Search (13 results, page 1 of 1)

  • × type_ss:"x"
  • × theme_ss:"Wissensrepräsentation"
  1. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.19
    0.19090952 = product of:
      0.38181904 = sum of:
        0.040253844 = product of:
          0.12076153 = sum of:
            0.12076153 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.12076153 = score(doc=5820,freq=2.0), product of:
                0.3223069 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.038016807 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
        0.1707826 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.1707826 = score(doc=5820,freq=4.0), product of:
            0.3223069 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.038016807 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.1707826 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.1707826 = score(doc=5820,freq=4.0), product of:
            0.3223069 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.038016807 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
      0.5 = coord(3/6)
    
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  2. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.14
    0.14088845 = product of:
      0.2817769 = sum of:
        0.040253844 = product of:
          0.12076153 = sum of:
            0.12076153 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.12076153 = score(doc=701,freq=2.0), product of:
                0.3223069 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.038016807 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.12076153 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.12076153 = score(doc=701,freq=2.0), product of:
            0.3223069 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.038016807 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.12076153 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.12076153 = score(doc=701,freq=2.0), product of:
            0.3223069 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.038016807 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.5 = coord(3/6)
    
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  3. Bierbach, P.: Wissensrepräsentation - Gegenstände und Begriffe : Bedingungen des Antinomieproblems bei Frege und Chancen des Begriffssystems bei Lambert (2001) 0.04
    0.03593435 = product of:
      0.107803054 = sum of:
        0.054130197 = weight(_text_:wissen in 4498) [ClassicSimilarity], result of:
          0.054130197 = score(doc=4498,freq=6.0), product of:
            0.1639626 = queryWeight, product of:
              4.3128977 = idf(docFreq=1609, maxDocs=44218)
              0.038016807 = queryNorm
            0.33013746 = fieldWeight in 4498, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.3128977 = idf(docFreq=1609, maxDocs=44218)
              0.03125 = fieldNorm(doc=4498)
        0.053672858 = weight(_text_:geschichte in 4498) [ClassicSimilarity], result of:
          0.053672858 = score(doc=4498,freq=4.0), product of:
            0.18068628 = queryWeight, product of:
              4.7528 = idf(docFreq=1036, maxDocs=44218)
              0.038016807 = queryNorm
            0.29705 = fieldWeight in 4498, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.7528 = idf(docFreq=1036, maxDocs=44218)
              0.03125 = fieldNorm(doc=4498)
      0.33333334 = coord(2/6)
    
    Abstract
    Die auf Basis vernetzter Computer realisierbare Möglichkeit einer universalen Enzyklopädie führt aufgrund der dabei technisch notwendigen Reduktion auf nur eine Sorte Repräsentanten zu Systemen, bei denen entweder nur Gegenstände repräsentiert werden, die auch Begriffe vertreten, oder nur Begriffe, die auch Gegenstände vertreten. In der Dissertation werden als Beispiele solcher Repräsentationssysteme die logischen Systeme von Gottlob Frege und Johann Heinrich Lambert untersucht. Freges System, basierend auf der Annahme der Objektivität von Bedeutungen, war durch die Nachweisbarkeit einer Antinomie gescheitert, weshalb von Philosophen im 20. Jahrhundert die Existenz einer objektiven Bedeutung von Ausdrücken und die Übersetzbarkeit der Gedanken aus den natürlichen Sprachen in eine formale Sprache in Frage gestellt wurde. In der Dissertation wird nachgewiesen, daß diese Konsequenz voreilig war und daß die Antinomie auch bei Annahme der Objektivität von Wissen erst durch zwei Zusatzforderungen in Freges Logik ausgelöst wird: die eineindeutige Zuordnung eines Gegenstands zu jedem Begriff sowie die scharfen Begrenzung der Begriffe, die zur Abgeschlossenheit des Systems zwingt. Als Alternative wird das Begriffssystem Lamberts diskutiert, bei dem jeder Gegenstand durch einen Begriff und gleichwertig durch Gesamtheiten von Begriffen vertreten wird und Begriffe durch Gesamtheiten von Begriffen ersetzbar sind. Beide die Antinomie auslösenden Bedingungen sind hier nicht vorhanden, zugleich ist die fortschreitende Entwicklung von Wissen repräsentierbar. Durch die mengentheoretische Rekonstruktion des Begriffssystems Lamberts in der Dissertation wird dessen praktische Nutzbarkeit gezeigt. Resultat der Dissertation ist der Nachweis, daß es Repräsentationssysteme gibt, die nicht auf die für die Prüfung der Verbindlichkeit der Einträge in die Enzyklopädie notwendige Annahme der Verobjektivierbarkeit von Wissen verzichten müssen, weil ihnen nicht jene die Antinomie auslösenden Voraussetzungen zugrunde liegen.
    Imprint
    Halle-Wittenberg : Fachbereich Geschichte, Philosophie und Sozialwissenschaften, Fachbereich Geschichte, Philosophie und Sozialwissenschaften
  4. Moustafid, Y. El: Semantic Web Techniken für E-Learning (2003) 0.02
    0.017301133 = product of:
      0.051903397 = sum of:
        0.023439063 = weight(_text_:wissen in 585) [ClassicSimilarity], result of:
          0.023439063 = score(doc=585,freq=2.0), product of:
            0.1639626 = queryWeight, product of:
              4.3128977 = idf(docFreq=1609, maxDocs=44218)
              0.038016807 = queryNorm
            0.14295371 = fieldWeight in 585, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3128977 = idf(docFreq=1609, maxDocs=44218)
              0.0234375 = fieldNorm(doc=585)
        0.028464332 = weight(_text_:geschichte in 585) [ClassicSimilarity], result of:
          0.028464332 = score(doc=585,freq=2.0), product of:
            0.18068628 = queryWeight, product of:
              4.7528 = idf(docFreq=1036, maxDocs=44218)
              0.038016807 = queryNorm
            0.15753455 = fieldWeight in 585, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.7528 = idf(docFreq=1036, maxDocs=44218)
              0.0234375 = fieldNorm(doc=585)
      0.33333334 = coord(2/6)
    
    Abstract
    In dieser Arbeit wurde zuerst der Übergang von Suchmaschinen zu einem semantischen Web beschrieben. Im zweiten Kapitel wurden die Topic Maps ausführlicher behandelt. Angefangen bei der Geschichte von Topic Maps, über die Entwurfsziele bis hin zu einem XTM-Tutorial . In diesem Tutorial wurden verschiedene Beispiele durchgeführt und die Lineare Topic Map von Ontopia vorgestellt. Abschließend wurde anhand eines Beispiels eine mögliche Realisierung von Topic Maps mit HTML. Das dritte Kapitel wurde den TopicMaps-Tools und Anfragesprachen gewidmet. Es wurden kommerzielle sowie freiverfügbare Tools vorgestellt und miteinander verglichen. Danach wurden die beiden Anfragesprachen Tolog und TMQL eingeführt. Im vierten Kapitel wurden die beiden Einsatzgebiete von Topic Maps behandelt. Das sind zum einen die Webkataloge und die Suchmaschinen. Zum anderen ist es möglich, auch im Rahmen vom E-Learning von dem Konzept der Topic Maps zu profitieren. In diesem Zusammenhang wurde erst der Omnigator von Ontopia vorgestellt. Dann wurde das im Laufe dieser Arbeit entwickelte Topic Maps Tool E-Learning -Tracker ausgeführt und erklärt.
    Im fünften Kapitel wurden die neuen Suchmaschinen, die ausschließlich auf dem Konzept der Topic Maps basieren und diese Technik auch tatsächlich verwenden, angesprochen und mit Beispielanfragen erläutert. In dieser Diplomarbeit wurden wegen dem großen Einsatzpotential von Topic Maps, viele Gebiete angesprochen, angefangen bei den Webkatalogen über Suchmaschinen bis hin zum E-Learning. Mit XML Topic Maps gibt man den Beziehungen zwischen den verschiedenen Topics die Chance sich auszuzeichnen. Damit erreicht die Suche eine neue, bis dahin unmögliche Qualität. Mit einer Topic Map lassen sich beispielsweise die klassischen Navigationselemente technischer Dokumentation (Inhalt, Index, Glossar etc.) in einheitlicher Weise beschreiben; eine andere Topic Map könnte die inhaltliche Vernetzung von Artikeln in einem Lexikon ausdrücken (z.B. Person A wurde geboren in Stadt B, B liegt in Land C, Oper D wurde komponiert von A, Person E war Zeitgenosse von A) und für "siehe auch"-Verweise sorgen (andere Werke dieses Komponisten, andere Städte in diesem Land etc.). Es klingt wie die Lösung aller Suchprobleme. Allerdings nur in der Theorie. Denn Tools, die in der Lage sind, das Wissen oder die Riesendaten in Topicmaps automatisch zu generieren, sind noch Mangelware, was die Ausbreitung von Topic Maps hemmt. Der Aufbau solcher Netze erfordert sehr viel Zeit und sehr viel "Handarbeit" - und damit auch viel Geld, was viele Firmen davon abhält Topic Maps zu benutzen.
  5. Müller, T.: Wissensrepräsentation mit semantischen Netzen im Bereich Luftfahrt (2006) 0.02
    0.01588323 = product of:
      0.04764969 = sum of:
        0.0390651 = weight(_text_:wissen in 1670) [ClassicSimilarity], result of:
          0.0390651 = score(doc=1670,freq=2.0), product of:
            0.1639626 = queryWeight, product of:
              4.3128977 = idf(docFreq=1609, maxDocs=44218)
              0.038016807 = queryNorm
            0.23825617 = fieldWeight in 1670, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3128977 = idf(docFreq=1609, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1670)
        0.008584588 = product of:
          0.025753763 = sum of:
            0.025753763 = weight(_text_:22 in 1670) [ClassicSimilarity], result of:
              0.025753763 = score(doc=1670,freq=2.0), product of:
                0.13312837 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038016807 = queryNorm
                0.19345059 = fieldWeight in 1670, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1670)
          0.33333334 = coord(1/3)
      0.33333334 = coord(2/6)
    
    Abstract
    Das Ziel der vorliegenden Arbeit ist es, ein Modell für ein Informationssystems zu erstellen und die Voraussetzungen und Aspekte zu betrachten, die notwendig sind, um Einsichten in die begrifflichen Zusammenhänge des Gegenstandsbereiches Luftfahrt zu erlangen. Der Ansatz, der hier erläutert wird, plädiert für die Konstruktion einer begrifflichen Wissensstruktur in Form eines semantischen Netzes. Ausgangspunkt dieser Überlegungen ist die Auffassung, daß zwar das kontrollierte Vokabular eines Thesaurus mit seiner Verweisstruktur vielfältiges Wissen enthält, das aber aufgrund der drei klassischen Standardrelationen nur unzureichend repräsentiert und damit auch nur beschränkt zugänglich ist. Es wird erläutert, welche Vorteile eine Erweiterung der drei Thesaurusrelationen erbringen kann und in welcher Funktion die Relationen bei der Formulierung der Suchanfrage unterstützend sein können. Gezeigt wird, wie die Begriffstrukturen eines semantischen Netzes deutlicher hervortreten, wenn bei der Erstellung einer Wissensstruktur eines Gegenstandsbereiches Kategorien zugrunde gelegt werden und welche Gestaltungsprinzipien den Suchprozeß unterstützen können. Dazu werden die Voraussetzungen erörtert, die garantieren, daß komplexe Suchanfragen (erfolgreich) geleistet werden können und zu präzisen Treffermengen führen.
    Date
    26. 9.2006 21:00:22
  6. Beßler, S.: Wissensrepräsentation musealer Bestände mittels semantischer Netze : Analyse und Annotation eines Teilbestands des Haus der Geschichte der BRD in Bonn (2010) 0.01
    0.013418215 = product of:
      0.08050929 = sum of:
        0.08050929 = weight(_text_:geschichte in 4024) [ClassicSimilarity], result of:
          0.08050929 = score(doc=4024,freq=4.0), product of:
            0.18068628 = queryWeight, product of:
              4.7528 = idf(docFreq=1036, maxDocs=44218)
              0.038016807 = queryNorm
            0.445575 = fieldWeight in 4024, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.7528 = idf(docFreq=1036, maxDocs=44218)
              0.046875 = fieldNorm(doc=4024)
      0.16666667 = coord(1/6)
    
    Abstract
    Semantische Netze unterstützen den Suchvorgang im Information Retrieval. Über ihre vielfältigen Relationen und Inferenzen unterstützen sie den Anwender und helfen Daten im Kontext zu präsentieren und zu erfassen. Die Relationen ermöglichen Suchanfragen die große Treffermengen produzieren zu verfeinern und so Treffermengen zu erreichen die möglichst genau das enthalten was gesucht wurde. Es wird, anhand eines Ausschnitts des Datenbestands des Haus der Geschichte der Bundesrepublik Deutschland in Bonn, aufgezeigt wie bestehende Datenbestände in semantische Netze überführt werden können und wie diese anschließend für das Retrieval eingesetzt werden können. Für die Modellierung des semantischen Netz wird die Open Source Software Protégé in den Versionen 3.4.4. und 4.1_beta eingesetzt, die Möglichkeiten des Retrieval werden anhand der Abfragesprachen DL Query und SPARQL sowie anhand der Software Ontology Browser und OntoGraf erläutert.
  7. Pfeiffer, S.: Entwicklung einer Ontologie für die wissensbasierte Erschließung des ISDC-Repository und die Visualisierung kontextrelevanter semantischer Zusammenhänge (2010) 0.01
    0.011163784 = product of:
      0.0669827 = sum of:
        0.0669827 = weight(_text_:wissen in 4658) [ClassicSimilarity], result of:
          0.0669827 = score(doc=4658,freq=12.0), product of:
            0.1639626 = queryWeight, product of:
              4.3128977 = idf(docFreq=1609, maxDocs=44218)
              0.038016807 = queryNorm
            0.40852425 = fieldWeight in 4658, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              4.3128977 = idf(docFreq=1609, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4658)
      0.16666667 = coord(1/6)
    
    Abstract
    In der heutigen Zeit sind Informationen jeglicher Art über das World Wide Web (WWW) für eine breite Bevölkerungsschicht zugänglich. Dabei ist es jedoch schwierig die existierenden Dokumente auch so aufzubereiten, dass die Inhalte für Maschinen inhaltlich interpretierbar sind. Das Semantic Web, eine Weiterentwicklung des WWWs, möchte dies ändern, indem es Webinhalte in maschinenverständlichen Formaten anbietet. Dadurch können Automatisierungsprozesse für die Suchanfragenoptimierung und für die Wissensbasenvernetzung eingesetzt werden. Die Web Ontology Language (OWL) ist eine mögliche Sprache, in der Wissen beschrieben und gespeichert werden kann (siehe Kapitel 4 OWL). Das Softwareprodukt Protégé unterstützt den Standard OWL, weshalb ein Großteil der Modellierungsarbeiten in Protégé durchgeführt wurde. Momentan erhält der Nutzer in den meisten Fällen bei der Informationsfindung im Internet lediglich Unterstützung durch eine von Suchmaschinenbetreibern vorgenommene Verschlagwortung des Dokumentinhaltes, d.h. Dokumente können nur nach einem bestimmten Wort oder einer bestimmten Wortgruppe durchsucht werden. Die Ausgabeliste der Suchergebnisse muss dann durch den Nutzer selbst gesichtet und nach Relevanz geordnet werden. Das kann ein sehr zeit- und arbeitsintensiver Prozess sein. Genau hier kann das Semantic Web einen erheblichen Beitrag in der Informationsaufbereitung für den Nutzer leisten, da die Ausgabe der Suchergebnisse bereits einer semantischen Überprüfung und Verknüpfung unterliegt. Deshalb fallen hier nicht relevante Informationsquellen von vornherein bei der Ausgabe heraus, was das Finden von gesuchten Dokumenten und Informationen in einem bestimmten Wissensbereich beschleunigt.
    Um die Vernetzung von Daten, Informationen und Wissen imWWWzu verbessern, werden verschiedene Ansätze verfolgt. Neben dem Semantic Web mit seinen verschiedenen Ausprägungen gibt es auch andere Ideen und Konzepte, welche die Verknüpfung von Wissen unterstützen. Foren, soziale Netzwerke und Wikis sind eine Möglichkeit des Wissensaustausches. In Wikis wird Wissen in Form von Artikeln gebündelt, um es so einer breiten Masse zur Verfügung zu stellen. Hier angebotene Informationen sollten jedoch kritisch hinterfragt werden, da die Autoren der Artikel in den meisten Fällen keine Verantwortung für die dort veröffentlichten Inhalte übernehmen müssen. Ein anderer Weg Wissen zu vernetzen bietet das Web of Linked Data. Hierbei werden strukturierte Daten des WWWs durch Verweise auf andere Datenquellen miteinander verbunden. Der Nutzer wird so im Zuge der Suche auf themenverwandte und verlinkte Datenquellen verwiesen. Die geowissenschaftlichen Metadaten mit ihren Inhalten und Beziehungen untereinander, die beim GFZ unter anderem im Information System and Data Center (ISDC) gespeichert sind, sollen als Ontologie in dieser Arbeit mit den Sprachkonstrukten von OWL modelliert werden. Diese Ontologie soll die Repräsentation und Suche von ISDC-spezifischem Domänenwissen durch die semantische Vernetzung persistenter ISDC-Metadaten entscheidend verbessern. Die in dieser Arbeit aufgezeigten Modellierungsmöglichkeiten, zunächst mit der Extensible Markup Language (XML) und später mit OWL, bilden die existierenden Metadatenbestände auf einer semantischen Ebene ab (siehe Abbildung 2). Durch die definierte Nutzung der Semantik, die in OWL vorhanden ist, kann mittels Maschinen ein Mehrwert aus den Metadaten gewonnen und dem Nutzer zur Verfügung gestellt werden. Geowissenschaftliche Informationen, Daten und Wissen können in semantische Zusammenhänge gebracht und verständlich repräsentiert werden. Unterstützende Informationen können ebenfalls problemlos in die Ontologie eingebunden werden. Dazu gehören z.B. Bilder zu den im ISDC gespeicherten Instrumenten, Plattformen oder Personen. Suchanfragen bezüglich geowissenschaftlicher Phänomene können auch ohne Expertenwissen über Zusammenhänge und Begriffe gestellt und beantwortet werden. Die Informationsrecherche und -aufbereitung gewinnt an Qualität und nutzt die existierenden Ressourcen im vollen Umfang.
  8. Botana Varela, J.: Unscharfe Wissensrepräsentationen bei der Implementation des Semantic Web (2004) 0.01
    0.009021699 = product of:
      0.054130197 = sum of:
        0.054130197 = weight(_text_:wissen in 3359) [ClassicSimilarity], result of:
          0.054130197 = score(doc=3359,freq=6.0), product of:
            0.1639626 = queryWeight, product of:
              4.3128977 = idf(docFreq=1609, maxDocs=44218)
              0.038016807 = queryNorm
            0.33013746 = fieldWeight in 3359, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.3128977 = idf(docFreq=1609, maxDocs=44218)
              0.03125 = fieldNorm(doc=3359)
      0.16666667 = coord(1/6)
    
    Abstract
    In der vorliegenden Arbeit soll einen Ansatz zur Implementation einer Wissensrepräsentation mit den in Abschnitt 1.1. skizzierten Eigenschaften und dem Semantic Web als Anwendungsbereich vorgestellt werden. Die Arbeit ist im Wesentlichen in zwei Bereiche gegliedert: dem Untersuchungsbereich (Kapitel 2-5), in dem ich die in Abschnitt 1.1. eingeführte Terminologie definiert und ein umfassender Überblick über die zugrundeliegenden Konzepte gegeben werden soll, und dem Implementationsbereich (Kapitel 6), in dem aufbauend auf dem im Untersuchungsbereich erarbeiteten Wissen einen semantischen Suchdienst entwickeln werden soll. In Kapitel 2 soll zunächst das Konzept der semantischen Interpretation erläutert und in diesem Kontext hauptsächlich zwischen Daten, Information und Wissen unterschieden werden. In Kapitel 3 soll Wissensrepräsentation aus einer kognitiven Perspektive betrachtet und in diesem Zusammenhang das Konzept der Unschärfe beschrieben werden. In Kapitel 4 sollen sowohl aus historischer als auch aktueller Sicht die Ansätze zur Wissensrepräsentation und -auffindung beschrieben und in diesem Zusammenhang das Konzept der Unschärfe diskutiert werden. In Kapitel 5 sollen die aktuell im WWW eingesetzten Modelle und deren Einschränkungen erläutert werden. Anschließend sollen im Kontext der Entscheidungsfindung die Anforderungen beschrieben werden, die das WWW an eine adäquate Wissensrepräsentation stellt, und anhand der Technologien des Semantic Web die Repräsentationsparadigmen erläutert werden, die diese Anforderungen erfüllen. Schließlich soll das Topic Map-Paradigma erläutert werden. In Kapitel 6 soll aufbauend auf die im Untersuchtungsbereich gewonnenen Erkenntnisse ein Prototyp entwickelt werden. Dieser besteht im Wesentlichen aus Softwarewerkzeugen, die das automatisierte und computergestützte Extrahieren von Informationen, das unscharfe Modellieren, sowie das Auffinden von Wissen unterstützen. Die Implementation der Werkzeuge erfolgt in der Programmiersprache Java, und zur unscharfen Wissensrepräsentation werden Topic Maps eingesetzt. Die Implementation wird dabei schrittweise vorgestellt. Schließlich soll der Prototyp evaluiert und ein Ausblick auf zukünftige Erweiterungsmöglichkeiten gegeben werden. Und schließlich soll in Kapitel 7 eine Synthese formuliert werden.
  9. Hüsken, P.: Information Retrieval im Semantic Web (2006) 0.01
    0.007813022 = product of:
      0.046878126 = sum of:
        0.046878126 = weight(_text_:wissen in 4333) [ClassicSimilarity], result of:
          0.046878126 = score(doc=4333,freq=2.0), product of:
            0.1639626 = queryWeight, product of:
              4.3128977 = idf(docFreq=1609, maxDocs=44218)
              0.038016807 = queryNorm
            0.28590742 = fieldWeight in 4333, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3128977 = idf(docFreq=1609, maxDocs=44218)
              0.046875 = fieldNorm(doc=4333)
      0.16666667 = coord(1/6)
    
    Abstract
    Das Semantic Web bezeichnet ein erweitertes World Wide Web (WWW), das die Bedeutung von präsentierten Inhalten in neuen standardisierten Sprachen wie RDF Schema und OWL modelliert. Diese Arbeit befasst sich mit dem Aspekt des Information Retrieval, d.h. es wird untersucht, in wie weit Methoden der Informationssuche sich auf modelliertes Wissen übertragen lassen. Die kennzeichnenden Merkmale von IR-Systemen wie vage Anfragen sowie die Unterstützung unsicheren Wissens werden im Kontext des Semantic Web behandelt. Im Fokus steht die Suche nach Fakten innerhalb einer Wissensdomäne, die entweder explizit modelliert sind oder implizit durch die Anwendung von Inferenz abgeleitet werden können. Aufbauend auf der an der Universität Duisburg-Essen entwickelten Retrievalmaschine PIRE wird die Anwendung unsicherer Inferenz mit probabilistischer Prädikatenlogik (pDatalog) implementiert.
  10. Haller, S.H.M.: Mappingverfahren zur Wissensorganisation (2002) 0.00
    0.0028615294 = product of:
      0.017169176 = sum of:
        0.017169176 = product of:
          0.051507525 = sum of:
            0.051507525 = weight(_text_:22 in 3406) [ClassicSimilarity], result of:
              0.051507525 = score(doc=3406,freq=2.0), product of:
                0.13312837 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038016807 = queryNorm
                0.38690117 = fieldWeight in 3406, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3406)
          0.33333334 = coord(1/3)
      0.16666667 = coord(1/6)
    
    Date
    30. 5.2010 16:22:35
  11. Brumm, A.: Modellierung eines Informationssystems zum Bühnentanz als semantisches Wiki (2010) 0.00
    0.002021253 = product of:
      0.012127518 = sum of:
        0.012127518 = product of:
          0.036382552 = sum of:
            0.036382552 = weight(_text_:29 in 4025) [ClassicSimilarity], result of:
              0.036382552 = score(doc=4025,freq=2.0), product of:
                0.13373125 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.038016807 = queryNorm
                0.27205724 = fieldWeight in 4025, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4025)
          0.33333334 = coord(1/3)
      0.16666667 = coord(1/6)
    
    Date
    18.10.2010 21:05:29
  12. Kiren, T.: ¬A clustering based indexing technique of modularized ontologies for information retrieval (2017) 0.00
    0.0011446116 = product of:
      0.0068676695 = sum of:
        0.0068676695 = product of:
          0.020603009 = sum of:
            0.020603009 = weight(_text_:22 in 4399) [ClassicSimilarity], result of:
              0.020603009 = score(doc=4399,freq=2.0), product of:
                0.13312837 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038016807 = queryNorm
                0.15476047 = fieldWeight in 4399, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4399)
          0.33333334 = coord(1/3)
      0.16666667 = coord(1/6)
    
    Date
    20. 1.2015 18:30:22
  13. Hannech, A.: Système de recherche d'information étendue basé sur une projection multi-espaces (2018) 0.00
    5.775009E-4 = product of:
      0.0034650052 = sum of:
        0.0034650052 = product of:
          0.010395016 = sum of:
            0.010395016 = weight(_text_:29 in 4472) [ClassicSimilarity], result of:
              0.010395016 = score(doc=4472,freq=2.0), product of:
                0.13373125 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.038016807 = queryNorm
                0.07773064 = fieldWeight in 4472, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.015625 = fieldNorm(doc=4472)
          0.33333334 = coord(1/3)
      0.16666667 = coord(1/6)
    
    Date
    29. 9.2018 18:57:38