Search (101 results, page 1 of 6)

  • × theme_ss:"Automatisches Abstracting"
  1. Goh, A.; Hui, S.C.: TES: a text extraction system (1996) 0.09
    0.08839467 = product of:
      0.26518402 = sum of:
        0.018687837 = weight(_text_:information in 6599) [ClassicSimilarity], result of:
          0.018687837 = score(doc=6599,freq=8.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.3103276 = fieldWeight in 6599, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=6599)
        0.18536991 = weight(_text_:extraction in 6599) [ClassicSimilarity], result of:
          0.18536991 = score(doc=6599,freq=6.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.9095484 = fieldWeight in 6599, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.0625 = fieldNorm(doc=6599)
        0.04253545 = weight(_text_:system in 6599) [ClassicSimilarity], result of:
          0.04253545 = score(doc=6599,freq=4.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.3936941 = fieldWeight in 6599, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0625 = fieldNorm(doc=6599)
        0.01859081 = product of:
          0.03718162 = sum of:
            0.03718162 = weight(_text_:22 in 6599) [ClassicSimilarity], result of:
              0.03718162 = score(doc=6599,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.30952093 = fieldWeight in 6599, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6599)
          0.5 = coord(1/2)
      0.33333334 = coord(4/12)
    
    Abstract
    With the onset of the information explosion arising from digital libraries and access to a wealth of information through the Internet, the need to efficiently determine the relevance of a document becomes even more urgent. Describes a text extraction system (TES), which retrieves a set of sentences from a document to form an indicative abstract. Such an automated process enables information to be filtered more quickly. Discusses the combination of various text extraction techniques. Compares results with manually produced abstracts
    Date
    26. 2.1997 10:22:43
    Source
    Microcomputers for information management. 13(1996) no.1, S.41-55
  2. Wang, W.; Hwang, D.: Abstraction Assistant : an automatic text abstraction system (2010) 0.04
    0.03673947 = product of:
      0.14695787 = sum of:
        0.0070079383 = weight(_text_:information in 3981) [ClassicSimilarity], result of:
          0.0070079383 = score(doc=3981,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.116372846 = fieldWeight in 3981, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3981)
        0.08026751 = weight(_text_:extraction in 3981) [ClassicSimilarity], result of:
          0.08026751 = score(doc=3981,freq=2.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.39384598 = fieldWeight in 3981, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.046875 = fieldNorm(doc=3981)
        0.059682414 = weight(_text_:system in 3981) [ClassicSimilarity], result of:
          0.059682414 = score(doc=3981,freq=14.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.5524007 = fieldWeight in 3981, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=3981)
      0.25 = coord(3/12)
    
    Abstract
    In the interest of standardization and quality assurance, it is desirable for authors and staff of access services to follow the American National Standards Institute (ANSI) guidelines in preparing abstracts. Using the statistical approach an extraction system (the Abstraction Assistant) was developed to generate informative abstracts to meet the ANSI guidelines for structural content elements. The system performance is evaluated by comparing the system-generated abstracts with the author's original abstracts and the manually enhanced system abstracts on three criteria: balance (satisfaction of the ANSI standards), fluency (text coherence), and understandability (clarity). The results suggest that it is possible to use the system output directly without manual modification, but there are issues that need to be addressed in further studies to make the system a better tool.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.9, S.1790-1799
  3. Goh, A.; Hui, S.C.; Chan, S.K.: ¬A text extraction system for news reports (1996) 0.03
    0.032734133 = product of:
      0.1964048 = sum of:
        0.16384538 = weight(_text_:extraction in 6601) [ClassicSimilarity], result of:
          0.16384538 = score(doc=6601,freq=12.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.8039347 = fieldWeight in 6601, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6601)
        0.03255942 = weight(_text_:system in 6601) [ClassicSimilarity], result of:
          0.03255942 = score(doc=6601,freq=6.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.30135927 = fieldWeight in 6601, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6601)
      0.16666667 = coord(2/12)
    
    Abstract
    Describes the design and implementation of a text extraction tool, NEWS_EXT, which aztomatically produces summaries from news reports by extracting sentences to form indicative abstracts. Selection of sentences is based on sentence importance, measured by means of sentence scoring or simple linguistic analysis of sentence structure. Tests were conducted on 4 approaches for the functioning of the NEWS_EXT system; extraction by keyword frequency; extraction by title keywords; extraction by location; and extraction by indicative phrase. Reports results of a study to compare the results of the application of NEWS_EXT with manually produced extracts; using relevance as the criterion for effectiveness. 48 newspaper articles were assessed (The Straits Times, International Herald Tribune, Asian Wall Street Journal, and Financial Times). The evaluation was conducted in 2 stages: stage 1 involving abstracts produced manually by 2 human experts; stage 2 involving the generation of abstracts using NEWS_EXT. Results of each of the 4 approaches were compared with the human produced abstracts, where the title and location approaches were found to give the best results for both local and foreign news. Reports plans to refine and enhance NEWS_EXT and incorporate it as a module within a larger newspaper clipping system
  4. Ercan, G.; Cicekli, I.: Using lexical chains for keyword extraction (2007) 0.03
    0.032577798 = product of:
      0.19546679 = sum of:
        0.008175928 = weight(_text_:information in 951) [ClassicSimilarity], result of:
          0.008175928 = score(doc=951,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.13576832 = fieldWeight in 951, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=951)
        0.18729086 = weight(_text_:extraction in 951) [ClassicSimilarity], result of:
          0.18729086 = score(doc=951,freq=8.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.9189739 = fieldWeight in 951, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.0546875 = fieldNorm(doc=951)
      0.16666667 = coord(2/12)
    
    Abstract
    Keywords can be considered as condensed versions of documents and short forms of their summaries. In this paper, the problem of automatic extraction of keywords from documents is treated as a supervised learning task. A lexical chain holds a set of semantically related words of a text and it can be said that a lexical chain represents the semantic content of a portion of the text. Although lexical chains have been extensively used in text summarization, their usage for keyword extraction problem has not been fully investigated. In this paper, a keyword extraction technique that uses lexical chains is described, and encouraging results are obtained.
    Source
    Information processing and management. 43(2007) no.6, S.1705-1714
  5. Steinberger, J.; Poesio, M.; Kabadjov, M.A.; Jezek, K.: Two uses of anaphora resolution in summarization (2007) 0.03
    0.03195983 = product of:
      0.12783933 = sum of:
        0.015670227 = weight(_text_:information in 949) [ClassicSimilarity], result of:
          0.015670227 = score(doc=949,freq=10.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.2602176 = fieldWeight in 949, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=949)
        0.08026751 = weight(_text_:extraction in 949) [ClassicSimilarity], result of:
          0.08026751 = score(doc=949,freq=2.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.39384598 = fieldWeight in 949, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.046875 = fieldNorm(doc=949)
        0.031901587 = weight(_text_:system in 949) [ClassicSimilarity], result of:
          0.031901587 = score(doc=949,freq=4.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.29527056 = fieldWeight in 949, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=949)
      0.25 = coord(3/12)
    
    Abstract
    We propose a new method for using anaphoric information in Latent Semantic Analysis (lsa), and discuss its application to develop an lsa-based summarizer which achieves a significantly better performance than a system not using anaphoric information, and a better performance by the rouge measure than all but one of the single-document summarizers participating in DUC-2002. Anaphoric information is automatically extracted using a new release of our own anaphora resolution system, guitar, which incorporates proper noun resolution. Our summarizer also includes a new approach for automatically identifying the dimensionality reduction of a document on the basis of the desired summarization percentage. Anaphoric information is also used to check the coherence of the summary produced by our summarizer, by a reference checker module which identifies anaphoric resolution errors caused by sentence extraction.
    Source
    Information processing and management. 43(2007) no.6, S.1663-1680
  6. Dorr, B.J.; Gaasterland, T.: Exploiting aspectual features and connecting words for summarization-inspired temporal-relation extraction (2007) 0.03
    0.02979426 = product of:
      0.11917704 = sum of:
        0.0070079383 = weight(_text_:information in 950) [ClassicSimilarity], result of:
          0.0070079383 = score(doc=950,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.116372846 = fieldWeight in 950, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=950)
        0.08026751 = weight(_text_:extraction in 950) [ClassicSimilarity], result of:
          0.08026751 = score(doc=950,freq=2.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.39384598 = fieldWeight in 950, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.046875 = fieldNorm(doc=950)
        0.031901587 = weight(_text_:system in 950) [ClassicSimilarity], result of:
          0.031901587 = score(doc=950,freq=4.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.29527056 = fieldWeight in 950, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=950)
      0.25 = coord(3/12)
    
    Abstract
    This paper presents a model that incorporates contemporary theories of tense and aspect and develops a new framework for extracting temporal relations between two sentence-internal events, given their tense, aspect, and a temporal connecting word relating the two events. A linguistic constraint on event combination has been implemented to detect incorrect parser analyses and potentially apply syntactic reanalysis or semantic reinterpretation - in preparation for subsequent processing for multi-document summarization. An important contribution of this work is the extension of two different existing theoretical frameworks - Hornstein's 1990 theory of tense analysis and Allen's 1984 theory on event ordering - and the combination of both into a unified system for representing and constraining combinations of different event types (points, closed intervals, and open-ended intervals). We show that our theoretical results have been verified in a large-scale corpus analysis. The framework is designed to inform a temporally motivated sentence-ordering module in an implemented multi-document summarization system.
    Source
    Information processing and management. 43(2007) no.6, S.1681-1704
  7. Nomoto, T.: Discriminative sentence compression with conditional random fields (2007) 0.03
    0.028740862 = product of:
      0.11496345 = sum of:
        0.012138106 = weight(_text_:information in 945) [ClassicSimilarity], result of:
          0.012138106 = score(doc=945,freq=6.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.20156369 = fieldWeight in 945, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=945)
        0.08026751 = weight(_text_:extraction in 945) [ClassicSimilarity], result of:
          0.08026751 = score(doc=945,freq=2.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.39384598 = fieldWeight in 945, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.046875 = fieldNorm(doc=945)
        0.02255783 = weight(_text_:system in 945) [ClassicSimilarity], result of:
          0.02255783 = score(doc=945,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.20878783 = fieldWeight in 945, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=945)
      0.25 = coord(3/12)
    
    Abstract
    The paper focuses on a particular approach to automatic sentence compression which makes use of a discriminative sequence classifier known as Conditional Random Fields (CRF). We devise several features for CRF that allow it to incorporate information on nonlinear relations among words. Along with that, we address the issue of data paucity by collecting data from RSS feeds available on the Internet, and turning them into training data for use with CRF, drawing on techniques from biology and information retrieval. We also discuss a recursive application of CRF on the syntactic structure of a sentence as a way of improving the readability of the compression it generates. Experiments found that our approach works reasonably well compared to the state-of-the-art system [Knight, K., & Marcu, D. (2002). Summarization beyond sentence extraction: A probabilistic approach to sentence compression. Artificial Intelligence 139, 91-107.].
    Source
    Information processing and management. 43(2007) no.6, S.1571-1587
  8. Vanderwende, L.; Suzuki, H.; Brockett, J.M.; Nenkova, A.: Beyond SumBasic : task-focused summarization with sentence simplification and lexical expansion (2007) 0.02
    0.018573668 = product of:
      0.07429467 = sum of:
        0.009910721 = weight(_text_:information in 948) [ClassicSimilarity], result of:
          0.009910721 = score(doc=948,freq=4.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.16457605 = fieldWeight in 948, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=948)
        0.05044084 = weight(_text_:system in 948) [ClassicSimilarity], result of:
          0.05044084 = score(doc=948,freq=10.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.46686378 = fieldWeight in 948, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=948)
        0.013943106 = product of:
          0.027886212 = sum of:
            0.027886212 = weight(_text_:22 in 948) [ClassicSimilarity], result of:
              0.027886212 = score(doc=948,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.23214069 = fieldWeight in 948, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=948)
          0.5 = coord(1/2)
      0.25 = coord(3/12)
    
    Abstract
    In recent years, there has been increased interest in topic-focused multi-document summarization. In this task, automatic summaries are produced in response to a specific information request, or topic, stated by the user. The system we have designed to accomplish this task comprises four main components: a generic extractive summarization system, a topic-focusing component, sentence simplification, and lexical expansion of topic words. This paper details each of these components, together with experiments designed to quantify their individual contributions. We include an analysis of our results on two large datasets commonly used to evaluate task-focused summarization, the DUC2005 and DUC2006 datasets, using automatic metrics. Additionally, we include an analysis of our results on the DUC2006 task according to human evaluation metrics. In the human evaluation of system summaries compared to human summaries, i.e., the Pyramid method, our system ranked first out of 22 systems in terms of overall mean Pyramid score; and in the human evaluation of summary responsiveness to the topic, our system ranked third out of 35 systems.
    Source
    Information processing and management. 43(2007) no.6, S.1606-1618
  9. Yang, C.C.; Wang, F.L.: Hierarchical summarization of large documents (2008) 0.02
    0.017712679 = product of:
      0.10627607 = sum of:
        0.011679897 = weight(_text_:information in 1719) [ClassicSimilarity], result of:
          0.011679897 = score(doc=1719,freq=8.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.19395474 = fieldWeight in 1719, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1719)
        0.09459618 = weight(_text_:extraction in 1719) [ClassicSimilarity], result of:
          0.09459618 = score(doc=1719,freq=4.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.46415195 = fieldWeight in 1719, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1719)
      0.16666667 = coord(2/12)
    
    Abstract
    Many automatic text summarization models have been developed in the last decades. Related research in information science has shown that human abstractors extract sentences for summaries based on the hierarchical structure of documents; however, the existing automatic summarization models do not take into account the human abstractor's behavior of sentence extraction and only consider the document as a sequence of sentences during the process of extraction of sentences as a summary. In general, a document exhibits a well-defined hierarchical structure that can be described as fractals - mathematical objects with a high degree of redundancy. In this article, we introduce the fractal summarization model based on the fractal theory. The important information is captured from the source document by exploring the hierarchical structure and salient features of the document. A condensed version of the document that is informatively close to the source document is produced iteratively using the contractive transformation in the fractal theory. The fractal summarization model is the first attempt to apply fractal theory to document summarization. It significantly improves the divergence of information coverage of summary and the precision of summary. User evaluations have been conducted. Results have indicated that fractal summarization is promising and outperforms current summarization techniques that do not consider the hierarchical structure of documents.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.6, S.887-902
  10. Yulianti, E.; Huspi, S.; Sanderson, M.: Tweet-biased summarization (2016) 0.02
    0.01731988 = product of:
      0.06927952 = sum of:
        0.04036624 = weight(_text_:web in 2926) [ClassicSimilarity], result of:
          0.04036624 = score(doc=2926,freq=8.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.36057037 = fieldWeight in 2926, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2926)
        0.010115089 = weight(_text_:information in 2926) [ClassicSimilarity], result of:
          0.010115089 = score(doc=2926,freq=6.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.16796975 = fieldWeight in 2926, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2926)
        0.018798191 = weight(_text_:system in 2926) [ClassicSimilarity], result of:
          0.018798191 = score(doc=2926,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.17398985 = fieldWeight in 2926, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2926)
      0.25 = coord(3/12)
    
    Abstract
    We examined whether the microblog comments given by people after reading a web document could be exploited to improve the accuracy of a web document summarization system. We examined the effect of social information (i.e., tweets) on the accuracy of the generated summaries by comparing the user preference for TBS (tweet-biased summary) with GS (generic summary). The result of crowdsourcing-based evaluation shows that the user preference for TBS was significantly higher than GS. We also took random samples of the documents to see the performance of summaries in a traditional evaluation using ROUGE, which, in general, TBS was also shown to be better than GS. We further analyzed the influence of the number of tweets pointed to a web document on summarization accuracy, finding a positive moderate correlation between the number of tweets pointed to a web document and the performance of generated TBS as measured by user preference. The results show that incorporating social information into the summary generation process can improve the accuracy of summary. The reason for people choosing one summary over another in a crowdsourcing-based evaluation is also presented in this article.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.6, S.1289-1300
  11. Salton, G.: Automatic text structuring and summarization (1997) 0.02
    0.016970228 = product of:
      0.10182136 = sum of:
        0.008175928 = weight(_text_:information in 145) [ClassicSimilarity], result of:
          0.008175928 = score(doc=145,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.13576832 = fieldWeight in 145, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=145)
        0.09364543 = weight(_text_:extraction in 145) [ClassicSimilarity], result of:
          0.09364543 = score(doc=145,freq=2.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.45948696 = fieldWeight in 145, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.0546875 = fieldNorm(doc=145)
      0.16666667 = coord(2/12)
    
    Abstract
    Applies the ideas from the automatic link generation research to automatic text summarisation. Using techniques for inter-document link generation, generates intra-document links between passages of a document. Based on the intra-document linkage pattern of a text, characterises the structure of the text. Applies the knowledge of text structure to do automatic text summarisation by passage extraction. Evaluates a set of 50 summaries generated using these techniques by comparing the to paragraph extracts constructed by humans. The automatic summarisation methods perform well, especially in view of the fact that the summaries generates by 2 humans for the same article are surprisingly dissimilar
    Source
    Information processing and management. 33(1997) no.2, S.193-207
  12. Ling, X.; Jiang, J.; He, X.; Mei, Q.; Zhai, C.; Schatz, B.: Generating gene summaries from biomedical literature : a study of semi-structured summarization (2007) 0.02
    0.016739355 = product of:
      0.10043613 = sum of:
        0.0058399485 = weight(_text_:information in 946) [ClassicSimilarity], result of:
          0.0058399485 = score(doc=946,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.09697737 = fieldWeight in 946, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=946)
        0.09459618 = weight(_text_:extraction in 946) [ClassicSimilarity], result of:
          0.09459618 = score(doc=946,freq=4.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.46415195 = fieldWeight in 946, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.0390625 = fieldNorm(doc=946)
      0.16666667 = coord(2/12)
    
    Abstract
    Most knowledge accumulated through scientific discoveries in genomics and related biomedical disciplines is buried in the vast amount of biomedical literature. Since understanding gene regulations is fundamental to biomedical research, summarizing all the existing knowledge about a gene based on literature is highly desirable to help biologists digest the literature. In this paper, we present a study of methods for automatically generating gene summaries from biomedical literature. Unlike most existing work on automatic text summarization, in which the generated summary is often a list of extracted sentences, we propose to generate a semi-structured summary which consists of sentences covering specific semantic aspects of a gene. Such a semi-structured summary is more appropriate for describing genes and poses special challenges for automatic text summarization. We propose a two-stage approach to generate such a summary for a given gene - first retrieving articles about a gene and then extracting sentences for each specified semantic aspect. We address the issue of gene name variation in the first stage and propose several different methods for sentence extraction in the second stage. We evaluate the proposed methods using a test set with 20 genes. Experiment results show that the proposed methods can generate useful semi-structured gene summaries automatically from biomedical literature, and our proposed methods outperform general purpose summarization methods. Among all the proposed methods for sentence extraction, a probabilistic language modeling approach that models gene context performs the best.
    Source
    Information processing and management. 43(2007) no.6, S.1777-1791
  13. Jones, P.A.; Bradbeer, P.V.G.: Discovery of optimal weights in a concept selection system (1996) 0.02
    0.015470553 = product of:
      0.061882213 = sum of:
        0.013214295 = weight(_text_:information in 6974) [ClassicSimilarity], result of:
          0.013214295 = score(doc=6974,freq=4.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.21943474 = fieldWeight in 6974, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=6974)
        0.030077105 = weight(_text_:system in 6974) [ClassicSimilarity], result of:
          0.030077105 = score(doc=6974,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.27838376 = fieldWeight in 6974, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0625 = fieldNorm(doc=6974)
        0.01859081 = product of:
          0.03718162 = sum of:
            0.03718162 = weight(_text_:22 in 6974) [ClassicSimilarity], result of:
              0.03718162 = score(doc=6974,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.30952093 = fieldWeight in 6974, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6974)
          0.5 = coord(1/2)
      0.25 = coord(3/12)
    
    Source
    Information retrieval: new systems and current research. Proceedings of the 16th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Drymen, Scotland, 22-23 Mar 94. Ed.: R. Leon
  14. Shen, D.; Yang, Q.; Chen, Z.: Noise reduction through summarization for Web-page classification (2007) 0.01
    0.01376166 = product of:
      0.08256996 = sum of:
        0.07265923 = weight(_text_:web in 953) [ClassicSimilarity], result of:
          0.07265923 = score(doc=953,freq=18.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.64902663 = fieldWeight in 953, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=953)
        0.009910721 = weight(_text_:information in 953) [ClassicSimilarity], result of:
          0.009910721 = score(doc=953,freq=4.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.16457605 = fieldWeight in 953, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=953)
      0.16666667 = coord(2/12)
    
    Abstract
    Due to a large variety of noisy information embedded in Web pages, Web-page classification is much more difficult than pure-text classification. In this paper, we propose to improve the Web-page classification performance by removing the noise through summarization techniques. We first give empirical evidence that ideal Web-page summaries generated by human editors can indeed improve the performance of Web-page classification algorithms. We then put forward a new Web-page summarization algorithm based on Web-page layout and evaluate it along with several other state-of-the-art text summarization algorithms on the LookSmart Web directory. Experimental results show that the classification algorithms (NB or SVM) augmented by any summarization approach can achieve an improvement by more than 5.0% as compared to pure-text-based classification algorithms. We further introduce an ensemble method to combine the different summarization algorithms. The ensemble summarization method achieves more than 12.0% improvement over pure-text based methods.
    Source
    Information processing and management. 43(2007) no.6, S.1735-1747
  15. Liang, S.-F.; Devlin, S.; Tait, J.: Investigating sentence weighting components for automatic summarisation (2007) 0.01
    0.013446378 = product of:
      0.05378551 = sum of:
        0.024219744 = weight(_text_:web in 899) [ClassicSimilarity], result of:
          0.024219744 = score(doc=899,freq=2.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.21634221 = fieldWeight in 899, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=899)
        0.0070079383 = weight(_text_:information in 899) [ClassicSimilarity], result of:
          0.0070079383 = score(doc=899,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.116372846 = fieldWeight in 899, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=899)
        0.02255783 = weight(_text_:system in 899) [ClassicSimilarity], result of:
          0.02255783 = score(doc=899,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.20878783 = fieldWeight in 899, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=899)
      0.25 = coord(3/12)
    
    Abstract
    The work described here initially formed part of a triangulation exercise to establish the effectiveness of the Query Term Order algorithm. It subsequently proved to be a reliable indicator for summarising English web documents. We utilised the human summaries from the Document Understanding Conference data, and generated queries automatically for testing the QTO algorithm. Six sentence weighting schemes that made use of Query Term Frequency and QTO were constructed to produce system summaries, and this paper explains the process of combining and balancing the weighting components. The summaries produced were evaluated by the ROUGE-1 metric, and the results showed that using QTO in a weighting combination resulted in the best performance. We also found that using a combination of more weighting components always produced improved performance compared to any single weighting component.
    Source
    Information processing and management. 43(2007) no.1, S.146-153
  16. Dammeyer, A.; Jürgensen, W.; Krüwel, C.; Poliak, E.; Ruttkowski, S.; Schäfer, Th.; Sirava, M.; Hermes, T.: Videoanalyse mit DiVA (1998) 0.01
    0.013220275 = product of:
      0.079321645 = sum of:
        0.056763813 = weight(_text_:suche in 23) [ClassicSimilarity], result of:
          0.056763813 = score(doc=23,freq=2.0), product of:
            0.17138755 = queryWeight, product of:
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03430388 = queryNorm
            0.3312015 = fieldWeight in 23, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.046875 = fieldNorm(doc=23)
        0.02255783 = weight(_text_:system in 23) [ClassicSimilarity], result of:
          0.02255783 = score(doc=23,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.20878783 = fieldWeight in 23, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=23)
      0.16666667 = coord(2/12)
    
    Abstract
    Die Bedeutung von Videos nimmt für multimediale Systeme stetig zu. Dabei existiert eine Vielzahl von Produkten zur Betrachtung von Videos, allerdings nur wenige Ansätze, den Inhalt eines Videos zu erschließen. Das DiVA-System, welches an der Universität Bremen im Rahmen eines studentischen Projektes entwickelt wird, dient der automatischen Analyse von MPEG-I Videofilmen. Der dabei verfolgte Ansatz läßt sich in vier Phasen gliedern. Zunächst wird der Videofilm durch eine Shotanalyse in seine einzelnen Kameraeinstellungen (Shots) unterteilt. Darauf aufbauend findet eine Kamerabewegungsanalyse sowie die Erstellung von Mosaicbildern statt. Mit Methoden der künstlichen Intelligenz und der digitalen Bildverarbeitung wird das analysierte Material nach Bild- und Toninformationen ausgewertet. Das Resultat ist eine textuelle Beschreibung eines Videofilms, auf der mit Hilfe von Text-Retrieval-Systemen recherchiert werden kann
    Source
    Inhaltsbezogene Suche von Bildern und Videosequenzen in digitalen multimedialen Archiven: Beiträge eines Workshops der KI'98 am 16./17.9.1998 in Bremen. Hrsg.: N. Luth
  17. Bateman, J.; Teich, E.: Selective information presentation in an integrated publication system : an application of genre-driven text generation (1995) 0.01
    0.012626659 = product of:
      0.075759955 = sum of:
        0.023125017 = weight(_text_:information in 2928) [ClassicSimilarity], result of:
          0.023125017 = score(doc=2928,freq=4.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.3840108 = fieldWeight in 2928, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=2928)
        0.052634936 = weight(_text_:system in 2928) [ClassicSimilarity], result of:
          0.052634936 = score(doc=2928,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.4871716 = fieldWeight in 2928, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.109375 = fieldNorm(doc=2928)
      0.16666667 = coord(2/12)
    
    Source
    Information processing and management. 31(1995) no.5, S.753-767
  18. Ou, S.; Khoo, C.S.G.; Goh, D.H.: Multi-document summarization of news articles using an event-based framework (2006) 0.01
    0.0122740995 = product of:
      0.049096398 = sum of:
        0.02018312 = weight(_text_:web in 657) [ClassicSimilarity], result of:
          0.02018312 = score(doc=657,freq=2.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.18028519 = fieldWeight in 657, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=657)
        0.010115089 = weight(_text_:information in 657) [ClassicSimilarity], result of:
          0.010115089 = score(doc=657,freq=6.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.16796975 = fieldWeight in 657, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=657)
        0.018798191 = weight(_text_:system in 657) [ClassicSimilarity], result of:
          0.018798191 = score(doc=657,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.17398985 = fieldWeight in 657, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=657)
      0.25 = coord(3/12)
    
    Abstract
    Purpose - The purpose of this research is to develop a method for automatic construction of multi-document summaries of sets of news articles that might be retrieved by a web search engine in response to a user query. Design/methodology/approach - Based on the cross-document discourse analysis, an event-based framework is proposed for integrating and organizing information extracted from different news articles. It has a hierarchical structure in which the summarized information is presented at the top level and more detailed information given at the lower levels. A tree-view interface was implemented for displaying a multi-document summary based on the framework. A preliminary user evaluation was performed by comparing the framework-based summaries against the sentence-based summaries. Findings - In a small evaluation, all the human subjects preferred the framework-based summaries to the sentence-based summaries. It indicates that the event-based framework is an effective way to summarize a set of news articles reporting an event or a series of relevant events. Research limitations/implications - Limited to event-based news articles only, not applicable to news critiques and other kinds of news articles. A summarization system based on the event-based framework is being implemented. Practical implications - Multi-document summarization of news articles can adopt the proposed event-based framework. Originality/value - An event-based framework for summarizing sets of news articles was developed and evaluated using a tree-view interface for displaying such summaries.
  19. Jones, S.; Paynter, G.W.: Automatic extractionof document keyphrases for use in digital libraries : evaluations and applications (2002) 0.01
    0.012121591 = product of:
      0.07272954 = sum of:
        0.0058399485 = weight(_text_:information in 601) [ClassicSimilarity], result of:
          0.0058399485 = score(doc=601,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.09697737 = fieldWeight in 601, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=601)
        0.06688959 = weight(_text_:extraction in 601) [ClassicSimilarity], result of:
          0.06688959 = score(doc=601,freq=2.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.32820496 = fieldWeight in 601, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.0390625 = fieldNorm(doc=601)
      0.16666667 = coord(2/12)
    
    Abstract
    This article describes an evaluation of the Kea automatic keyphrase extraction algorithm. Document keyphrases are conventionally used as concise descriptors of document content, and are increasingly used in novel ways, including document clustering, searching and browsing interfaces, and retrieval engines. However, it is costly and time consuming to manually assign keyphrases to documents, motivating the development of tools that automatically perform this function. Previous studies have evaluated Kea's performance by measuring its ability to identify author keywords and keyphrases, but this methodology has a number of well-known limitations. The results presented in this article are based on evaluations by human assessors of the quality and appropriateness of Kea keyphrases. The results indicate that, in general, Kea produces keyphrases that are rated positively by human assessors. However, typical Kea settings can degrade performance, particularly those relating to keyphrase length and domain specificity. We found that for some settings, Kea's performance is better than that of similar systems, and that Kea's ranking of extracted keyphrases is effective. We also determined that author-specified keyphrases appear to exhibit an inherent ranking, and that they are rated highly and therefore suitable for use in training and evaluation of automatic keyphrasing systems.
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.8, S.653-677
  20. Ou, S.; Khoo, S.G.; Goh, D.H.: Automatic multidocument summarization of research abstracts : design and user evaluation (2007) 0.01
    0.0118100615 = product of:
      0.047240246 = sum of:
        0.02018312 = weight(_text_:web in 522) [ClassicSimilarity], result of:
          0.02018312 = score(doc=522,freq=2.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.18028519 = fieldWeight in 522, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=522)
        0.008258934 = weight(_text_:information in 522) [ClassicSimilarity], result of:
          0.008258934 = score(doc=522,freq=4.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.13714671 = fieldWeight in 522, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=522)
        0.018798191 = weight(_text_:system in 522) [ClassicSimilarity], result of:
          0.018798191 = score(doc=522,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.17398985 = fieldWeight in 522, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=522)
      0.25 = coord(3/12)
    
    Abstract
    The purpose of this study was to develop a method for automatic construction of multidocument summaries of sets of research abstracts that may be retrieved by a digital library or search engine in response to a user query. Sociology dissertation abstracts were selected as the sample domain in this study. A variable-based framework was proposed for integrating and organizing research concepts and relationships as well as research methods and contextual relations extracted from different dissertation abstracts. Based on the framework, a new summarization method was developed, which parses the discourse structure of abstracts, extracts research concepts and relationships, integrates the information across different abstracts, and organizes and presents them in a Web-based interface. The focus of this article is on the user evaluation that was performed to assess the overall quality and usefulness of the summaries. Two types of variable-based summaries generated using the summarization method-with or without the use of a taxonomy-were compared against a sentence-based summary that lists only the research-objective sentences extracted from each abstract and another sentence-based summary generated using the MEAD system that extracts important sentences. The evaluation results indicate that the majority of sociological researchers (70%) and general users (64%) preferred the variable-based summaries generated with the use of the taxonomy.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.10, S.1419-1435

Years

Languages

  • e 89
  • d 11
  • chi 1
  • More… Less…

Types

  • a 96
  • m 2
  • r 2
  • el 1
  • s 1
  • More… Less…