Search (13 results, page 1 of 1)

  • × author_ss:"Rousseau, R."
  1. Impe, S. van; Rousseau, R.: Web-to-print citations and the humanities (2006) 0.01
    0.010707163 = product of:
      0.08030372 = sum of:
        0.009659718 = product of:
          0.019319436 = sum of:
            0.019319436 = weight(_text_:online in 82) [ClassicSimilarity], result of:
              0.019319436 = score(doc=82,freq=2.0), product of:
                0.096027054 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.031640913 = queryNorm
                0.20118743 = fieldWeight in 82, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.046875 = fieldNorm(doc=82)
          0.5 = coord(1/2)
        0.070644006 = weight(_text_:web in 82) [ClassicSimilarity], result of:
          0.070644006 = score(doc=82,freq=20.0), product of:
            0.10326045 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.031640913 = queryNorm
            0.6841342 = fieldWeight in 82, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=82)
      0.13333334 = coord(2/15)
    
    Abstract
    References to printed documents made on the web are called web-to-print references. These printed documents then in turn receive web-to-print citations. Webto-print citations and web-to-print references are the topic of this article, in which we study the online impact of printed sources. Web-to-print citations are discussed from a structural point of view and a small-scale experiment related to web-to-print citations for local history journals is performed. The main research question in setting up this experiment concerns the possibility of using web-to-print citations as a substitute for classical citation indexes by gauging the importance, visibility and impact of journals in the humanities. Results show the importance of web bibliographies in the field, but, at least for what concerns the journals and the period studied here, the amount of received web-to-print citations is too small to draw general conclusions.
  2. Rousseau, R.: Journal evaluation : technical and practical issues (2002) 0.01
    0.00502239 = product of:
      0.075335845 = sum of:
        0.075335845 = weight(_text_:evaluation in 816) [ClassicSimilarity], result of:
          0.075335845 = score(doc=816,freq=12.0), product of:
            0.13272417 = queryWeight, product of:
              4.1947007 = idf(docFreq=1811, maxDocs=44218)
              0.031640913 = queryNorm
            0.5676121 = fieldWeight in 816, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.1947007 = idf(docFreq=1811, maxDocs=44218)
              0.0390625 = fieldNorm(doc=816)
      0.06666667 = coord(1/15)
    
    Abstract
    This essay provides an overview of journal evaluation indicators. It highlights the strengths and weaknesses of different indicators, together with their range of applicability. The definition of a "quality journal," different notions of impact factors, the meaning of ranking journals, and possible biases in citation databases are also discussed. Attention is given to using the journal impact in evaluation studies. The quality of a journal is a multifaceted notion. Journals can be evaluated for different purposes, and hence the results of such evaluation exercises can be quite different depending on the indicator(s) used. The impact factor, in one of its versions, is probably the most used indicator when it comes to gauging the visibility of a journal on the research front. Generalized impact factors, over periods longer than the traditional two years, are better indicators for the long-term value of a journal. As with all evaluation studies, care must be exercised when considering journal impact factors as a quality indicator. It seems best to use a whole battery of indicators (including several impact factors) and to change this group of indicators depending on the purpose of the evaluation study. Nowadays it goes without saying that special attention is paid to e-journals and specific indicators for this type of journal.
  3. Rousseau, R.: Citation data as a proxy for quality or scientific influence are at best PAC (probably approximately correct) (2016) 0.00
    0.004639485 = product of:
      0.06959227 = sum of:
        0.06959227 = weight(_text_:evaluation in 3210) [ClassicSimilarity], result of:
          0.06959227 = score(doc=3210,freq=4.0), product of:
            0.13272417 = queryWeight, product of:
              4.1947007 = idf(docFreq=1811, maxDocs=44218)
              0.031640913 = queryNorm
            0.5243376 = fieldWeight in 3210, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1947007 = idf(docFreq=1811, maxDocs=44218)
              0.0625 = fieldNorm(doc=3210)
      0.06666667 = coord(1/15)
    
    Abstract
    In this communication I give a brief introduction to Valiant's probably approximately correct (PAC) theory, provide an extension that goes beyond Valiant's ideas (and beyond the domain for which this theory was meant), and come to an interpretation in terms of research evaluation. As such, PAC provides a framework for a theory of research evaluation.
  4. Yang, B.; Rousseau, R.; Wang, X.; Huang, S.: How important is scientific software in bioinformatics research? : a comparative study between international and Chinese research communities (2018) 0.00
    0.004492272 = product of:
      0.06738408 = sum of:
        0.06738408 = weight(_text_:software in 4461) [ClassicSimilarity], result of:
          0.06738408 = score(doc=4461,freq=12.0), product of:
            0.12552431 = queryWeight, product of:
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.031640913 = queryNorm
            0.53682095 = fieldWeight in 4461, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.9671519 = idf(docFreq=2274, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4461)
      0.06666667 = coord(1/15)
    
    Abstract
    Software programs are among the most important tools in data-driven research. The popularity of well-known packages and corresponding large numbers of citations received bear testimony of the contribution of scientific software to academic research. Yet software is not generally recognized as an academic outcome. In this study, a usage-based model is proposed with varied indicators including citations, mentions, and downloads to measure the importance of scientific software. We performed an investigation on a sample of international bioinformatics research articles, and on a sample from the Chinese community. Our analysis shows that scientists in the field of bioinformatics rely heavily on scientific software: the major differences between the international community and the Chinese example being how scientific packages are mentioned in publications and the time gap between the introduction of a package and its use. Biologists publishing in international journals tend to apply the latest tools earlier; Chinese scientists publishing in Chinese tend to follow later. Further, journals with higher impact factors tend to publish articles applying the latest tools earlier.
  5. Egghe, L.; Rousseau, R.; Hooydonk, G. van: Methods for accrediting publications to authors or countries : consequences for evaluation studies (2000) 0.00
    0.0034796137 = product of:
      0.052194204 = sum of:
        0.052194204 = weight(_text_:evaluation in 4384) [ClassicSimilarity], result of:
          0.052194204 = score(doc=4384,freq=4.0), product of:
            0.13272417 = queryWeight, product of:
              4.1947007 = idf(docFreq=1811, maxDocs=44218)
              0.031640913 = queryNorm
            0.3932532 = fieldWeight in 4384, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1947007 = idf(docFreq=1811, maxDocs=44218)
              0.046875 = fieldNorm(doc=4384)
      0.06666667 = coord(1/15)
    
    Abstract
    One aim of science evaluation studies is to determine quantitatively the contribution of different players (authors, departments, countries) to the whole system. This information is then used to study the evolution of the system, for instance to gauge the results of special national or international programs. Taking articles as our basic data, we want to determine the exact relative contribution of each coauthor or each country. These numbers are brought together to obtain country scores, or department scores, etc. It turns out, as we will show in this article, that different scoring methods can yield totally different rankings. Conseqeuntly, a ranking between countries, universities, research groups or authors, based on one particular accrediting methods does not contain an absolute truth about their relative importance
  6. Ahlgren, P.; Jarneving, B.; Rousseau, R.: Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient (2003) 0.00
    0.0031289172 = product of:
      0.023466878 = sum of:
        0.014893063 = weight(_text_:web in 5171) [ClassicSimilarity], result of:
          0.014893063 = score(doc=5171,freq=2.0), product of:
            0.10326045 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.031640913 = queryNorm
            0.14422815 = fieldWeight in 5171, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=5171)
        0.008573813 = product of:
          0.017147627 = sum of:
            0.017147627 = weight(_text_:22 in 5171) [ClassicSimilarity], result of:
              0.017147627 = score(doc=5171,freq=2.0), product of:
                0.110801086 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.031640913 = queryNorm
                0.15476047 = fieldWeight in 5171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5171)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    Ahlgren, Jarneving, and. Rousseau review accepted procedures for author co-citation analysis first pointing out that since in the raw data matrix the row and column values are identical i,e, the co-citation count of two authors, there is no clear choice for diagonal values. They suggest the number of times an author has been co-cited with himself excluding self citation rather than the common treatment as zeros or as missing values. When the matrix is converted to a similarity matrix the normal procedure is to create a matrix of Pearson's r coefficients between data vectors. Ranking by r and by co-citation frequency and by intuition can easily yield three different orders. It would seem necessary that the adding of zeros to the matrix will not affect the value or the relative order of similarity measures but it is shown that this is not the case with Pearson's r. Using 913 bibliographic descriptions form the Web of Science of articles form JASIS and Scientometrics, authors names were extracted, edited and 12 information retrieval authors and 12 bibliometric authors each from the top 100 most cited were selected. Co-citation and r value (diagonal elements treated as missing) matrices were constructed, and then reconstructed in expanded form. Adding zeros can both change the r value and the ordering of the authors based upon that value. A chi-squared distance measure would not violate these requirements, nor would the cosine coefficient. It is also argued that co-citation data is ordinal data since there is no assurance of an absolute zero number of co-citations, and thus Pearson is not appropriate. The number of ties in co-citation data make the use of the Spearman rank order coefficient problematic.
    Date
    9. 7.2006 10:22:35
  7. Rousseau, R.: Robert Fairthorne and the empirical power laws (2005) 0.00
    0.0028705348 = product of:
      0.04305802 = sum of:
        0.04305802 = weight(_text_:evaluation in 4398) [ClassicSimilarity], result of:
          0.04305802 = score(doc=4398,freq=2.0), product of:
            0.13272417 = queryWeight, product of:
              4.1947007 = idf(docFreq=1811, maxDocs=44218)
              0.031640913 = queryNorm
            0.32441732 = fieldWeight in 4398, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1947007 = idf(docFreq=1811, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4398)
      0.06666667 = coord(1/15)
    
    Abstract
    Purpose - Aims to review Fairthorne's classic article "Empirical hyperbolic distributions (Bradford-Zipf-Mandelbrot) for bibliometric description and prediction" (Journal of Documentation, Vol. 25, pp. 319-343, 1969), as part of a series marking the Journal of Documentation's 60th anniversary. Design/methodology/approach - Analysis of article content, qualitative evaluation of its subsequent impact, citation analysis, and diffusion analysis. Findings - The content, further developments and influence on the field of informetrics of this landmark paper are explained. Originality/value - A review is given of the contents of Fairthorne's original article and its influence on the field of informetrics. Its transdisciplinary reception is measured through a diffusion analysis.
  8. Rousseau, R.: Basic properties of both percentile rank scores and the I3 indicator (2012) 0.00
    0.0028705348 = product of:
      0.04305802 = sum of:
        0.04305802 = weight(_text_:evaluation in 4993) [ClassicSimilarity], result of:
          0.04305802 = score(doc=4993,freq=2.0), product of:
            0.13272417 = queryWeight, product of:
              4.1947007 = idf(docFreq=1811, maxDocs=44218)
              0.031640913 = queryNorm
            0.32441732 = fieldWeight in 4993, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1947007 = idf(docFreq=1811, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4993)
      0.06666667 = coord(1/15)
    
    Abstract
    We introduce the notions of congruous indicator of relative performance and congruous indicator of absolute performance. These notions are very similar to the notions of independence and consistency, yet slightly different. It is shown that percentile rank scores, as recently introduced by Leydesdorff, Bornmann, Mutz, and Opthof (2011), are strictly congruous indicators of relative performance, and similarly, that the Integrated Impact Indicator (I3), introduced by Leydesdorff and Bornmann (2011), is a strictly congruous indicator of absolute performance. Our analysis highlights the challenge of finding adequate axioms for ranking and for research evaluation.
  9. Egghe, L.; Rousseau, R.: ¬A measure for the cohesion of weighted networks (2003) 0.00
    0.0020503819 = product of:
      0.030755727 = sum of:
        0.030755727 = weight(_text_:evaluation in 5157) [ClassicSimilarity], result of:
          0.030755727 = score(doc=5157,freq=2.0), product of:
            0.13272417 = queryWeight, product of:
              4.1947007 = idf(docFreq=1811, maxDocs=44218)
              0.031640913 = queryNorm
            0.23172665 = fieldWeight in 5157, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1947007 = idf(docFreq=1811, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5157)
      0.06666667 = coord(1/15)
    
    Abstract
    Measurement of the degree of interconnectedness in graph like networks of hyperlinks or citations can indicate the existence of research fields and assist in comparative evaluation of research efforts. In this issue we begin with Egghe and Rousseau who review compactness measures and investigate the compactness of a network as a weighted graph with dissimilarity values characterizing the arcs between nodes. They make use of a generalization of the Botofogo, Rivlin, Shneiderman, (BRS) compaction measure which treats the distance between unreachable nodes not as infinity but rather as the number of nodes in the network. The dissimilarity values are determined by summing the reciprocals of the weights of the arcs in the shortest chain between two nodes where no weight is smaller than one. The BRS measure is then the maximum value for the sum of the dissimilarity measures less the actual sum divided by the difference between the maximum and minimum. The Wiener index, the sum of all elements in the dissimilarity matrix divided by two, is then computed for Small's particle physics co-citation data as well as the BRS measure, the dissimilarity values and shortest paths. The compactness measure for the weighted network is smaller than for the un-weighted. When the bibliographic coupling network is utilized it is shown to be less compact than the co-citation network which indicates that the new measure produces results that confirm to an obvious case.
  10. Zhang, L.; Rousseau, R.; Glänzel, W.: Document-type country profiles (2011) 0.00
    0.0019857418 = product of:
      0.029786127 = sum of:
        0.029786127 = weight(_text_:web in 4487) [ClassicSimilarity], result of:
          0.029786127 = score(doc=4487,freq=2.0), product of:
            0.10326045 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.031640913 = queryNorm
            0.2884563 = fieldWeight in 4487, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=4487)
      0.06666667 = coord(1/15)
    
    Abstract
    A bibliometric method for analyzing and visualizing national research profiles is adapted to describe national preferences for publishing particular document types. Similarities in national profiles and national peculiarities are discussed based on the publication output of the 26 most active countries indexed in the Web of Science annual volume 2007.
  11. Egghe, L.; Guns, R.; Rousseau, R.; Leuven, K.U.: Erratum (2012) 0.00
    0.0014289691 = product of:
      0.021434534 = sum of:
        0.021434534 = product of:
          0.04286907 = sum of:
            0.04286907 = weight(_text_:22 in 4992) [ClassicSimilarity], result of:
              0.04286907 = score(doc=4992,freq=2.0), product of:
                0.110801086 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.031640913 = queryNorm
                0.38690117 = fieldWeight in 4992, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4992)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Date
    14. 2.2012 12:53:22
  12. Egghe, L.; Rousseau, R.: Averaging and globalising quotients of informetric and scientometric data (1996) 0.00
    8.573814E-4 = product of:
      0.01286072 = sum of:
        0.01286072 = product of:
          0.02572144 = sum of:
            0.02572144 = weight(_text_:22 in 7659) [ClassicSimilarity], result of:
              0.02572144 = score(doc=7659,freq=2.0), product of:
                0.110801086 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.031640913 = queryNorm
                0.23214069 = fieldWeight in 7659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=7659)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Journal of information science. 22(1996) no.3, S.165-170
  13. Asonuma, A.; Fang, Y.; Rousseau, R.: Reflections on the age distribution of Japanese scientists (2006) 0.00
    8.573814E-4 = product of:
      0.01286072 = sum of:
        0.01286072 = product of:
          0.02572144 = sum of:
            0.02572144 = weight(_text_:22 in 5270) [ClassicSimilarity], result of:
              0.02572144 = score(doc=5270,freq=2.0), product of:
                0.110801086 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.031640913 = queryNorm
                0.23214069 = fieldWeight in 5270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5270)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Date
    22. 7.2006 15:26:24