value is important for various practical and theoretic questions: providing new possibilities for research strategy in information retrieval; evaluation of the 'titleworthiness' of subjects by comparison of document titles and themes for which the document at hand is important; and making available data on thematic trends for scientific results

Languages