Search (52 results, page 1 of 3)

  • × author_ss:"Leydesdorff, L."
  • × year_i:[2010 TO 2020}
  1. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.02
    0.015357548 = product of:
      0.03839387 = sum of:
        0.021414334 = weight(_text_:of in 4681) [ClassicSimilarity], result of:
          0.021414334 = score(doc=4681,freq=20.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.32781258 = fieldWeight in 4681, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4681)
        0.016979538 = product of:
          0.033959076 = sum of:
            0.033959076 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
              0.033959076 = score(doc=4681,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.23214069 = fieldWeight in 4681, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4681)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    A recent publication in Nature reports that public R&D funding is only weakly correlated with the citation impact of a nation's articles as measured by the field-weighted citation index (FWCI; defined by Scopus). On the basis of the supplementary data, we up-scaled the design using Web of Science data for the decade 2003-2013 and OECD funding data for the corresponding decade assuming a 2-year delay (2001-2011). Using negative binomial regression analysis, we found very small coefficients, but the effects of international collaboration are positive and statistically significant, whereas the effects of government funding are negative, an order of magnitude smaller, and statistically nonsignificant (in two of three analyses). In other words, international collaboration improves the impact of research articles, whereas more government funding tends to have a small adverse effect when comparing OECD countries.
    Date
    8. 1.2019 18:22:45
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.2, S.198-201
  2. Leydesdorff, L.; Johnson, M.W.; Ivanova, I.: Toward a calculus of redundancy : signification, codification, and anticipation in cultural evolution (2018) 0.02
    0.015236628 = product of:
      0.03809157 = sum of:
        0.023941955 = weight(_text_:of in 4463) [ClassicSimilarity], result of:
          0.023941955 = score(doc=4463,freq=36.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.36650562 = fieldWeight in 4463, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4463)
        0.0141496165 = product of:
          0.028299233 = sum of:
            0.028299233 = weight(_text_:22 in 4463) [ClassicSimilarity], result of:
              0.028299233 = score(doc=4463,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.19345059 = fieldWeight in 4463, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4463)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This article considers the relationships among meaning generation, selection, and the dynamics of discourse from a variety of perspectives ranging from information theory and biology to sociology. Following Husserl's idea of a horizon of meanings in intersubjective communication, we propose a way in which, using Shannon's equations, the generation and selection of meanings from a horizon of possibilities can be considered probabilistically. The information-theoretical dynamics we articulate considers a process of meaning generation within cultural evolution: information is imbued with meaning, and through this process, the number of options for the selection of meaning in discourse proliferates. The redundancy of possible meanings contributes to a codification of expectations within the discourse. Unlike hardwired DNA, the codes of nonbiological systems can coevolve with the variations. Spanning horizons of meaning, the codes structure the communications as selection environments that shape discourses. Discursive knowledge can be considered as meta-coded communication that enables us to translate among differently coded communications. The dynamics of discursive knowledge production can thus infuse the historical dynamics with a cultural evolution by adding options, that is, by increasing redundancy. A calculus of redundancy is presented as an indicator whereby these dynamics of discourse and meaning may be explored empirically.
    Date
    29. 9.2018 11:22:09
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.10, S.1181-1192
  3. Leydesdorff, L.; Bornmann, L.: How fractional counting of citations affects the impact factor : normalization in terms of differences in citation potentials among fields of science (2011) 0.01
    0.014966805 = product of:
      0.037417013 = sum of:
        0.023267398 = weight(_text_:of in 4186) [ClassicSimilarity], result of:
          0.023267398 = score(doc=4186,freq=34.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.35617945 = fieldWeight in 4186, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4186)
        0.0141496165 = product of:
          0.028299233 = sum of:
            0.028299233 = weight(_text_:22 in 4186) [ClassicSimilarity], result of:
              0.028299233 = score(doc=4186,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.19345059 = fieldWeight in 4186, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4186)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The Impact Factors (IFs) of the Institute for Scientific Information suffer from a number of drawbacks, among them the statistics-Why should one use the mean and not the median?-and the incomparability among fields of science because of systematic differences in citation behavior among fields. Can these drawbacks be counteracted by fractionally counting citation weights instead of using whole numbers in the numerators? (a) Fractional citation counts are normalized in terms of the citing sources and thus would take into account differences in citation behavior among fields of science. (b) Differences in the resulting distributions can be tested statistically for their significance at different levels of aggregation. (c) Fractional counting can be generalized to any document set including journals or groups of journals, and thus the significance of differences among both small and large sets can be tested. A list of fractionally counted IFs for 2008 is available online at http:www.leydesdorff.net/weighted_if/weighted_if.xls The between-group variance among the 13 fields of science identified in the U.S. Science and Engineering Indicators is no longer statistically significant after this normalization. Although citation behavior differs largely between disciplines, the reflection of these differences in fractionally counted citation distributions can not be used as a reliable instrument for the classification.
    Date
    22. 1.2011 12:51:07
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.2, S.217-229
  4. Hellsten, I.; Leydesdorff, L.: ¬The construction of interdisciplinarity : the development of the knowledge base and programmatic focus of the journal Climatic Change, 1977-2013 (2016) 0.01
    0.014105774 = product of:
      0.035264436 = sum of:
        0.02111482 = weight(_text_:of in 3089) [ClassicSimilarity], result of:
          0.02111482 = score(doc=3089,freq=28.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.32322758 = fieldWeight in 3089, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3089)
        0.0141496165 = product of:
          0.028299233 = sum of:
            0.028299233 = weight(_text_:22 in 3089) [ClassicSimilarity], result of:
              0.028299233 = score(doc=3089,freq=2.0), product of:
                0.14628662 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04177434 = queryNorm
                0.19345059 = fieldWeight in 3089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3089)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Climate change as a complex physical and social issue has gained increasing attention in the natural as well as the social sciences. Climate change research has become more interdisciplinary and even transdisciplinary as a typical Mode-2 science that is also dependent on an application context for its further development. We propose to approach interdisciplinarity as a co-construction of the knowledge base in the reference patterns and the programmatic focus in the editorials in the core journal of the climate-change sciences-Climatic Change-during the period 1977-2013. First, we analyze the knowledge base of the journal and map journal-journal relations on the basis of the references in the articles. Second, we follow the development of the programmatic focus by analyzing the semantics in the editorials. We argue that interdisciplinarity is a result of the co-construction between different agendas: The selection of publications into the knowledge base of the journal, and the adjustment of the programmatic focus to the political context in the editorials. Our results show a widening of the knowledge base from referencing the multidisciplinary journals Nature and Science to citing journals from specialist fields. The programmatic focus follows policy-oriented issues and incorporates public metaphors.
    Date
    24. 8.2016 17:53:22
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.9, S.2181-2193
  5. Leydesdorff, L.; Shin, J.C.: How to evaluate universities in terms of their relative citation impacts : fractional counting of citations and the normalization of differences among disciplines (2011) 0.01
    0.006119657 = product of:
      0.030598283 = sum of:
        0.030598283 = weight(_text_:of in 4466) [ClassicSimilarity], result of:
          0.030598283 = score(doc=4466,freq=30.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.46840128 = fieldWeight in 4466, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4466)
      0.2 = coord(1/5)
    
    Abstract
    Fractional counting of citations can improve on ranking of multidisciplinary research units (such as universities) by normalizing the differences among fields of science in terms of differences in citation behavior. Furthermore, normalization in terms of citing papers abolishes the unsolved questions in scientometrics about the delineation of fields of science in terms of journals and normalization when comparing among different (sets of) journals. Using publication and citation data of seven Korean research universities, we demonstrate the advantages and the differences in the rankings, explain the possible statistics, and suggest ways to visualize the differences in (citing) audiences in terms of a network.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.6, S.1146-1155
  6. Leydesdorff, L.: ¬The communication of meaning and the structuration of expectations : Giddens' "structuration theory" and Luhmann's "self-organization" (2010) 0.01
    0.005417446 = product of:
      0.02708723 = sum of:
        0.02708723 = weight(_text_:of in 4004) [ClassicSimilarity], result of:
          0.02708723 = score(doc=4004,freq=32.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.41465378 = fieldWeight in 4004, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4004)
      0.2 = coord(1/5)
    
    Abstract
    The communication of meaning as distinct from (Shannon-type) information is central to Luhmann's social systems theory and Giddens' structuration theory of action. These theories share an emphasis on reflexivity, but focus on meaning along a divide between interhuman communication and intentful action as two different systems of reference. Recombining these two theories into a theory about the structuration of expectations, interactions, organization, and self-organization of intentional communications can be simulated based on algorithms from the computation of anticipatory systems. The self-organizing and organizing layers remain rooted in the double contingency of the human encounter, which provides the variation. Organization and self-organization of communication are reflexive upon and therefore reconstructive of each other. Using mutual information in three dimensions, the imprint of meaning processing in the modeling system on the historical organization of uncertainty in the modeled system can be measured. This is shown empirically in the case of intellectual organization as "structurating" structure in the textual domain of scientific articles.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.10, S.2138-2150
  7. Chen, C.; Leydesdorff, L.: Patterns of connections and movements in dual-map overlays : a new method of publication portfolio analysis (2014) 0.01
    0.0054127416 = product of:
      0.027063707 = sum of:
        0.027063707 = weight(_text_:of in 1200) [ClassicSimilarity], result of:
          0.027063707 = score(doc=1200,freq=46.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.41429368 = fieldWeight in 1200, product of:
              6.78233 = tf(freq=46.0), with freq of:
                46.0 = termFreq=46.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1200)
      0.2 = coord(1/5)
    
    Abstract
    Portfolio analysis of the publication profile of a unit of interest, ranging from individuals and organizations to a scientific field or interdisciplinary programs, aims to inform analysts and decision makers about the position of the unit, where it has been, and where it may go in a complex adaptive environment. A portfolio analysis may aim to identify the gap between the current position of an organization and a goal that it intends to achieve or identify competencies of multiple institutions. We introduce a new visual analytic method for analyzing, comparing, and contrasting characteristics of publication portfolios. The new method introduces a novel design of dual-map thematic overlays on global maps of science. Each publication portfolio can be added as one layer of dual-map overlays over 2 related, but distinct, global maps of science: one for citing journals and the other for cited journals. We demonstrate how the new design facilitates a portfolio analysis in terms of patterns emerging from the distributions of citation threads and the dynamics of trajectories as a function of space and time. We first demonstrate the analysis of portfolios defined on a single source article. Then we contrast publication portfolios of multiple comparable units of interest; namely, colleges in universities and corporate research organizations. We also include examples of overlays of scientific fields. We expect that our method will provide new insights to portfolio analysis.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.2, S.334-351
  8. Leydesdorff, L.; Ahrweiler, P.: In search of a network theory of innovations : relations, positions, and perspectives (2014) 0.01
    0.005293766 = product of:
      0.02646883 = sum of:
        0.02646883 = weight(_text_:of in 1531) [ClassicSimilarity], result of:
          0.02646883 = score(doc=1531,freq=44.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.40518725 = fieldWeight in 1531, product of:
              6.6332498 = tf(freq=44.0), with freq of:
                44.0 = termFreq=44.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1531)
      0.2 = coord(1/5)
    
    Abstract
    As a complement to Nelson and Winter's (1977) article titled "In Search of a Useful Theory of Innovation," a sociological perspective on innovation networks can be elaborated using Luhmann's social systems theory, on the one hand, and Latour's "sociology of translations," on the other. Because of a common focus on communication, these perspectives can be combined as a set of methodologies. Latour's sociology of translations specifies a mechanism for generating variation in relations ("associations"), whereas Luhmann's systems perspective enables the specification of (functionally different) selection environments such as markets, professional organizations, and political control. Selection environments can be considered as mechanisms of social coordination that can self-organize-beyond the control of human agency-into regimes in terms of interacting codes of communication. Unlike relatively globalized regimes, technological trajectories are organized locally in "landscapes." A resulting "duality of structure" (Giddens, 1979) between the historical organization of trajectories and evolutionary self-organization at the regime level can be expected to drive innovation cycles. Reflexive translations add a third layer of perspectives to (a) the relational analysis of observable links that shape trajectories and (b) the positional analysis of networks in terms of latent dimensions. These three operations can be studied in a single framework, but using different methodologies. Latour's first-order associations can then be analytically distinguished from second-order translations in terms of requiring other communicative competencies. The resulting operations remain infrareflexively nested, and can therefore be used for innovative reconstructions of previously constructed boundaries.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.11, S.2359-2374
  9. Leydesdorff, L.; Bornmann, L.; Mutz, R.; Opthof, T.: Turning the tables on citation analysis one more time : principles for comparing sets of documents (2011) 0.01
    0.00524542 = product of:
      0.0262271 = sum of:
        0.0262271 = weight(_text_:of in 4485) [ClassicSimilarity], result of:
          0.0262271 = score(doc=4485,freq=30.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.4014868 = fieldWeight in 4485, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4485)
      0.2 = coord(1/5)
    
    Abstract
    We submit newly developed citation impact indicators based not on arithmetic averages of citations but on percentile ranks. Citation distributions are-as a rule-highly skewed and should not be arithmetically averaged. With percentile ranks, the citation score of each paper is rated in terms of its percentile in the citation distribution. The percentile ranks approach allows for the formulation of a more abstract indicator scheme that can be used to organize and/or schematize different impact indicators according to three degrees of freedom: the selection of the reference sets, the evaluation criteria, and the choice of whether or not to define the publication sets as independent. Bibliometric data of seven principal investigators (PIs) of the Academic Medical Center of the University of Amsterdam are used as an exemplary dataset. We demonstrate that the proposed family indicators [R(6), R(100), R(6, k), R(100, k)] are an improvement on averages-based indicators because one can account for the shape of the distributions of citations over papers.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.7, S.1370-1381
  10. Leydesdorff, L.; Radicchi, F.; Bornmann, L.; Castellano, C.; Nooy, W. de: Field-normalized impact factors (IFs) : a comparison of rescaling and fractionally counted IFs (2013) 0.00
    0.00488322 = product of:
      0.024416098 = sum of:
        0.024416098 = weight(_text_:of in 1108) [ClassicSimilarity], result of:
          0.024416098 = score(doc=1108,freq=26.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.37376386 = fieldWeight in 1108, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1108)
      0.2 = coord(1/5)
    
    Abstract
    Two methods for comparing impact factors and citation rates across fields of science are tested against each other using citations to the 3,705 journals in the Science Citation Index 2010 (CD-Rom version of SCI) and the 13 field categories used for the Science and Engineering Indicators of the U.S. National Science Board. We compare (a) normalization by counting citations in proportion to the length of the reference list (1/N of references) with (b) rescaling by dividing citation scores by the arithmetic mean of the citation rate of the cluster. Rescaling is analytical and therefore independent of the quality of the attribution to the sets, whereas fractional counting provides an empirical strategy for normalization among sets (by evaluating the between-group variance). By the fairness test of Radicchi and Castellano (), rescaling outperforms fractional counting of citations for reasons that we consider.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.11, S.2299-2309
  11. Leydesdorff, L.; Opthof, T.: Scopus's source normalized impact per paper (SNIP) versus a journal impact factor based on fractional counting of citations (2010) 0.00
    0.004691646 = product of:
      0.02345823 = sum of:
        0.02345823 = weight(_text_:of in 4107) [ClassicSimilarity], result of:
          0.02345823 = score(doc=4107,freq=24.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.3591007 = fieldWeight in 4107, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4107)
      0.2 = coord(1/5)
    
    Abstract
    Impact factors (and similar measures such as the Scimago Journal Rankings) suffer from two problems: (a) citation behavior varies among fields of science and, therefore, leads to systematic differences, and (b) there are no statistics to inform us whether differences are significant. The recently introduced "source normalized impact per paper" indicator of Scopus tries to remedy the first of these two problems, but a number of normalization decisions are involved, which makes it impossible to test for significance. Using fractional counting of citations-based on the assumption that impact is proportionate to the number of references in the citing documents-citations can be contextualized at the paper level and aggregated impacts of sets can be tested for their significance. It can be shown that the weighted impact of Annals of Mathematics (0.247) is not so much lower than that of Molecular Cell (0.386) despite a five-f old difference between their impact factors (2.793 and 13.156, respectively).
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.11, S.2365-2369
  12. Leydesdorff, L.; Rafols, I.: Local emergence and global diffusion of research technologies : an exploration of patterns of network formation (2011) 0.00
    0.004691646 = product of:
      0.02345823 = sum of:
        0.02345823 = weight(_text_:of in 4445) [ClassicSimilarity], result of:
          0.02345823 = score(doc=4445,freq=24.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.3591007 = fieldWeight in 4445, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4445)
      0.2 = coord(1/5)
    
    Abstract
    Grasping the fruits of "emerging technologies" is an objective of many government priority programs in a knowledge-based and globalizing economy. We use the publication records (in the Science Citation Index) of two emerging technologies to study the mechanisms of diffusion in the case of two innovation trajectories: small interference RNA (siRNA) and nanocrystalline solar cells (NCSC). Methods for analyzing and visualizing geographical and cognitive diffusion are specified as indicators of different dynamics. Geographical diffusion is illustrated with overlays to Google Maps; cognitive diffusion is mapped using an overlay to a map based on the ISI subject categories. The evolving geographical networks show both preferential attachment and small-world characteristics. The strength of preferential attachment decreases over time while the network evolves into an oligopolistic control structure with small-world characteristics. The transition from disciplinary-oriented ("Mode 1") to transfer-oriented ("Mode 2") research is suggested as the crucial difference in explaining the different rates of diffusion between siRNA and NCSC.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.5, S.846-860
  13. Leydesdorff, L.; Opthof, T.: Citation analysis with medical subject Headings (MeSH) using the Web of Knowledge : a new routine (2013) 0.00
    0.004691646 = product of:
      0.02345823 = sum of:
        0.02345823 = weight(_text_:of in 943) [ClassicSimilarity], result of:
          0.02345823 = score(doc=943,freq=24.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.3591007 = fieldWeight in 943, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=943)
      0.2 = coord(1/5)
    
    Abstract
    Citation analysis of documents retrieved from the Medline database (at the Web of Knowledge) has been possible only on a case-by-case basis. A technique is presented here for citation analysis in batch mode using both Medical Subject Headings (MeSH) at the Web of Knowledge and the Science Citation Index at the Web of Science (WoS). This freeware routine is applied to the case of "Brugada Syndrome," a specific disease and field of research (since 1992). The journals containing these publications, for example, are attributed to WoS categories other than "cardiac and cardiovascular systems", perhaps because of the possibility of genetic testing for this syndrome in the clinic. With this routine, all the instruments available for citation analysis can now be used on the basis of MeSH terms. Other options for crossing between Medline, WoS, and Scopus are also reviewed.
    Object
    Web of Knowledge
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.5, S.1076-1080
  14. Leydesdorff, L.; Goldstone, R.L.: Interdisciplinarity at the journal and specialty level : the changing knowledge bases of the journal cognitive science (2014) 0.00
    0.004691646 = product of:
      0.02345823 = sum of:
        0.02345823 = weight(_text_:of in 1187) [ClassicSimilarity], result of:
          0.02345823 = score(doc=1187,freq=24.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.3591007 = fieldWeight in 1187, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1187)
      0.2 = coord(1/5)
    
    Abstract
    Using the referencing patterns in articles in Cognitive Science over three decades, we analyze the knowledge base of this literature in terms of its changing disciplinary composition. Three periods are distinguished: (A) construction of the interdisciplinary space in the 1980s, (B) development of an interdisciplinary orientation in the 1990s, and (C) reintegration into "cognitive psychology" in the 2000s. The fluidity and fuzziness of the interdisciplinary delineations in the different visualizations can be reduced and clarified using factor analysis. We also explore newly available routines ("CorText") to analyze this development in terms of "tubes" using an alluvial map and compare the results with an animation (using "Visone"). The historical specificity of this development can be compared with the development of "artificial intelligence" into an integrated specialty during this same period. Interdisciplinarity should be defined differently at the level of journals and of specialties.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.1, S.164-177
  15. Rotolo, D.; Leydesdorff, L.: Matching Medline/PubMed data with Web of Science: A routine in R language (2015) 0.00
    0.004691646 = product of:
      0.02345823 = sum of:
        0.02345823 = weight(_text_:of in 2224) [ClassicSimilarity], result of:
          0.02345823 = score(doc=2224,freq=24.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.3591007 = fieldWeight in 2224, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2224)
      0.2 = coord(1/5)
    
    Abstract
    We present a novel routine, namely medlineR, based on the R language, that allows the user to match data from Medline/PubMed with records indexed in the ISI Web of Science (WoS) database. The matching allows exploiting the rich and controlled vocabulary of medical subject headings (MeSH) of Medline/PubMed with additional fields of WoS. The integration provides data (e.g., citation data, list of cited reference, list of the addresses of authors' host organizations, WoS subject categories) to perform a variety of scientometric analyses. This brief communication describes medlineR, the method on which it relies, and the steps the user should follow to perform the matching across the two databases. To demonstrate the differences from Leydesdorff and Opthof (Journal of the American Society for Information Science and Technology, 64(5), 1076-1080), we conclude this artcle by testing the routine on the MeSH category "Burgada syndrome."
    Object
    Web of Science
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.10, S.2155-2159
  16. Leydesdorff, L.; Bornmann, L.: Integrated impact indicators compared with impact factors : an alternative research design with policy implications (2011) 0.00
    0.0045145387 = product of:
      0.022572692 = sum of:
        0.022572692 = weight(_text_:of in 4919) [ClassicSimilarity], result of:
          0.022572692 = score(doc=4919,freq=32.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34554482 = fieldWeight in 4919, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4919)
      0.2 = coord(1/5)
    
    Abstract
    In bibliometrics, the association of "impact" with central-tendency statistics is mistaken. Impacts add up, and citation curves therefore should be integrated instead of averaged. For example, the journals MIS Quarterly and Journal of the American Society for Information Science and Technology differ by a factor of 2 in terms of their respective impact factors (IF), but the journal with the lower IF has the higher impact. Using percentile ranks (e.g., top-1%, top-10%, etc.), an Integrated Impact Indicator (I3) can be based on integration of the citation curves, but after normalization of the citation curves to the same scale. The results across document sets can be compared as percentages of the total impact of a reference set. Total number of citations, however, should not be used instead because the shape of the citation curves is then not appreciated. I3 can be applied to any document set and any citation window. The results of the integration (summation) are fully decomposable in terms of journals or institutional units such as nations, universities, and so on because percentile ranks are determined at the paper level. In this study, we first compare I3 with IFs for the journals in two Institute for Scientific Information subject categories ("Information Science & Library Science" and "Multidisciplinary Sciences"). The library and information science set is additionally decomposed in terms of nations. Policy implications of this possible paradigm shift in citation impact analysis are specified.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.11, S.2133-2146
  17. Leydesdorff, L.; Salah, A.A.A.: Maps on the basis of the Arts & Humanities Citation Index : the journals Leonardo and Art Journal versus "digital humanities" as a topic (2010) 0.00
    0.0044919094 = product of:
      0.022459546 = sum of:
        0.022459546 = weight(_text_:of in 3436) [ClassicSimilarity], result of:
          0.022459546 = score(doc=3436,freq=22.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34381276 = fieldWeight in 3436, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3436)
      0.2 = coord(1/5)
    
    Abstract
    The possibilities of using the Arts & Humanities Citation Index (A&HCI) for journal mapping have not been sufficiently recognized because of the absence of a Journal Citations Report (JCR) for this database. A quasi-JCR for the A&HCI ([2008]) was constructed from the data contained in the Web of Science and is used for the evaluation of two journals as examples: Leonardo and Art Journal. The maps on the basis of the aggregated journal-journal citations within this domain can be compared with maps including references to journals in the Science Citation Index and Social Science Citation Index. Art journals are cited by (social) science journals more than by other art journals, but these journals draw upon one another in terms of their own references. This cultural impact in terms of being cited is not found when documents with a topic such as digital humanities are analyzed. This community of practice functions more as an intellectual organizer than a journal.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.4, S.787-801
  18. Leydesdorff, L.; Persson, O.: Mapping the geography of science : distribution patterns and networks of relations among cities and institutes (2010) 0.00
    0.0044919094 = product of:
      0.022459546 = sum of:
        0.022459546 = weight(_text_:of in 3704) [ClassicSimilarity], result of:
          0.022459546 = score(doc=3704,freq=22.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34381276 = fieldWeight in 3704, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3704)
      0.2 = coord(1/5)
    
    Abstract
    Using Google Earth, Google Maps, and/or network visualization programs such as Pajek, one can overlay the network of relations among addresses in scientific publications onto the geographic map. The authors discuss the pros and cons of various options, and provide software (freeware) for bridging existing gaps between the Science Citation Indices (Thomson Reuters) and Scopus (Elsevier), on the one hand, and these various visualization tools on the other. At the level of city names, the global map can be drawn reliably on the basis of the available address information. At the level of the names of organizations and institutes, there are problems of unification both in the ISI databases and with Scopus. Pajek enables a combination of visualization and statistical analysis, whereas the Google Maps and its derivatives provide superior tools on the Internet.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.8, S.1622-1634
  19. Marx, W.; Bornmann, L.; Barth, A.; Leydesdorff, L.: Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS) (2014) 0.00
    0.004469165 = product of:
      0.022345824 = sum of:
        0.022345824 = weight(_text_:of in 1238) [ClassicSimilarity], result of:
          0.022345824 = score(doc=1238,freq=16.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34207192 = fieldWeight in 1238, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1238)
      0.2 = coord(1/5)
    
    Abstract
    We introduce the quantitative method named "Reference Publication Year Spectroscopy" (RPYS). With this method one can determine the historical roots of research fields and quantify their impact on current research. RPYS is based on the analysis of the frequency with which references are cited in the publications of a specific research field in terms of the publication years of these cited references. The origins show up in the form of more or less pronounced peaks mostly caused by individual publications that are cited particularly frequently. In this study, we use research on graphene and on solar cells to illustrate how RPYS functions, and what results it can deliver.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.4, S.751-764
  20. Leydesdorff, L.; Moya-Anegón, F.de; Guerrero-Bote, V.P.: Journal maps on the basis of Scopus data : a comparison with the Journal Citation Reports of the ISI (2010) 0.00
    0.004371183 = product of:
      0.021855915 = sum of:
        0.021855915 = weight(_text_:of in 3335) [ClassicSimilarity], result of:
          0.021855915 = score(doc=3335,freq=30.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.33457235 = fieldWeight in 3335, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3335)
      0.2 = coord(1/5)
    
    Abstract
    Using the Scopus dataset (1996-2007) a grand matrix of aggregated journal-journal citations was constructed. This matrix can be compared in terms of the network structures with the matrix contained in the Journal Citation Reports (JCR) of the Institute of Scientific Information (ISI). Because the Scopus database contains a larger number of journals and covers the humanities, one would expect richer maps. However, the matrix is in this case sparser than in the case of the ISI data. This is because of (a) the larger number of journals covered by Scopus and (b) the historical record of citations older than 10 years contained in the ISI database. When the data is highly structured, as in the case of large journals, the maps are comparable, although one may have to vary a threshold (because of the differences in densities). In the case of interdisciplinary journals and journals in the social sciences and humanities, the new database does not add a lot to what is possible with the ISI databases.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.2, S.352-369