Search (37 results, page 1 of 2)

  • × theme_ss:"Literaturübersicht"
  • × year_i:[2000 TO 2010}
  1. Enser, P.G.B.: Visual image retrieval (2008) 0.01
    0.014565388 = product of:
      0.050978854 = sum of:
        0.011718053 = product of:
          0.058590267 = sum of:
            0.058590267 = weight(_text_:retrieval in 3281) [ClassicSimilarity], result of:
              0.058590267 = score(doc=3281,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.5347345 = fieldWeight in 3281, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.125 = fieldNorm(doc=3281)
          0.2 = coord(1/5)
        0.0392608 = product of:
          0.0785216 = sum of:
            0.0785216 = weight(_text_:22 in 3281) [ClassicSimilarity], result of:
              0.0785216 = score(doc=3281,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.61904186 = fieldWeight in 3281, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=3281)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Date
    22. 1.2012 13:01:26
  2. Morris, S.A.: Mapping research specialties (2008) 0.01
    0.0056086862 = product of:
      0.0392608 = sum of:
        0.0392608 = product of:
          0.0785216 = sum of:
            0.0785216 = weight(_text_:22 in 3962) [ClassicSimilarity], result of:
              0.0785216 = score(doc=3962,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.61904186 = fieldWeight in 3962, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=3962)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    13. 7.2008 9:30:22
  3. Fallis, D.: Social epistemology and information science (2006) 0.01
    0.0056086862 = product of:
      0.0392608 = sum of:
        0.0392608 = product of:
          0.0785216 = sum of:
            0.0785216 = weight(_text_:22 in 4368) [ClassicSimilarity], result of:
              0.0785216 = score(doc=4368,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.61904186 = fieldWeight in 4368, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=4368)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    13. 7.2008 19:22:28
  4. Nicolaisen, J.: Citation analysis (2007) 0.01
    0.0056086862 = product of:
      0.0392608 = sum of:
        0.0392608 = product of:
          0.0785216 = sum of:
            0.0785216 = weight(_text_:22 in 6091) [ClassicSimilarity], result of:
              0.0785216 = score(doc=6091,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.61904186 = fieldWeight in 6091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=6091)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    13. 7.2008 19:53:22
  5. Fast, K.; Leise, F.; Steckel, M.: Facets and controlled vocabularies : an annotated bibliography (2003) 0.00
    0.0041822046 = product of:
      0.029275432 = sum of:
        0.029275432 = product of:
          0.07318858 = sum of:
            0.04142957 = weight(_text_:retrieval in 2900) [ClassicSimilarity], result of:
              0.04142957 = score(doc=2900,freq=4.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.37811437 = fieldWeight in 2900, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2900)
            0.03175901 = weight(_text_:system in 2900) [ClassicSimilarity], result of:
              0.03175901 = score(doc=2900,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.27838376 = fieldWeight in 2900, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2900)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    An online series of articles explaining controlled vocabularies and, in particular, faceted classification. It is not yet finished, but what they have covered is very well done, practical and informative, with useful advice and a full treatment. It is worth reading now, and when they actually get to performing facet analysis and making a faceted system, it will make a very useful reference.
    Theme
    Klassifikationssysteme im Online-Retrieval
    Verbale Doksprachen im Online-Retrieval
  6. Downie, J.S.: Music information retrieval (2002) 0.00
    0.004099487 = product of:
      0.028696407 = sum of:
        0.028696407 = product of:
          0.071741015 = sum of:
            0.0380555 = weight(_text_:retrieval in 4287) [ClassicSimilarity], result of:
              0.0380555 = score(doc=4287,freq=6.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.34732026 = fieldWeight in 4287, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4287)
            0.033685513 = weight(_text_:system in 4287) [ClassicSimilarity], result of:
              0.033685513 = score(doc=4287,freq=4.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.29527056 = fieldWeight in 4287, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4287)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Imagine a world where you walk up to a computer and sing the song fragment that has been plaguing you since breakfast. The computer accepts your off-key singing, corrects your request, and promptly suggests to you that "Camptown Races" is the cause of your irritation. You confirm the computer's suggestion by listening to one of the many MP3 files it has found. Satisfied, you kindly decline the offer to retrieve all extant versions of the song, including a recently released Italian rap rendition and an orchestral score featuring a bagpipe duet. Does such a system exist today? No. Will it in the future? Yes. Will such a system be easy to produce? Most decidedly not. Myriad difficulties remain to be overcome before the creation, deployment, and evaluation of robust, large-scale, and content-based Music Information Retrieval (MIR) systems become reality. The dizzyingly complex interaction of music's pitch, temporal, harmonic, timbral, editorial, textual, and bibliographic "facets," for example, demonstrates just one of MIR's perplexing problems. The choice of music representation-whether symbol-based, audio-based, or both-further compounds matters, as each choice determines bandwidth, computation, storage, retrieval, and interface requirements and capabilities.
  7. Kim, K.-S.: Recent work in cataloging and classification, 2000-2002 (2003) 0.00
    0.0028043431 = product of:
      0.0196304 = sum of:
        0.0196304 = product of:
          0.0392608 = sum of:
            0.0392608 = weight(_text_:22 in 152) [ClassicSimilarity], result of:
              0.0392608 = score(doc=152,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.30952093 = fieldWeight in 152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=152)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    10. 9.2000 17:38:22
  8. El-Sherbini, M.A.: Cataloging and classification : review of the literature 2005-06 (2008) 0.00
    0.0028043431 = product of:
      0.0196304 = sum of:
        0.0196304 = product of:
          0.0392608 = sum of:
            0.0392608 = weight(_text_:22 in 249) [ClassicSimilarity], result of:
              0.0392608 = score(doc=249,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.30952093 = fieldWeight in 249, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=249)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    10. 9.2000 17:38:22
  9. Miksa, S.D.: ¬The challenges of change : a review of cataloging and classification literature, 2003-2004 (2007) 0.00
    0.0028043431 = product of:
      0.0196304 = sum of:
        0.0196304 = product of:
          0.0392608 = sum of:
            0.0392608 = weight(_text_:22 in 266) [ClassicSimilarity], result of:
              0.0392608 = score(doc=266,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.30952093 = fieldWeight in 266, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=266)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    10. 9.2000 17:38:22
  10. Yang, K.: Information retrieval on the Web (2004) 0.00
    0.0025814078 = product of:
      0.018069854 = sum of:
        0.018069854 = product of:
          0.045174636 = sum of:
            0.029295133 = weight(_text_:retrieval in 4278) [ClassicSimilarity], result of:
              0.029295133 = score(doc=4278,freq=8.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.26736724 = fieldWeight in 4278, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4278)
            0.015879504 = weight(_text_:system in 4278) [ClassicSimilarity], result of:
              0.015879504 = score(doc=4278,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.13919188 = fieldWeight in 4278, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4278)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    How do we find information an the Web? Although information on the Web is distributed and decentralized, the Web can be viewed as a single, virtual document collection. In that regard, the fundamental questions and approaches of traditional information retrieval (IR) research (e.g., term weighting, query expansion) are likely to be relevant in Web document retrieval. Findings from traditional IR research, however, may not always be applicable in a Web setting. The Web document collection - massive in size and diverse in content, format, purpose, and quality - challenges the validity of previous research findings that are based an relatively small and homogeneous test collections. Moreover, some traditional IR approaches, although applicable in theory, may be impossible or impractical to implement in a Web setting. For instance, the size, distribution, and dynamic nature of Web information make it extremely difficult to construct a complete and up-to-date data representation of the kind required for a model IR system. To further complicate matters, information seeking on the Web is diverse in character and unpredictable in nature. Web searchers come from all walks of life and are motivated by many kinds of information needs. The wide range of experience, knowledge, motivation, and purpose means that searchers can express diverse types of information needs in a wide variety of ways with differing criteria for satisfying those needs. Conventional evaluation measures, such as precision and recall, may no longer be appropriate for Web IR, where a representative test collection is all but impossible to construct. Finding information on the Web creates many new challenges for, and exacerbates some old problems in, IR research. At the same time, the Web is rich in new types of information not present in most IR test collections. Hyperlinks, usage statistics, document markup tags, and collections of topic hierarchies such as Yahoo! (http://www.yahoo.com) present an opportunity to leverage Web-specific document characteristics in novel ways that go beyond the term-based retrieval framework of traditional IR. Consequently, researchers in Web IR have reexamined the findings from traditional IR research.
  11. Hjoerland, B.; Kyllesbech Nielsen, L.: Subject access points in electronic retrieval (2001) 0.00
    0.0025370333 = product of:
      0.017759232 = sum of:
        0.017759232 = product of:
          0.08879615 = sum of:
            0.08879615 = weight(_text_:retrieval in 3826) [ClassicSimilarity], result of:
              0.08879615 = score(doc=3826,freq=6.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.8104139 = fieldWeight in 3826, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3826)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Theme
    Klassifikationssysteme im Online-Retrieval
    Verbale Doksprachen im Online-Retrieval
  12. Saracevic, T.: Relevance: a review of the literature and a framework for thinking on the notion in information science. Part II : nature and manifestations of relevance (2007) 0.00
    0.0024669599 = product of:
      0.01726872 = sum of:
        0.01726872 = product of:
          0.043171797 = sum of:
            0.020714786 = weight(_text_:retrieval in 612) [ClassicSimilarity], result of:
              0.020714786 = score(doc=612,freq=4.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.18905719 = fieldWeight in 612, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=612)
            0.022457011 = weight(_text_:system in 612) [ClassicSimilarity], result of:
              0.022457011 = score(doc=612,freq=4.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.19684705 = fieldWeight in 612, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03125 = fieldNorm(doc=612)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Relevance is a, if not even the, key notion in information science in general and information retrieval in particular. This two-part critical review traces and synthesizes the scholarship on relevance over the past 30 years and provides an updated framework within which the still widely dissonant ideas and works about relevance might be interpreted and related. It is a continuation and update of a similar review that appeared in 1975 under the same title, considered here as being Part I. The present review is organized into two parts: Part II addresses the questions related to nature and manifestations of relevance, and Part III addresses questions related to relevance behavior and effects. In Part II, the nature of relevance is discussed in terms of meaning ascribed to relevance, theories used or proposed, and models that have been developed. The manifestations of relevance are classified as to several kinds of relevance that form an interdependent system of relevances. In Part III, relevance behavior and effects are synthesized using experimental and observational works that incorporate data. In both parts, each section concludes with a summary that in effect provides an interpretation and synthesis of contemporary thinking on the topic treated or suggests hypotheses for future research. Analyses of some of the major trends that shape relevance work are offered in conclusions.
    Content
    Relevant: Having significant and demonstrable bearing on the matter at hand.[Note *][A version of this article has been published in 2006 as a chapter in E.G. Abels & D.A. Nitecki (Eds.), Advances in Librarianship (Vol. 30, pp. 3-71). San Diego: Academic Press. (Saracevic, 2006).] Relevance: The ability as of an information retrieval system to retrieve material that satisfies the needs of the user. - Merriam-Webster Dictionary 2005
  13. Nielsen, M.L.: Thesaurus construction : key issues and selected readings (2004) 0.00
    0.0024538 = product of:
      0.0171766 = sum of:
        0.0171766 = product of:
          0.0343532 = sum of:
            0.0343532 = weight(_text_:22 in 5006) [ClassicSimilarity], result of:
              0.0343532 = score(doc=5006,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.2708308 = fieldWeight in 5006, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5006)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    18. 5.2006 20:06:22
  14. Weiss, A.K.; Carstens, T.V.: ¬The year's work in cataloging, 1999 (2001) 0.00
    0.0024538 = product of:
      0.0171766 = sum of:
        0.0171766 = product of:
          0.0343532 = sum of:
            0.0343532 = weight(_text_:22 in 6084) [ClassicSimilarity], result of:
              0.0343532 = score(doc=6084,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.2708308 = fieldWeight in 6084, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6084)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    10. 9.2000 17:38:22
  15. Genereux, C.: Building connections : a review of the serials literature 2004 through 2005 (2007) 0.00
    0.0021032572 = product of:
      0.0147228 = sum of:
        0.0147228 = product of:
          0.0294456 = sum of:
            0.0294456 = weight(_text_:22 in 2548) [ClassicSimilarity], result of:
              0.0294456 = score(doc=2548,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.23214069 = fieldWeight in 2548, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2548)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    10. 9.2000 17:38:22
  16. Denton, W.: Putting facets on the Web : an annotated bibliography (2003) 0.00
    0.0019122947 = product of:
      0.013386062 = sum of:
        0.013386062 = product of:
          0.033465154 = sum of:
            0.00915473 = weight(_text_:retrieval in 2467) [ClassicSimilarity], result of:
              0.00915473 = score(doc=2467,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.08355226 = fieldWeight in 2467, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=2467)
            0.024310427 = weight(_text_:system in 2467) [ClassicSimilarity], result of:
              0.024310427 = score(doc=2467,freq=12.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.21309318 = fieldWeight in 2467, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=2467)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    This is a classified, annotated bibliography about how to design faceted classification systems and make them usable on the World Wide Web. It is the first of three works I will be doing. The second, based on the material here and elsewhere, will discuss how to actually make the faceted system and put it online. The third will be a report of how I did just that, what worked, what didn't, and what I learned. Almost every article or book listed here begins with an explanation of what a faceted classification system is, so I won't (but see Steckel in Background below if you don't already know). They all agree that faceted systems are very appropriate for the web. Even pre-web articles (such as Duncan's in Background, below) assert that hypertext and facets will go together well. Combined, it is possible to take a set of documents and classify them or apply subject headings to describe what they are about, then build a navigational structure so that any user, no matter how he or she approaches the material, no matter what his or her goals, can move and search in a way that makes sense to them, but still get to the same useful results as someone else following a different path to the same goal. There is no one way that everyone will always use when looking for information. The more flexible the organization of the information, the more accommodating it is. Facets are more flexible for hypertext browsing than any enumerative or hierarchical system.
    Consider movie listings in newspapers. Most Canadian newspapers list movie showtimes in two large blocks, for the two major theatre chains. The listings are ordered by region (in large cities), then theatre, then movie, and finally by showtime. Anyone wondering where and when a particular movie is playing must scan the complete listings. Determining what movies are playing in the next half hour is very difficult. When movie listings went onto the web, most sites used a simple faceted organization, always with movie name and theatre, and perhaps with region or neighbourhood (thankfully, theatre chains were left out). They make it easy to pick a theatre and see what movies are playing there, or to pick a movie and see what theatres are showing it. To complete the system, the sites should allow users to browse by neighbourhood and showtime, and to order the results in any way they desired. Thus could people easily find answers to such questions as, "Where is the new James Bond movie playing?" "What's showing at the Roxy tonight?" "I'm going to be out in in Little Finland this afternoon with three hours to kill starting at 2 ... is anything interesting playing?" A hypertext, faceted classification system makes more useful information more easily available to the user. Reading the books and articles below in chronological order will show a certain progression: suggestions that faceting and hypertext might work well, confidence that facets would work well if only someone would make such a system, and finally the beginning of serious work on actually designing, building, and testing faceted web sites. There is a solid basis of how to make faceted classifications (see Vickery in Recommended), but their application online is just starting. Work on XFML (see Van Dijck's work in Recommended) the Exchangeable Faceted Metadata Language, will make this easier. If it follows previous patterns, parts of the Internet community will embrace the idea and make open source software available for others to reuse. It will be particularly beneficial if professionals in both information studies and computer science can work together to build working systems, standards, and code. Each can benefit from the other's expertise in what can be a very complicated and technical area. One particularly nice thing about this area of research is that people interested in combining facets and the web often have web sites where they post their writings.
    Theme
    Klassifikationssysteme im Online-Retrieval
  17. Khoo, S.G.; Na, J.-C.: Semantic relations in information science (2006) 0.00
    0.0017678502 = product of:
      0.0123749515 = sum of:
        0.0123749515 = product of:
          0.030937377 = sum of:
            0.01902775 = weight(_text_:retrieval in 1978) [ClassicSimilarity], result of:
              0.01902775 = score(doc=1978,freq=6.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.17366013 = fieldWeight in 1978, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1978)
            0.011909628 = weight(_text_:system in 1978) [ClassicSimilarity], result of:
              0.011909628 = score(doc=1978,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.104393914 = fieldWeight in 1978, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1978)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    This chapter examines the nature of semantic relations and their main applications in information science. The nature and types of semantic relations are discussed from the perspectives of linguistics and psychology. An overview of the semantic relations used in knowledge structures such as thesauri and ontologies is provided, as well as the main techniques used in the automatic extraction of semantic relations from text. The chapter then reviews the use of semantic relations in information extraction, information retrieval, question-answering, and automatic text summarization applications. Concepts and relations are the foundation of knowledge and thought. When we look at the world, we perceive not a mass of colors but objects to which we automatically assign category labels. Our perceptual system automatically segments the world into concepts and categories. Concepts are the building blocks of knowledge; relations act as the cement that links concepts into knowledge structures. We spend much of our lives identifying regular associations and relations between objects, events, and processes so that the world has an understandable structure and predictability. Our lives and work depend on the accuracy and richness of this knowledge structure and its web of relations. Relations are needed for reasoning and inferencing. Chaffin and Herrmann (1988b, p. 290) noted that "relations between ideas have long been viewed as basic to thought, language, comprehension, and memory." Aristotle's Metaphysics (Aristotle, 1961; McKeon, expounded on several types of relations. The majority of the 30 entries in a section of the Metaphysics known today as the Philosophical Lexicon referred to relations and attributes, including cause, part-whole, same and opposite, quality (i.e., attribute) and kind-of, and defined different types of each relation. Hume (1955) pointed out that there is a connection between successive ideas in our minds, even in our dreams, and that the introduction of an idea in our mind automatically recalls an associated idea. He argued that all the objects of human reasoning are divided into relations of ideas and matters of fact and that factual reasoning is founded on the cause-effect relation. His Treatise of Human Nature identified seven kinds of relations: resemblance, identity, relations of time and place, proportion in quantity or number, degrees in quality, contrariety, and causation. Mill (1974, pp. 989-1004) discoursed on several types of relations, claiming that all things are either feelings, substances, or attributes, and that attributes can be a quality (which belongs to one object) or a relation to other objects.
    Linguists in the structuralist tradition (e.g., Lyons, 1977; Saussure, 1959) have asserted that concepts cannot be defined on their own but only in relation to other concepts. Semantic relations appear to reflect a logical structure in the fundamental nature of thought (Caplan & Herrmann, 1993). Green, Bean, and Myaeng (2002) noted that semantic relations play a critical role in how we represent knowledge psychologically, linguistically, and computationally, and that many systems of knowledge representation start with a basic distinction between entities and relations. Green (2001, p. 3) said that "relationships are involved as we combine simple entities to form more complex entities, as we compare entities, as we group entities, as one entity performs a process on another entity, and so forth. Indeed, many things that we might initially regard as basic and elemental are revealed upon further examination to involve internal structure, or in other words, internal relationships." Concepts and relations are often expressed in language and text. Language is used not just for communicating concepts and relations, but also for representing, storing, and reasoning with concepts and relations. We shall examine the nature of semantic relations from a linguistic and psychological perspective, with an emphasis on relations expressed in text. The usefulness of semantic relations in information science, especially in ontology construction, information extraction, information retrieval, question-answering, and text summarization is discussed. Research and development in information science have focused on concepts and terms, but the focus will increasingly shift to the identification, processing, and management of relations to achieve greater effectiveness and refinement in information science techniques. Previous chapters in ARIST on natural language processing (Chowdhury, 2003), text mining (Trybula, 1999), information retrieval and the philosophy of language (Blair, 2003), and query expansion (Efthimiadis, 1996) provide a background for this discussion, as semantic relations are an important part of these applications.
  18. Corbett, L.E.: Serials: review of the literature 2000-2003 (2006) 0.00
    0.0017527144 = product of:
      0.0122690005 = sum of:
        0.0122690005 = product of:
          0.024538001 = sum of:
            0.024538001 = weight(_text_:22 in 1088) [ClassicSimilarity], result of:
              0.024538001 = score(doc=1088,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.19345059 = fieldWeight in 1088, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1088)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    10. 9.2000 17:38:22
  19. Ruthven, R.: Interactive information retrieval (2008) 0.00
    0.0016740077 = product of:
      0.011718053 = sum of:
        0.011718053 = product of:
          0.058590267 = sum of:
            0.058590267 = weight(_text_:retrieval in 2839) [ClassicSimilarity], result of:
              0.058590267 = score(doc=2839,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.5347345 = fieldWeight in 2839, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.125 = fieldNorm(doc=2839)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
  20. Foster, J.: Collaborative information seeking and retrieval (2006) 0.00
    0.0016740077 = product of:
      0.011718053 = sum of:
        0.011718053 = product of:
          0.058590267 = sum of:
            0.058590267 = weight(_text_:retrieval in 4321) [ClassicSimilarity], result of:
              0.058590267 = score(doc=4321,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.5347345 = fieldWeight in 4321, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.125 = fieldNorm(doc=4321)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)