Search (103 results, page 2 of 6)

  • × theme_ss:"Universale Facettenklassifikationen"
  1. Aparecida Moura, M.: Emerging discursive formations, folksonomy and social semantic information spaces (SSIS) : the contributions of the theory of integrative levels in the studies carried out by the Classification Research Group (CRG) (2014) 0.00
    0.0049196044 = product of:
      0.024598021 = sum of:
        0.024598021 = weight(_text_:of in 1395) [ClassicSimilarity], result of:
          0.024598021 = score(doc=1395,freq=38.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.37654874 = fieldWeight in 1395, product of:
              6.164414 = tf(freq=38.0), with freq of:
                38.0 = termFreq=38.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1395)
      0.2 = coord(1/5)
    
    Abstract
    This paper focuses on the discursive formations emerging from the Social Semantic Information Spaces (SSIS) in light of the concept of emergence in the theory of integrative levels. The study aims to identify the opportunities and challenges of incorporating epistemological considerations in the act of acquiring knowledge into the consolidation of knowledge organization and mediation processes and devices in the emergence of phenomena. The goal was to analyze the effects of that concept on the actions of a sample of researchers registered in an emerging research domain in SSIS in order to understand this type of indexing done by the users and communities as a classification of integrating levels. The methodology was established by triangulation through social network analysis, consensus analysis and archaeology of knowledge. It was possible to conclude that there is a collective effort to settle a semantic interoperability model for the labeling of contents based on best practices regarding the description of the objects shared in SSIS.
    Footnote
    Papers from I Congress of ISKO Spain and Portugal / XI Congress ISKO Spain, 7-9 November 2013, University of Porto.
  2. Broughton, V.: ¬The need for a faceted classification as the basis of all methods of information retrieval (2006) 0.00
    0.004788391 = product of:
      0.023941955 = sum of:
        0.023941955 = weight(_text_:of in 2874) [ClassicSimilarity], result of:
          0.023941955 = score(doc=2874,freq=36.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.36650562 = fieldWeight in 2874, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
      0.2 = coord(1/5)
    
    Abstract
    Purpose - The aim of this article is to estimate the impact of faceted classification and the faceted analytical method on the development of various information retrieval tools over the latter part of the twentieth and early twenty-first centuries. Design/methodology/approach - The article presents an examination of various subject access tools intended for retrieval of both print and digital materials to determine whether they exhibit features of faceted systems. Some attention is paid to use of the faceted approach as a means of structuring information on commercial web sites. The secondary and research literature is also surveyed for commentary on and evaluation of facet analysis as a basis for the building of vocabulary and conceptual tools. Findings - The study finds that faceted systems are now very common, with a major increase in their use over the last 15 years. Most LIS subject indexing tools (classifications, subject heading lists and thesauri) now demonstrate features of facet analysis to a greater or lesser degree. A faceted approach is frequently taken to the presentation of product information on commercial web sites, and there is an independent strand of theory and documentation related to this application. There is some significant research on semi-automatic indexing and retrieval (query expansion and query formulation) using facet analytical techniques. Originality/value - This article provides an overview of an important conceptual approach to information retrieval, and compares different understandings and applications of this methodology.
  3. Chatterjee, A.; Choudhury, G.G.: CC7: an evaluation of its development in three planes (1989) 0.00
    0.004740265 = product of:
      0.023701325 = sum of:
        0.023701325 = weight(_text_:of in 517) [ClassicSimilarity], result of:
          0.023701325 = score(doc=517,freq=18.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.36282203 = fieldWeight in 517, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=517)
      0.2 = coord(1/5)
    
    Abstract
    Reviews the new edition of CC, which has incorporated most of the developments in the idea plane and notational plane reported in the literature during the previous 20 years, making it a 'freely faceted' scheme. However, some errors have crept in which are bound to create problems for the users. Both these aspects have been critically examined here drawing comparison, where necessary, with the previous edition of the scheme. Reveals the enormously improved capabilities of the scheme in meeting the challenge posed by the ever expanding horizon of the universe of subjects as also the inconsistencies and lack of cohesion in various schedules
    Source
    Annals of library science and documentation. 36(1989) nos.1/2, S.1-27
  4. Austin, D.: ¬The theory of integrative levels reconsidered as the basis of a general classification (1969) 0.00
    0.004691646 = product of:
      0.02345823 = sum of:
        0.02345823 = weight(_text_:of in 1286) [ClassicSimilarity], result of:
          0.02345823 = score(doc=1286,freq=6.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.3591007 = fieldWeight in 1286, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=1286)
      0.2 = coord(1/5)
    
    Source
    Classification and information control. Papers representing the work of the Classification Research Group during 1960-1968
  5. Beghtol, C.: From the universe of knowledge to the universe of concepts : the structural revolution in classification for information retrieval (2008) 0.00
    0.0046534794 = product of:
      0.023267398 = sum of:
        0.023267398 = weight(_text_:of in 1856) [ClassicSimilarity], result of:
          0.023267398 = score(doc=1856,freq=34.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.35617945 = fieldWeight in 1856, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1856)
      0.2 = coord(1/5)
    
    Abstract
    During the twentieth century, bibliographic classification theory underwent a structural revolution. The first modern bibliographic classifications were top-down systems that started at the universe of knowledge and subdivided that universe downward to minute subclasses. After the invention of faceted classification by S.R. Ranganathan, the ideal was to build bottom-up classifications that started with the universe of concepts and built upward to larger and larger faceted classes. This ideal has not been achieved, and the two kinds of classification systems are not mutually exclusive. This paper examines the process by which this structural revolution was accomplished by looking at the spread of facet theory after 1924 when Ranganathan attended the School of Librarianship, London, through selected classification textbooks that were published after that date. To this end, the paper examines the role of W.C.B. Sayers as a teacher and author of three editions of The Manual of Classification for Librarians and Bibliographers. Sayers influenced both Ranganathan and the various members of the Classification Research Group (CRG) who were his students. Further, the paper contrasts the methods of evaluating classification systems that arose between Sayers's Canons of Classification in 1915- 1916 and J. Mills's A Modern Outline of Library Classification in 1960 in order to demonstrate the speed with which one kind of classificatory structure was overtaken by another.
  6. Dousa, T.: Everything Old is New Again : Perspectivism and Polyhierarchy in Julius O. Kaiser's Theory of Systematic Indexing (2007) 0.00
    0.0046534794 = product of:
      0.023267398 = sum of:
        0.023267398 = weight(_text_:of in 4835) [ClassicSimilarity], result of:
          0.023267398 = score(doc=4835,freq=34.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.35617945 = fieldWeight in 4835, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4835)
      0.2 = coord(1/5)
    
    Abstract
    In the early years of the 20th century, Julius Otto Kaiser (1868-1927), a special librarian and indexer of technical literature, developed a method of knowledge organization (KO) known as systematic indexing. Certain elements of the method-its stipulation that all indexing terms be divided into fundamental categories "concretes", "countries", and "processes", which are then to be synthesized into indexing "statements" formulated according to strict rules of citation order-have long been recognized as precursors to key principles of the theory of faceted classification. However, other, less well-known elements of the method may prove no less interesting to practitioners of KO. In particular, two aspects of systematic indexing seem to prefigure current trends in KO: (1) a perspectivist outlook that rejects universal classifications in favor of information organization systems customized to reflect local needs and (2) the incorporation of index terms extracted from source documents into a polyhierarchical taxonomical structure. Kaiser's perspectivism anticipates postmodern theories of KO, while his principled use of polyhierarchy to organize terms derived from the language of source documents provides a potentially fruitful model that can inform current discussions about harvesting natural-language terms, such as tags, and incorporating them into a flexibly structured controlled vocabulary.
    Source
    Proceedings 18th Workshop of the American Society for Information Science and Technology Special Interest Group in Classification Research, Milwaukee, Wisconsin. Ed.: Lussky, Joan
  7. Tennis, J.T.: Never facets alone : the evolving thought and persistent problems in Ranganathan's theories of classification (2017) 0.00
    0.0046534794 = product of:
      0.023267398 = sum of:
        0.023267398 = weight(_text_:of in 5800) [ClassicSimilarity], result of:
          0.023267398 = score(doc=5800,freq=34.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.35617945 = fieldWeight in 5800, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5800)
      0.2 = coord(1/5)
    
    Abstract
    Shiyali Ramamrita Ranganathan's theory of classification spans a number of works over a number of decades. And while he was devoted to solving many problems in the practice of librarianship, and is known as the father of library science in India (Garfield, 1984), his work in classification revolves around one central concern. His classification research addressed the problems that arose from introducing new ideas into a scheme for classification, while maintaining a meaningful hierarchical and systematically arranged order of classes. This is because hierarchical and systematically arranged classes are the defining characteristic of useful classification. To lose this order is to through the addition of new classes is to introduce confusion, if not chaos, and to move toward a useless classification - or at least one that requires complete revision. In the following chapter, I outline the stages, and the elements of those stages, in Ranganathan's thought on classification from 1926-1972, as well as posthumous work that continues his agenda. And while facets figure prominently in all of these stages; but for Ranganathan to achieve his goal, he must continually add to this central feature of his theory of classification. I will close this chapter with an outline of persistent problems that represent research fronts for the field. Chief among these are what to do about scheme change and the open question about the rigor of information modeling in light of semantic web developments.
    Source
    Dimensions of knowledge: facets for knowledge organization. Eds.: R.P. Smiraglia, u. H.-L. Lee
  8. Mills, J.: Library classification (1970) 0.00
    0.0045145387 = product of:
      0.022572692 = sum of:
        0.022572692 = weight(_text_:of in 1806) [ClassicSimilarity], result of:
          0.022572692 = score(doc=1806,freq=2.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34554482 = fieldWeight in 1806, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.15625 = fieldNorm(doc=1806)
      0.2 = coord(1/5)
    
    Source
    Journal of documentation. 26(1970), S.120-160
  9. Dahlberg, I.: ¬The Information Coding Classification (ICC) : a modern, theory-based fully-faceted, universal system of knowledge fields (2008) 0.00
    0.0045145387 = product of:
      0.022572692 = sum of:
        0.022572692 = weight(_text_:of in 1854) [ClassicSimilarity], result of:
          0.022572692 = score(doc=1854,freq=32.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34554482 = fieldWeight in 1854, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1854)
      0.2 = coord(1/5)
    
    Abstract
    Introduction into the structure, contents and specifications (especially the Systematifier) of the Information Coding Classification, developed in the seventies and used in many ways by the author and a few others following its publication in 1982. Its theoretical basis is explained consisting in (1) the Integrative Level Theory, following an evolutionary approach of ontical areas, and integrating also on each level the aspects contained in the sequence of the levels, (2) the distinction between categories of form and categories of being, (3) the application of a feature of Systems Theory (namely the element position plan) and (4) the inclusion of a concept theory, distinguishing four kinds of relationships, originated by the kinds of characteristics (which are the elements of concepts to be derived from the statements on the properties of referents of concepts). Its special Subject Groups on each of its nine levels are outlined and the combinatory facilities at certain positions of the Systematifier are shown. Further elaboration and use have been suggested, be it only as a switching language between the six existing universal classification systems at present in use internationally.
  10. Dahlberg, I.: ¬A faceted classification of general concepts (2011) 0.00
    0.0045145387 = product of:
      0.022572692 = sum of:
        0.022572692 = weight(_text_:of in 4824) [ClassicSimilarity], result of:
          0.022572692 = score(doc=4824,freq=32.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34554482 = fieldWeight in 4824, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4824)
      0.2 = coord(1/5)
    
    Abstract
    General concepts are all those form-categorial concepts which - attached to a specific concept of a classification system or thesaurus - can help to widen, sometimes even in a syntactical sense, the understanding of a case. In some existing universal classification systems such concepts have been named "auxiliaries" or "common isolates" as in the Colon Classification (CC). However, by such auxiliaries, different kinds of such concepts are listed, e.g. concepts of space and time, concepts of races and languages and concepts of kinds of documents, next to them also concepts of kinds of general activities, properties, persons, and institutions. Such latter kinds form part of the nine aspects ruling the facets in the Information Coding Classification (ICC) through the principle of using a Systematiser for the subdivision of subject groups and fields. Based on this principle and using and extending existing systems of such concepts, e.g. which A. Diemer had presented to the German Thesaurus Committee as well as those found in the UDC, in CC and attached to the Subject Heading System of the German National Library, a faceted classification is proposed for critical assessment, necessary improvement and possible later use in classification systems and thesauri.
    Source
    Classification and ontology: formal approaches and access to knowledge: proceedings of the International UDC Seminar, 19-20 September 2011, The Hague, The Netherlands. Eds.: A. Slavic u. E. Civallero
  11. Broughton, V.: Facet analysis as a tool for modelling subject domains and terminologies (2011) 0.00
    0.0045145387 = product of:
      0.022572692 = sum of:
        0.022572692 = weight(_text_:of in 4826) [ClassicSimilarity], result of:
          0.022572692 = score(doc=4826,freq=32.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34554482 = fieldWeight in 4826, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4826)
      0.2 = coord(1/5)
    
    Abstract
    Facet analysis is proposed as a general theory of knowledge organization, with an associated methodology that may be applied to the development of terminology tools in a variety of contexts and formats. Faceted classifications originated as a means of representing complexity in semantic content that facilitates logical organization and effective retrieval in a physical environment. This is achieved through meticulous analysis of concepts, their structural and functional status (based on fundamental categories), and their inter-relationships. These features provide an excellent basis for the general conceptual modelling of domains, and for the generation of KOS other than systematic classifications. This is demonstrated by the adoption of a faceted approach to many web search and visualization tools, and by the emergence of a facet based methodology for the construction of thesauri. Current work on the Bliss Bibliographic Classification (Second Edition) is investigating the ways in which the full complexity of faceted structures may be represented through encoded data, capable of generating intellectually and mechanically compatible forms of indexing tools from a single source. It is suggested that a number of research questions relating to the Semantic Web could be tackled through the medium of facet analysis.
    Source
    Classification and ontology: formal approaches and access to knowledge: proceedings of the International UDC Seminar, 19-20 September 2011, The Hague, The Netherlands. Eds.: A. Slavic u. E. Civallero
  12. Asundi, A.Y.: Domain specific categories and relations and their potential applications : a case study of two arrays of agriculture schedule of Colon Classification (2012) 0.00
    0.0044919094 = product of:
      0.022459546 = sum of:
        0.022459546 = weight(_text_:of in 843) [ClassicSimilarity], result of:
          0.022459546 = score(doc=843,freq=22.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34381276 = fieldWeight in 843, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=843)
      0.2 = coord(1/5)
    
    Abstract
    The categories/isolates are broadly conceived as common and special. The common categories are applicable to all the classes of subjects in a Classification system, whereas the specials are applicable within a domain or specified classes of a classification system. The CC has represented some unique special categories, especially in the Agriculture Subject schedule, and such a provision is not seen in any other classification system; not even in any other subject schedule of Colon Classification. These special categories are termed here as "Domain Specific Categories". The paper analyses the thematic relationships within and outside the subject schedule with potential applications in devising a scheme of metadata as demonstrated in a research study on Indian Medicinal Plants. The other potential applications of such thematic relationships are in the creation of semantic maps and in linking concepts from different domains of knowledge.
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan
  13. ¬The BSO manual : the development, rationale and use of the Broad System of Ordering (1979) 0.00
    0.004469165 = product of:
      0.022345824 = sum of:
        0.022345824 = weight(_text_:of in 1051) [ClassicSimilarity], result of:
          0.022345824 = score(doc=1051,freq=4.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34207192 = fieldWeight in 1051, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.109375 = fieldNorm(doc=1051)
      0.2 = coord(1/5)
    
  14. Ranganathan, S.R.: Colon Classification : Pt.1: Rules of classification; Pt.2: Schedules of classification; Pt.3: Index to the schedules (1933) 0.00
    0.004469165 = product of:
      0.022345824 = sum of:
        0.022345824 = weight(_text_:of in 1833) [ClassicSimilarity], result of:
          0.022345824 = score(doc=1833,freq=4.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34207192 = fieldWeight in 1833, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.109375 = fieldNorm(doc=1833)
      0.2 = coord(1/5)
    
  15. Doria, O.D.: ¬The role of activities awareness in faceted classification development (2012) 0.00
    0.004469165 = product of:
      0.022345824 = sum of:
        0.022345824 = weight(_text_:of in 364) [ClassicSimilarity], result of:
          0.022345824 = score(doc=364,freq=16.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34207192 = fieldWeight in 364, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=364)
      0.2 = coord(1/5)
    
    Abstract
    In this paper, we propose a part of the methodological work to accompanying the development of a new type of Knowledge Organization System (KOS) based on faceted classification. Our approach to faceted classification differs from its traditional use. We develop a theoretical typology of professional documents based on their uses. Then we correlate these types of documents to specific types of KOS according to their degree of structural constraint and activities they aim to serve.
  16. Sharada, B.A.: Ranganathan's Colon Classification : Kannada-English Version 'dwibindu vargiikaraNa' (2012) 0.00
    0.004469165 = product of:
      0.022345824 = sum of:
        0.022345824 = weight(_text_:of in 827) [ClassicSimilarity], result of:
          0.022345824 = score(doc=827,freq=16.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.34207192 = fieldWeight in 827, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=827)
      0.2 = coord(1/5)
    
    Abstract
    "dwibindu vargiikaraNa" is the Kannada rendering of the revised Colon Classification, 7th Edition, intended essentially for the classification of macro documents. This paper discusses the planning, preparation, and features of Colon Classification (CC) in Kannada, one of the major Indian languages as well as the Official Language of Karnataka, and uploading the CC on the web. Linguistic issues related to the Kannada rendering are discussed with possible solutions. It creates facilities in the field of Indexing Language (IL) to prepare products such as, Subject Heading List, Information Retrieval Thesaurus, and creation of subject glossaries or updating the available subject dictionaries in Kannada.
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan
  17. Broughton, V.: Bliss Bibliographic Classification Second Edition (2009) 0.00
    0.004423326 = product of:
      0.02211663 = sum of:
        0.02211663 = weight(_text_:of in 3755) [ClassicSimilarity], result of:
          0.02211663 = score(doc=3755,freq=12.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.33856338 = fieldWeight in 3755, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=3755)
      0.2 = coord(1/5)
    
    Abstract
    This entry looks at the origins of the Bliss Bibliographic Classification 2nd edition and the theory on which it is built. The reasons for the decision to revise the classification are examined, as are the influences on classification theory of the mid-twentieth century. The process of revision and construction of schedules using facet analysis is described. The use of BC2 is considered along with some recent development work on thesaural and digital formats.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
  18. Raghavan, K.S.: ¬The Colon Classification : a few considerations on its future (2015) 0.00
    0.004423326 = product of:
      0.02211663 = sum of:
        0.02211663 = weight(_text_:of in 2760) [ClassicSimilarity], result of:
          0.02211663 = score(doc=2760,freq=12.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.33856338 = fieldWeight in 2760, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=2760)
      0.2 = coord(1/5)
    
    Abstract
    The article highlights the efforts and plans of Sarada Ranganathan Endowment for Library Science for revival of CC. Presents a brief history of the Scheme and explains is features. Discusses areas needing revamping for continual revision and existence of CC. Also seeks feedback from LIS professionals on the revision of the Scheme.
    Source
    Annals of library and information studies. 62(2015) no.4, S.231-238
  19. Rout, R.; Panigrahi, P.: Revisiting Ranganathan's canons in online cataloguing environment (2015) 0.00
    0.004423326 = product of:
      0.02211663 = sum of:
        0.02211663 = weight(_text_:of in 2796) [ClassicSimilarity], result of:
          0.02211663 = score(doc=2796,freq=12.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.33856338 = fieldWeight in 2796, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=2796)
      0.2 = coord(1/5)
    
    Abstract
    The paper examines the significance of Ranganathan's canons of cataloguing in the context of online catalogue and also investigates the extent to which these canons of cataloguing matches or fails with the principles of the new cataloguing code Resource Description and Access (RDA).
    Source
    Annals of library and information studies. 62(2015) no.4, S.286-289
  20. Frické, M.: Faceted classification : orthogonal facets and graphs of foci? (2011) 0.00
    0.0042229644 = product of:
      0.02111482 = sum of:
        0.02111482 = weight(_text_:of in 4850) [ClassicSimilarity], result of:
          0.02111482 = score(doc=4850,freq=28.0), product of:
            0.06532493 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.04177434 = queryNorm
            0.32322758 = fieldWeight in 4850, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4850)
      0.2 = coord(1/5)
    
    Abstract
    Faceted classification is based on the core ideas that there are kinds or categories of concepts, and that compound, or non-elemental, concepts, which are ubiquitous in classification and subject annotation, are to be identified as being constructions of concepts of the different kinds. The categories of concepts are facets, and the individual concepts, which are instances of those facets, are foci. Usually, there are constraints on how the foci can be combined into the compound concepts. What is standard is that any combination of foci is permitted from kind-to-kind across facets, but that the foci within a facet are restricted in their use by virtue of being dependent on each other, either by being exclusive of each other or by bearing some kind of hierarchical relationship to each other. Thus faceted classification is typically considered to be a synthetic classification consisting of orthogonal facets which themselves are composed individually either of exclusive foci or of a hierarchy of foci. This paper addresses in particular this second exclusive-or-hierarchical foci condition. It evaluates the arguments for the condition and finds them not conclusive. It suggests that wider synthetic constructions should be allowed on foci within a facet.

Languages

  • e 101
  • chi 1
  • d 1
  • More… Less…

Types

  • a 85
  • el 10
  • m 10
  • s 4
  • b 2
  • More… Less…