Search (6 results, page 1 of 1)

  • × type_ss:"el"
  • × theme_ss:"Automatisches Indexieren"
  1. Junger, U.; Schwens, U.: ¬Die inhaltliche Erschließung des schriftlichen kulturellen Erbes auf dem Weg in die Zukunft : Automatische Vergabe von Schlagwörtern in der Deutschen Nationalbibliothek (2017) 0.02
    0.023124104 = product of:
      0.09249642 = sum of:
        0.09249642 = sum of:
          0.06701063 = weight(_text_:intelligenz in 3780) [ClassicSimilarity], result of:
            0.06701063 = score(doc=3780,freq=2.0), product of:
              0.21362439 = queryWeight, product of:
                5.678294 = idf(docFreq=410, maxDocs=44218)
                0.037621226 = queryNorm
              0.31368437 = fieldWeight in 3780, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.678294 = idf(docFreq=410, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3780)
          0.025485784 = weight(_text_:22 in 3780) [ClassicSimilarity], result of:
            0.025485784 = score(doc=3780,freq=2.0), product of:
              0.13174312 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.037621226 = queryNorm
              0.19345059 = fieldWeight in 3780, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3780)
      0.25 = coord(1/4)
    
    Abstract
    Wir leben im 21. Jahrhundert, und vieles, was vor hundert und noch vor fünfzig Jahren als Science Fiction abgetan worden wäre, ist mittlerweile Realität. Raumsonden fliegen zum Mars, machen dort Experimente und liefern Daten zur Erde zurück. Roboter werden für Routineaufgaben eingesetzt, zum Beispiel in der Industrie oder in der Medizin. Digitalisierung, künstliche Intelligenz und automatisierte Verfahren sind kaum mehr aus unserem Alltag wegzudenken. Grundlage vieler Prozesse sind lernende Algorithmen. Die fortschreitende digitale Transformation ist global und umfasst alle Lebens- und Arbeitsbereiche: Wirtschaft, Gesellschaft und Politik. Sie eröffnet neue Möglichkeiten, von denen auch Bibliotheken profitieren. Der starke Anstieg digitaler Publikationen, die einen wichtigen und prozentual immer größer werdenden Teil des Kulturerbes darstellen, sollte für Bibliotheken Anlass sein, diese Möglichkeiten aktiv aufzugreifen und einzusetzen. Die Auswertbarkeit digitaler Inhalte, beispielsweise durch Text- and Data-Mining (TDM), und die Entwicklung technischer Verfahren, mittels derer Inhalte miteinander vernetzt und semantisch in Beziehung gesetzt werden können, bieten Raum, auch bibliothekarische Erschließungsverfahren neu zu denken. Daher beschäftigt sich die Deutsche Nationalbibliothek (DNB) seit einigen Jahren mit der Frage, wie sich die Prozesse bei der Erschließung von Medienwerken verbessern und maschinell unterstützen lassen. Sie steht dabei im regelmäßigen kollegialen Austausch mit anderen Bibliotheken, die sich ebenfalls aktiv mit dieser Fragestellung befassen, sowie mit europäischen Nationalbibliotheken, die ihrerseits Interesse an dem Thema und den Erfahrungen der DNB haben. Als Nationalbibliothek mit umfangreichen Beständen an digitalen Publikationen hat die DNB auch Expertise bei der digitalen Langzeitarchivierung aufgebaut und ist im Netzwerk ihrer Partner als kompetente Gesprächspartnerin geschätzt.
    Date
    19. 8.2017 9:24:22
  2. Giesselbach, S.; Estler-Ziegler, T.: Dokumente schneller analysieren mit Künstlicher Intelligenz (2021) 0.01
    0.014508229 = product of:
      0.058032915 = sum of:
        0.058032915 = product of:
          0.11606583 = sum of:
            0.11606583 = weight(_text_:intelligenz in 128) [ClassicSimilarity], result of:
              0.11606583 = score(doc=128,freq=6.0), product of:
                0.21362439 = queryWeight, product of:
                  5.678294 = idf(docFreq=410, maxDocs=44218)
                  0.037621226 = queryNorm
                0.5433173 = fieldWeight in 128, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.678294 = idf(docFreq=410, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=128)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Künstliche Intelligenz (KI) und natürliches Sprachverstehen (natural language understanding/NLU) verändern viele Aspekte unseres Alltags und unserer Arbeitsweise. Besondere Prominenz erlangte NLU durch Sprachassistenten wie Siri, Alexa und Google Now. NLU bietet Firmen und Einrichtungen das Potential, Prozesse effizienter zu gestalten und Mehrwert aus textuellen Inhalten zu schöpfen. So sind NLU-Lösungen in der Lage, komplexe, unstrukturierte Dokumente inhaltlich zu erschließen. Für die semantische Textanalyse hat das NLU-Team des IAIS Sprachmodelle entwickelt, die mit Deep-Learning-Verfahren trainiert werden. Die NLU-Suite analysiert Dokumente, extrahiert Eckdaten und erstellt bei Bedarf sogar eine strukturierte Zusammenfassung. Mit diesen Ergebnissen, aber auch über den Inhalt der Dokumente selbst, lassen sich Dokumente vergleichen oder Texte mit ähnlichen Informationen finden. KI-basierten Sprachmodelle sind der klassischen Verschlagwortung deutlich überlegen. Denn sie finden nicht nur Texte mit vordefinierten Schlagwörtern, sondern suchen intelligent nach Begriffen, die in ähnlichem Zusammenhang auftauchen oder als Synonym gebraucht werden. Der Vortrag liefert eine Einordnung der Begriffe "Künstliche Intelligenz" und "Natural Language Understanding" und zeigt Möglichkeiten, Grenzen, aktuelle Forschungsrichtungen und Methoden auf. Anhand von Praxisbeispielen wird anschließend demonstriert, wie NLU zur automatisierten Belegverarbeitung, zur Katalogisierung von großen Datenbeständen wie Nachrichten und Patenten und zur automatisierten thematischen Gruppierung von Social Media Beiträgen und Publikationen genutzt werden kann.
  3. Wolfram Language erkennt Bilder (2015) 0.01
    0.010051595 = product of:
      0.04020638 = sum of:
        0.04020638 = product of:
          0.08041276 = sum of:
            0.08041276 = weight(_text_:intelligenz in 1872) [ClassicSimilarity], result of:
              0.08041276 = score(doc=1872,freq=2.0), product of:
                0.21362439 = queryWeight, product of:
                  5.678294 = idf(docFreq=410, maxDocs=44218)
                  0.037621226 = queryNorm
                0.37642127 = fieldWeight in 1872, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.678294 = idf(docFreq=410, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1872)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Wolfram Research hat seine Cloud-basierte Programmiersprache Wolfram Language um eine Funktion zur Bilderkennung erweitert. Der Hersteller des Computeralgebrasystems Mathematica und Betreiber der Wissens-Suchmaschine Wolfram Alpha hat seinem System die Erkennung von Bildern beigebracht. Mit der Funktion ImageIdentify bekommt man in Wolfram Language jetzt zu einem Bild eine symbolische Beschreibung des Inhalts, die sich in der Sprache danach sogar weiterverarbeiten lässt. Als Demo dieser Funktion dient die Website The Wolfram Language Image Identification Project: Dort kann man ein beliebiges Bild hochladen und sich das Ergebnis anschauen. Die Website speichert einen Thumbnail des hochgeladenen Bildes, sodass man einen Link zu der Ergebnisseite weitergeben kann. Wie so oft bei künstlicher Intelligenz sind die Ergebnisse manchmal lustig daneben, oft aber auch überraschend gut. Die Funktion arbeitet mit einem neuronalen Netz, das mit einigen -zig Millionen Bildern trainiert wurde und etwa 10.000 Objekte identifizieren kann.
  4. Gábor, K.; Zargayouna, H.; Tellier, I.; Buscaldi, D.; Charnois, T.: ¬A typology of semantic relations dedicated to scientific literature analysis (2016) 0.00
    0.0030898487 = product of:
      0.012359395 = sum of:
        0.012359395 = product of:
          0.037078183 = sum of:
            0.037078183 = weight(_text_:k in 2933) [ClassicSimilarity], result of:
              0.037078183 = score(doc=2933,freq=2.0), product of:
                0.13429943 = queryWeight, product of:
                  3.569778 = idf(docFreq=3384, maxDocs=44218)
                  0.037621226 = queryNorm
                0.27608594 = fieldWeight in 2933, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.569778 = idf(docFreq=3384, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2933)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
  5. Banerjee, K.; Johnson, M.: Improving access to archival collections with automated entity extraction (2015) 0.00
    0.0026484418 = product of:
      0.010593767 = sum of:
        0.010593767 = product of:
          0.0317813 = sum of:
            0.0317813 = weight(_text_:k in 2144) [ClassicSimilarity], result of:
              0.0317813 = score(doc=2144,freq=2.0), product of:
                0.13429943 = queryWeight, product of:
                  3.569778 = idf(docFreq=3384, maxDocs=44218)
                  0.037621226 = queryNorm
                0.23664509 = fieldWeight in 2144, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.569778 = idf(docFreq=3384, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2144)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
  6. Donahue, J.; Hendricks, L.A.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, K.; Darrell, T.: Long-term recurrent convolutional networks for visual recognition and description (2014) 0.00
    0.0022070347 = product of:
      0.008828139 = sum of:
        0.008828139 = product of:
          0.026484415 = sum of:
            0.026484415 = weight(_text_:k in 1873) [ClassicSimilarity], result of:
              0.026484415 = score(doc=1873,freq=2.0), product of:
                0.13429943 = queryWeight, product of:
                  3.569778 = idf(docFreq=3384, maxDocs=44218)
                  0.037621226 = queryNorm
                0.19720423 = fieldWeight in 1873, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.569778 = idf(docFreq=3384, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1873)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)