Search (20 results, page 1 of 1)

  • × theme_ss:"Universale Facettenklassifikationen"
  • × year_i:[2010 TO 2020}
  1. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.01
    0.009527097 = product of:
      0.03334484 = sum of:
        0.021075837 = product of:
          0.052689593 = sum of:
            0.01830946 = weight(_text_:retrieval in 1418) [ClassicSimilarity], result of:
              0.01830946 = score(doc=1418,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.16710453 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
            0.034380134 = weight(_text_:system in 1418) [ClassicSimilarity], result of:
              0.034380134 = score(doc=1418,freq=6.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.30135927 = fieldWeight in 1418, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.4 = coord(2/5)
        0.0122690005 = product of:
          0.024538001 = sum of:
            0.024538001 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.024538001 = score(doc=1418,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  2. Heuvel, C. van den: Multidimensional classifications : past and future conceptualizations and visualizations (2012) 0.01
    0.0063723573 = product of:
      0.02230325 = sum of:
        0.0051266486 = product of:
          0.025633242 = sum of:
            0.025633242 = weight(_text_:retrieval in 632) [ClassicSimilarity], result of:
              0.025633242 = score(doc=632,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.23394634 = fieldWeight in 632, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=632)
          0.2 = coord(1/5)
        0.0171766 = product of:
          0.0343532 = sum of:
            0.0343532 = weight(_text_:22 in 632) [ClassicSimilarity], result of:
              0.0343532 = score(doc=632,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.2708308 = fieldWeight in 632, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=632)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    This paper maps the concepts "space" and "dimensionality" in classifications, in particular in visualizations hereof, from a historical perspective. After a historical excursion in the domain of classification theory of what in mathematics is known as dimensionality reduction in representations of a single universe of knowledge, its potentiality will be explored for information retrieval and navigation in the multiverse of the World Wide Web.
    Date
    22. 2.2013 11:31:25
  3. Gnoli, C.; Merli, G.; Pavan, G.; Bernuzzi, E.; Priano, M.: Freely faceted classification for a Web-based bibliographic archive : the BioAcoustic Reference Database (2010) 0.00
    0.004639679 = product of:
      0.016238876 = sum of:
        0.003969876 = product of:
          0.01984938 = sum of:
            0.01984938 = weight(_text_:system in 3739) [ClassicSimilarity], result of:
              0.01984938 = score(doc=3739,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.17398985 = fieldWeight in 3739, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3739)
          0.2 = coord(1/5)
        0.0122690005 = product of:
          0.024538001 = sum of:
            0.024538001 = weight(_text_:22 in 3739) [ClassicSimilarity], result of:
              0.024538001 = score(doc=3739,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.19345059 = fieldWeight in 3739, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3739)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    The Integrative Level Classification (ILC) research project is experimenting with a knowledge organization system based on phenomena rather than disciplines. Each phenomenon has a constant notation, which can be combined with that of any other phenomenon in a freely faceted structure. Citation order can express differential focality of the facets. Very specific subjects can have long classmarks, although their complexity is reduced by various devices. Freely faceted classification is being tested by indexing a corpus of about 3300 papers in the interdisciplinary domain of bioacoustics. The subjects of these papers often include phenomena from a wide variety of integrative levels (mechanical waves, animals, behaviour, vessels, fishing, law, ...) as well as information about the methods of study, as predicted in the León Manifesto. The archive is recorded in a MySQL database, and can be fed and searched through PHP Web interfaces. Indexer's work is made easier by mechanisms that suggest possible classes on the basis of matching title words with terms in the ILC schedules, and synthesize automatically the verbal caption corresponding to the classmark being edited. Users can search the archive by selecting and combining values in each facet. Search refinement should be improved, especially for the cases where no record, or too many records, match the faceted query. However, experience is being gained progressively, showing that freely faceted classification by phenomena, theories, and methods is feasible and successfully working.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  4. Dahlberg, I.: Why a new universal classification system is needed (2017) 0.00
    0.004215168 = product of:
      0.029506175 = sum of:
        0.029506175 = product of:
          0.073765434 = sum of:
            0.025633242 = weight(_text_:retrieval in 3614) [ClassicSimilarity], result of:
              0.025633242 = score(doc=3614,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.23394634 = fieldWeight in 3614, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3614)
            0.048132192 = weight(_text_:system in 3614) [ClassicSimilarity], result of:
              0.048132192 = score(doc=3614,freq=6.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.42190298 = fieldWeight in 3614, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3614)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Research history of the last 70 years highlights various systems for contents assessment and retrieval of scientific literature, such as universal classifications, thesauri, ontologies etc., which have followed developments of their own, notwithstanding a general trend towards interoperability, i.e. either to become instruments for cooperation or to widen their scope to encompass neighbouring fields within their framework. In the case of thesauri and ontologies, the endeavour to upgrade them into a universal system was bound to miscarry. This paper purports to indicate ways to gain from past experience and possibly rally material achievements while updating and promoting the ontologically-based faceted Information Coding Classification as a progressive universal system fit for meeting whatever requirements in the fields of information and science at large.
  5. Tennis, J.T.: Facets and fugit tempus : considering time's effect on faceted classification schemes (2012) 0.00
    0.0028043431 = product of:
      0.0196304 = sum of:
        0.0196304 = product of:
          0.0392608 = sum of:
            0.0392608 = weight(_text_:22 in 826) [ClassicSimilarity], result of:
              0.0392608 = score(doc=826,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.30952093 = fieldWeight in 826, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=826)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    2. 6.2013 18:33:22
  6. Johnson, E.H.: S R Ranganathan in the Internet age (2019) 0.00
    0.0026166062 = product of:
      0.018316243 = sum of:
        0.018316243 = product of:
          0.045790605 = sum of:
            0.02197135 = weight(_text_:retrieval in 5406) [ClassicSimilarity], result of:
              0.02197135 = score(doc=5406,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.20052543 = fieldWeight in 5406, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5406)
            0.023819257 = weight(_text_:system in 5406) [ClassicSimilarity], result of:
              0.023819257 = score(doc=5406,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.20878783 = fieldWeight in 5406, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5406)
          0.4 = coord(2/5)
      0.14285715 = coord(1/7)
    
    Abstract
    S R Ranganathan's ideas have influenced library classification since the inception of his Colon Classification in 1933. His address at Elsinore, "Library Classification Through a Century", was his grand vision of the century of progress in classification from 1876 to 1975, and looked to the future of faceted classification as the means to provide a cohesive system to organize the world's information. Fifty years later, the internet and its achievements, social ecology, and consequences present a far more complicated picture, with the library as he knew it as a very small part and the problems that he confronted now greatly exacerbated. The systematic nature of Ranganathan's canons, principles, postulates, and devices suggest that modern semantic algorithms could guide automatic subject tagging. The vision presented here is one of internet-wide faceted classification and retrieval, implemented as open, distributed facets providing unified faceted searching across all web sites.
  7. Perugini, S.: Supporting multiple paths to objects in information hierarchies : faceted classification, faceted search, and symbolic links (2010) 0.00
    0.0024538 = product of:
      0.0171766 = sum of:
        0.0171766 = product of:
          0.0343532 = sum of:
            0.0343532 = weight(_text_:22 in 4227) [ClassicSimilarity], result of:
              0.0343532 = score(doc=4227,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.2708308 = fieldWeight in 4227, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4227)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Source
    Information processing and management. 46(2010) no.1, S.22-43
  8. Dousa, T.M.; Ibekwe-SanJuan, F.: Epistemological and methodological eclecticism in the construction of knowledge organization systems (KOSs) : the case of analytico-synthetic KOSs (2014) 0.00
    0.0017527144 = product of:
      0.0122690005 = sum of:
        0.0122690005 = product of:
          0.024538001 = sum of:
            0.024538001 = weight(_text_:22 in 1417) [ClassicSimilarity], result of:
              0.024538001 = score(doc=1417,freq=2.0), product of:
                0.12684377 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03622214 = queryNorm
                0.19345059 = fieldWeight in 1417, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1417)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  9. Asundi, A.Y.: Domain specific categories and relations and their potential applications : a case study of two arrays of agriculture schedule of Colon Classification (2012) 0.00
    0.0011787476 = product of:
      0.008251233 = sum of:
        0.008251233 = product of:
          0.041256163 = sum of:
            0.041256163 = weight(_text_:system in 843) [ClassicSimilarity], result of:
              0.041256163 = score(doc=843,freq=6.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.36163113 = fieldWeight in 843, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=843)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    The categories/isolates are broadly conceived as common and special. The common categories are applicable to all the classes of subjects in a Classification system, whereas the specials are applicable within a domain or specified classes of a classification system. The CC has represented some unique special categories, especially in the Agriculture Subject schedule, and such a provision is not seen in any other classification system; not even in any other subject schedule of Colon Classification. These special categories are termed here as "Domain Specific Categories". The paper analyses the thematic relationships within and outside the subject schedule with potential applications in devising a scheme of metadata as demonstrated in a research study on Indian Medicinal Plants. The other potential applications of such thematic relationships are in the creation of semantic maps and in linking concepts from different domains of knowledge.
  10. Faceted classification today : International UDC Seminar 2017, 14.-15. Spetember, London, UK. (2017) 0.00
    8.3700387E-4 = product of:
      0.0058590267 = sum of:
        0.0058590267 = product of:
          0.029295133 = sum of:
            0.029295133 = weight(_text_:retrieval in 3773) [ClassicSimilarity], result of:
              0.029295133 = score(doc=3773,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.26736724 = fieldWeight in 3773, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3773)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Faceted analytical theory is a widely accepted approach for constructing modern classification schemes and other controlled vocabularies. While the advantages of faceted approach are broadly accepted and understood the actual implementation is coupled with many challenges when it comes to data modelling, management and retrieval. UDC Seminar 2017 revisits faceted analytical theory as one of the most influential methodologies in the development of knowledge organization systems.
  11. Dahlberg, I.: ¬A faceted classification of general concepts (2011) 0.00
    8.0203614E-4 = product of:
      0.0056142528 = sum of:
        0.0056142528 = product of:
          0.028071264 = sum of:
            0.028071264 = weight(_text_:system in 4824) [ClassicSimilarity], result of:
              0.028071264 = score(doc=4824,freq=4.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.24605882 = fieldWeight in 4824, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4824)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    General concepts are all those form-categorial concepts which - attached to a specific concept of a classification system or thesaurus - can help to widen, sometimes even in a syntactical sense, the understanding of a case. In some existing universal classification systems such concepts have been named "auxiliaries" or "common isolates" as in the Colon Classification (CC). However, by such auxiliaries, different kinds of such concepts are listed, e.g. concepts of space and time, concepts of races and languages and concepts of kinds of documents, next to them also concepts of kinds of general activities, properties, persons, and institutions. Such latter kinds form part of the nine aspects ruling the facets in the Information Coding Classification (ICC) through the principle of using a Systematiser for the subdivision of subject groups and fields. Based on this principle and using and extending existing systems of such concepts, e.g. which A. Diemer had presented to the German Thesaurus Committee as well as those found in the UDC, in CC and attached to the Subject Heading System of the German National Library, a faceted classification is proposed for critical assessment, necessary improvement and possible later use in classification systems and thesauri.
  12. Doria, O.D.: ¬The role of activities awareness in faceted classification development (2012) 0.00
    7.9397525E-4 = product of:
      0.0055578267 = sum of:
        0.0055578267 = product of:
          0.027789133 = sum of:
            0.027789133 = weight(_text_:system in 364) [ClassicSimilarity], result of:
              0.027789133 = score(doc=364,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.2435858 = fieldWeight in 364, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=364)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    In this paper, we propose a part of the methodological work to accompanying the development of a new type of Knowledge Organization System (KOS) based on faceted classification. Our approach to faceted classification differs from its traditional use. We develop a theoretical typology of professional documents based on their uses. Then we correlate these types of documents to specific types of KOS according to their degree of structural constraint and activities they aim to serve.
  13. Sharada, B.A.: Ranganathan's Colon Classification : Kannada-English Version 'dwibindu vargiikaraNa' (2012) 0.00
    7.323784E-4 = product of:
      0.0051266486 = sum of:
        0.0051266486 = product of:
          0.025633242 = sum of:
            0.025633242 = weight(_text_:retrieval in 827) [ClassicSimilarity], result of:
              0.025633242 = score(doc=827,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.23394634 = fieldWeight in 827, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=827)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    "dwibindu vargiikaraNa" is the Kannada rendering of the revised Colon Classification, 7th Edition, intended essentially for the classification of macro documents. This paper discusses the planning, preparation, and features of Colon Classification (CC) in Kannada, one of the major Indian languages as well as the Official Language of Karnataka, and uploading the CC on the web. Linguistic issues related to the Kannada rendering are discussed with possible solutions. It creates facilities in the field of Indexing Language (IL) to prepare products such as, Subject Heading List, Information Retrieval Thesaurus, and creation of subject glossaries or updating the available subject dictionaries in Kannada.
  14. Babbar, P.: Web CC : an effort towards its revival (2015) 0.00
    6.8055023E-4 = product of:
      0.0047638514 = sum of:
        0.0047638514 = product of:
          0.023819257 = sum of:
            0.023819257 = weight(_text_:system in 2792) [ClassicSimilarity], result of:
              0.023819257 = score(doc=2792,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.20878783 = fieldWeight in 2792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2792)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Colon Classification (CC), based on dynamic theory of classification saw seven editions from 1928 to 1987. Libraries practising it continued with extensions and additions carried out to meet their needs since it was not revised for long after the 7th edition. Revision requires adding terms in different disciplines, organising them in relation to each other and assigning notation for shelf classification. Use of ICT would help in reviving CC and is essential for regular revision of a classification scheme. The paper explores the possibility for creation of an expert system through the design of Web based Colon Classification. The author explores the possibility by designing a prototype for online revision of Colon Classification in the paper.
  15. Broughton, V.: Concepts and terms in the faceted classification : the case of UDC (2010) 0.00
    5.6712516E-4 = product of:
      0.003969876 = sum of:
        0.003969876 = product of:
          0.01984938 = sum of:
            0.01984938 = weight(_text_:system in 4065) [ClassicSimilarity], result of:
              0.01984938 = score(doc=4065,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.17398985 = fieldWeight in 4065, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4065)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Recent revision of UDC classes has aimed at implementing a more faceted approach. Many compound classes have been removed from the main tables, and more radical revisions of classes (particularly those for Medicine and Religion) have introduced a rigorous analysis, a clearer sense of citation order, and building of compound classes according to a more logical system syntax. The faceted approach provides a means of formalizing the relationships in the classification and making them explicit for machine recognition. In the Bliss Bibliographic Classification (BC2) (which has been a source for both UDC classes mentioned above), terminologies are encoded for automatic generation of hierarchical and associative relationships. Nevertheless, difficulties are encountered in vocabulary control, and a similar phenomenon is observed in UDC. Current work has revealed differences in the vocabulary of humanities and science, notably the way in which terms in the humanities should be handled when these are semantically complex. Achieving a balance between rigour in the structure of the classification and the complexity of natural language expression remains partially unresolved at present, but provides a fertile field for further research.
  16. Gnoli, C.; Pullman, T.; Cousson, P.; Merli, G.; Szostak, R.: Representing the structural elements of a freely faceted classification (2011) 0.00
    5.6712516E-4 = product of:
      0.003969876 = sum of:
        0.003969876 = product of:
          0.01984938 = sum of:
            0.01984938 = weight(_text_:system in 4825) [ClassicSimilarity], result of:
              0.01984938 = score(doc=4825,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.17398985 = fieldWeight in 4825, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4825)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Freely faceted classifications allow for free combination of concepts across all knowledge domains, and for sorting of the resulting compound classmarks. Starting from work by the Classification Research Group, the Integrative Levels Classification (ILC) project has produced a first edition of a general freely faceted scheme. The system is managed as a MySQL database, and can be browsed through a Web interface. The ILC database structure provides a case for identifying and representing the structural elements of any freely faceted classification. These belong to both the notational and the verbal planes. Notational elements include: arrays, chains, deictics, facets, foci, place of definition of foci, examples of combinations, subclasses of a faceted class, groupings, related classes; verbal elements include: main caption, synonyms, descriptions, included terms, related terms, notes. Encoding of some of these elements in an international mark-up format like SKOS can be problematic, especially as this does not provide for faceted structures, although approximate SKOS equivalents are identified for most of them.
  17. Satija, M.P.: Colon Classification (CC) (2017) 0.00
    5.6712516E-4 = product of:
      0.003969876 = sum of:
        0.003969876 = product of:
          0.01984938 = sum of:
            0.01984938 = weight(_text_:system in 3842) [ClassicSimilarity], result of:
              0.01984938 = score(doc=3842,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.17398985 = fieldWeight in 3842, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3842)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Shiyali Ramamrita Ranganathan (1892-1972) has been called the father of the Indian library movement. He developed the revolutionary Colon Classification (CC) from 1924 to 1928, which was published in seven editions from 1933 to 1987. In this article, the evolution of CC through its seven editions is discussed. The unique features of CC are described, including the work in idea, verbal, and notational planes. Tools for designing and evaluating a system are enshrined in his fifty-five canons, twenty-two principles, thirteen postulates, and ten devices (Indian Statistical Institute 2012, 34-38). Semantic and syntactic relations are enshrined in his order of main classes, Principles of Helpful Sequence in arrays, the PMEST facet formula fitted with rounds and levels of facets, and other principles, such as the famous wall-picture principle for citation order of facets, and numerous devices for improvising class numbers for non-existent isolates and potential subjects. Briefly explained are facet and phase analyses and number building with its notational base of seventy-four characters and symbols. The entry concludes with a discussion of the extent of application of CC in libraries, its contribution to the science of classification, and a view of its future.
  18. Szostak, R.: Facet analysis using grammar (2017) 0.00
    5.6712516E-4 = product of:
      0.003969876 = sum of:
        0.003969876 = product of:
          0.01984938 = sum of:
            0.01984938 = weight(_text_:system in 3866) [ClassicSimilarity], result of:
              0.01984938 = score(doc=3866,freq=2.0), product of:
                0.11408355 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.03622214 = queryNorm
                0.17398985 = fieldWeight in 3866, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3866)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Basic grammar can achieve most/all of the goals of facet analysis without requiring the use of facet indicators. Facet analysis is thus rendered far simpler for classificationist, classifier, and user. We compare facet analysis and grammar, and show how various facets can be represented grammatically. We then address potential challenges in employing grammar as subject classification. A detailed review of basic grammar supports the hypothesis that it is feasible to usefully employ grammatical construction in subject classification. A manageable - and programmable - set of adjustments is required as classifiers move fairly directly from sentences in a document (or object or idea) description to formulating a subject classification. The user likewise can move fairly quickly from a query to the identification of relevant works. A review of theories in linguistics indicates that a grammatical approach should reduce ambiguity while encouraging ease of use. This paper applies the recommended approach to a small sample of recently published books. It finds that the approach is feasible and results in a more precise subject description than the subject headings assigned at present. It then explores PRECIS, an indexing system developed in the 1970s. Though our approach differs from PRECIS in many important ways, the experience of PRECIS supports our conclusions regarding both feasibility and precision.
  19. Broughton, V.: Facet analysis as a tool for modelling subject domains and terminologies (2011) 0.00
    5.2312744E-4 = product of:
      0.003661892 = sum of:
        0.003661892 = product of:
          0.01830946 = sum of:
            0.01830946 = weight(_text_:retrieval in 4826) [ClassicSimilarity], result of:
              0.01830946 = score(doc=4826,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.16710453 = fieldWeight in 4826, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4826)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Facet analysis is proposed as a general theory of knowledge organization, with an associated methodology that may be applied to the development of terminology tools in a variety of contexts and formats. Faceted classifications originated as a means of representing complexity in semantic content that facilitates logical organization and effective retrieval in a physical environment. This is achieved through meticulous analysis of concepts, their structural and functional status (based on fundamental categories), and their inter-relationships. These features provide an excellent basis for the general conceptual modelling of domains, and for the generation of KOS other than systematic classifications. This is demonstrated by the adoption of a faceted approach to many web search and visualization tools, and by the emergence of a facet based methodology for the construction of thesauri. Current work on the Bliss Bibliographic Classification (Second Edition) is investigating the ways in which the full complexity of faceted structures may be represented through encoded data, capable of generating intellectually and mechanically compatible forms of indexing tools from a single source. It is suggested that a number of research questions relating to the Semantic Web could be tackled through the medium of facet analysis.
  20. Giri, K.; Gokhale, P.: Developing a banking service ontology using Protégé, an open source software (2015) 0.00
    5.2312744E-4 = product of:
      0.003661892 = sum of:
        0.003661892 = product of:
          0.01830946 = sum of:
            0.01830946 = weight(_text_:retrieval in 2793) [ClassicSimilarity], result of:
              0.01830946 = score(doc=2793,freq=2.0), product of:
                0.109568894 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03622214 = queryNorm
                0.16710453 = fieldWeight in 2793, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2793)
          0.2 = coord(1/5)
      0.14285715 = coord(1/7)
    
    Abstract
    Computers have transformed from single isolated devices to entry points into a worldwide network of information exchange. Consequently, support in the exchange of data, information, and knowledge is becoming the key issue in computer technology today. The increasing volume of data available on the Web makes information retrieval a tedious and difficult task. Researchers are now exploring the possibility of creating a semantic web, in which meaning is made explicit, allowing machines to process and integrate web resources intelligently. The vision of the semantic web introduces the next generation of the Web by establishing a layer of machine-understandable data. The success of the semantic web depends on the easy creation, integration and use of semantic data, which will depend on web ontology. The faceted approach towards analyzing and representing knowledge given by S R Ranganathan would be useful in this regard. Ontology development in different fields is one such area where this approach given by Ranganathan could be applied. This paper presents a case of developing ontology for the field of banking.