Search (155 results, page 1 of 8)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  1. Zarrad, R.; Doggaz, N.; Zagrouba, E.: Wikipedia HTML structure analysis for ontology construction (2018) 0.03
    0.031223597 = product of:
      0.12489439 = sum of:
        0.02018312 = weight(_text_:web in 4302) [ClassicSimilarity], result of:
          0.02018312 = score(doc=4302,freq=2.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.18028519 = fieldWeight in 4302, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4302)
        0.010115089 = weight(_text_:information in 4302) [ClassicSimilarity], result of:
          0.010115089 = score(doc=4302,freq=6.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.16796975 = fieldWeight in 4302, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4302)
        0.09459618 = weight(_text_:extraction in 4302) [ClassicSimilarity], result of:
          0.09459618 = score(doc=4302,freq=4.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.46415195 = fieldWeight in 4302, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4302)
      0.25 = coord(3/12)
    
    Abstract
    Previously, the main problem of information extraction was to gather enough data. Today, the challenge is not to collect data but to interpret and represent them in order to deduce information. Ontologies are considered suitable solutions for organizing information. The classic methods for ontology construction from textual documents rely on natural language analysis and are generally based on statistical or linguistic approaches. However, these approaches do not consider the document structure which provides additional knowledge. In fact, the structural organization of documents also conveys meaning. In this context, new approaches focus on document structure analysis to extract knowledge. This paper describes a methodology for ontology construction from web data and especially from Wikipedia articles. It focuses mainly on document structure in order to extract the main concepts and their relations. The proposed methods extract not only taxonomic and non-taxonomic relations but also give the labels describing non-taxonomic relations. The extraction of non-taxonomic relations is established by analyzing the titles hierarchy in each document. A pattern matching is also applied in order to extract known semantic relations. We propose also to apply a refinement to the extracted relations in order to keep only those that are relevant. The refinement process is performed by applying the transitive property, checking the nature of the relations and analyzing taxonomic relations having inverted arguments. Experiments have been performed on French Wikipedia articles related to the medical field. Ontology evaluation is performed by comparing it to gold standards.
  2. Ellis, D.; Vasconcelos, A.: Ranganathan and the Net : using facet analysis to search and organise the World Wide Web (1999) 0.02
    0.0178789 = product of:
      0.0715156 = sum of:
        0.04194983 = weight(_text_:web in 726) [ClassicSimilarity], result of:
          0.04194983 = score(doc=726,freq=6.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.37471575 = fieldWeight in 726, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=726)
        0.0070079383 = weight(_text_:information in 726) [ClassicSimilarity], result of:
          0.0070079383 = score(doc=726,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.116372846 = fieldWeight in 726, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=726)
        0.02255783 = weight(_text_:system in 726) [ClassicSimilarity], result of:
          0.02255783 = score(doc=726,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.20878783 = fieldWeight in 726, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=726)
      0.25 = coord(3/12)
    
    Abstract
    This article gives a cheerfully brief and undetailed account of how to make a faceted classification system, then describes information retrieval and searching on the web. It concludes by saying that facets would be excellent in helping users search and browse the web, but offers no real clues as to how this can be done.
  3. Denton, W.: Putting facets on the Web : an annotated bibliography (2003) 0.02
    0.01612761 = product of:
      0.06451044 = sum of:
        0.03495819 = weight(_text_:web in 2467) [ClassicSimilarity], result of:
          0.03495819 = score(doc=2467,freq=24.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.3122631 = fieldWeight in 2467, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2467)
        0.006529261 = weight(_text_:information in 2467) [ClassicSimilarity], result of:
          0.006529261 = score(doc=2467,freq=10.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.10842399 = fieldWeight in 2467, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2467)
        0.023022989 = weight(_text_:system in 2467) [ClassicSimilarity], result of:
          0.023022989 = score(doc=2467,freq=12.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.21309318 = fieldWeight in 2467, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2467)
      0.25 = coord(3/12)
    
    Abstract
    This is a classified, annotated bibliography about how to design faceted classification systems and make them usable on the World Wide Web. It is the first of three works I will be doing. The second, based on the material here and elsewhere, will discuss how to actually make the faceted system and put it online. The third will be a report of how I did just that, what worked, what didn't, and what I learned. Almost every article or book listed here begins with an explanation of what a faceted classification system is, so I won't (but see Steckel in Background below if you don't already know). They all agree that faceted systems are very appropriate for the web. Even pre-web articles (such as Duncan's in Background, below) assert that hypertext and facets will go together well. Combined, it is possible to take a set of documents and classify them or apply subject headings to describe what they are about, then build a navigational structure so that any user, no matter how he or she approaches the material, no matter what his or her goals, can move and search in a way that makes sense to them, but still get to the same useful results as someone else following a different path to the same goal. There is no one way that everyone will always use when looking for information. The more flexible the organization of the information, the more accommodating it is. Facets are more flexible for hypertext browsing than any enumerative or hierarchical system.
    Consider movie listings in newspapers. Most Canadian newspapers list movie showtimes in two large blocks, for the two major theatre chains. The listings are ordered by region (in large cities), then theatre, then movie, and finally by showtime. Anyone wondering where and when a particular movie is playing must scan the complete listings. Determining what movies are playing in the next half hour is very difficult. When movie listings went onto the web, most sites used a simple faceted organization, always with movie name and theatre, and perhaps with region or neighbourhood (thankfully, theatre chains were left out). They make it easy to pick a theatre and see what movies are playing there, or to pick a movie and see what theatres are showing it. To complete the system, the sites should allow users to browse by neighbourhood and showtime, and to order the results in any way they desired. Thus could people easily find answers to such questions as, "Where is the new James Bond movie playing?" "What's showing at the Roxy tonight?" "I'm going to be out in in Little Finland this afternoon with three hours to kill starting at 2 ... is anything interesting playing?" A hypertext, faceted classification system makes more useful information more easily available to the user. Reading the books and articles below in chronological order will show a certain progression: suggestions that faceting and hypertext might work well, confidence that facets would work well if only someone would make such a system, and finally the beginning of serious work on actually designing, building, and testing faceted web sites. There is a solid basis of how to make faceted classifications (see Vickery in Recommended), but their application online is just starting. Work on XFML (see Van Dijck's work in Recommended) the Exchangeable Faceted Metadata Language, will make this easier. If it follows previous patterns, parts of the Internet community will embrace the idea and make open source software available for others to reuse. It will be particularly beneficial if professionals in both information studies and computer science can work together to build working systems, standards, and code. Each can benefit from the other's expertise in what can be a very complicated and technical area. One particularly nice thing about this area of research is that people interested in combining facets and the web often have web sites where they post their writings.
    This bibliography is not meant to be exhaustive, but unfortunately it is not as complete as I wanted. Some books and articles are not be included, but they may be used in my future work. (These include two books and one article by B.C. Vickery: Faceted Classification Schemes (New Brunswick, NJ: Rutgers, 1966), Classification and Indexing in Science, 3rd ed. (London: Butterworths, 1975), and "Knowledge Representation: A Brief Review" (Journal of Documentation 42 no. 3 (September 1986): 145-159; and A.C. Foskett's "The Future of Faceted Classification" in The Future of Classification, edited by Rita Marcella and Arthur Maltby (Aldershot, England: Gower, 2000): 69-80). Nevertheless, I hope this bibliography will be useful for those both new to or familiar with faceted hypertext systems. Some very basic resources are listed, as well as some very advanced ones. Some example web sites are mentioned, but there is no detailed technical discussion of any software. The user interface to any web site is extremely important, and this is briefly mentioned in two or three places (for example the discussion of lawforwa.org (see Example Web Sites)). The larger question of how to display information graphically and with hypertext is outside the scope of this bibliography. There are five sections: Recommended, Background, Not Relevant, Example Web Sites, and Mailing Lists. Background material is either introductory, advanced, or of peripheral interest, and can be read after the Recommended resources if the reader wants to know more. The Not Relevant category contains articles that may appear in bibliographies but are not relevant for my purposes.
  4. Gnoli, C.; Mei, H.: Freely faceted classification for Web-based information retrieval (2006) 0.02
    0.015954414 = product of:
      0.06381766 = sum of:
        0.03425189 = weight(_text_:web in 534) [ClassicSimilarity], result of:
          0.03425189 = score(doc=534,freq=4.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.3059541 = fieldWeight in 534, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=534)
        0.0070079383 = weight(_text_:information in 534) [ClassicSimilarity], result of:
          0.0070079383 = score(doc=534,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.116372846 = fieldWeight in 534, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=534)
        0.02255783 = weight(_text_:system in 534) [ClassicSimilarity], result of:
          0.02255783 = score(doc=534,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.20878783 = fieldWeight in 534, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=534)
      0.25 = coord(3/12)
    
    Abstract
    In free classification, each concept is expressed by a constant notation, and classmarks are formed by free combinations of them, allowing the retrieval of records from a database by searching any of the component concepts. A refinement of free classification is freely faceted classification, where notation can include facets, expressing the kind of relations held between the concepts. The Integrative Level Classification project aims at testing free and freely faceted classification by applying them to small bibliographical samples in various domains. A sample, called the Dandelion Bibliography of Facet Analysis, is described here. Experience was gained using this system to classify 300 specialized papers dealing with facet analysis itself recorded on a MySQL database and building a Web interface exploiting freely faceted notation. The interface is written in PHP and uses string functions to process the queries and to yield relevant results selected and ordered according to the principles of integrative levels.
  5. Ereshefsky, M.: ¬The poverty of the Linnaean hierarchy : a philosophical study of biological taxonomy (2007) 0.01
    0.014780438 = product of:
      0.08868262 = sum of:
        0.04253545 = weight(_text_:system in 2493) [ClassicSimilarity], result of:
          0.04253545 = score(doc=2493,freq=16.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.3936941 = fieldWeight in 2493, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=2493)
        0.04614717 = product of:
          0.09229434 = sum of:
            0.09229434 = weight(_text_:aufsatzsammlung in 2493) [ClassicSimilarity], result of:
              0.09229434 = score(doc=2493,freq=4.0), product of:
                0.2250708 = queryWeight, product of:
                  6.5610886 = idf(docFreq=169, maxDocs=44218)
                  0.03430388 = queryNorm
                0.41006804 = fieldWeight in 2493, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  6.5610886 = idf(docFreq=169, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2493)
          0.5 = coord(1/2)
      0.16666667 = coord(2/12)
    
    Abstract
    The question of whether biologists should continue to use the Linnaean hierarchy has been a hotly debated issue. Ereshefsky argues that biologists should abandon the Linnaean system and adopt an alternative that is in line with evolutionary theory. He then makes specific recommendations for a post-Linnaean method of classification.
    Footnote
    Rez. in: KO 35(2008) no.4, S.255-259 (B. Hjoerland): "This book was published in 2000 simultaneously in hardback and as an electronic resource, and, in 2007, as a paperback. The author is a professor of philosophy at the University of Calgary, Canada. He has an impressive list of contributions, mostly addressing issues in biological taxonomy such as units of evolution, natural kinds and the species concept. The book is a scholarly criticism of the famous classification system developed by the Swedish botanist Carl Linnaeus (1707-1778). This system consists of both a set of rules for the naming of living organisms (biological nomenclature) and principles of classification. Linné's system has been used and adapted by biologists over a period of almost 250 years. Under the current system of codes, it is now applied to more than two million species of organisms. Inherent in the Linnaean system is the indication of hierarchic relationships. The Linnaean system has been justified primarily on the basis of stability. Although it has been criticized and alternatives have been suggested, it still has its advocates (e.g., Schuh, 2003). One of the alternatives being developed is The International Code of Phylogenetic Nomenclature, known as the PhyloCode for short, a system that radically alters the current nomenclatural rules. The new proposals have provoked hot debate on nomenclatural issues in biology. . . ."
    RSWK
    Art / Evolution / Aufsatzsammlung (BVB)
    Subject
    Art / Evolution / Aufsatzsammlung (BVB)
  6. Hjoerland, B.: Theories of knowledge organization - theories of knowledge (2017) 0.01
    0.014671112 = product of:
      0.05868445 = sum of:
        0.02825637 = weight(_text_:web in 3494) [ClassicSimilarity], result of:
          0.02825637 = score(doc=3494,freq=2.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.25239927 = fieldWeight in 3494, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3494)
        0.014161124 = weight(_text_:information in 3494) [ClassicSimilarity], result of:
          0.014161124 = score(doc=3494,freq=6.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.23515764 = fieldWeight in 3494, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3494)
        0.016266957 = product of:
          0.032533914 = sum of:
            0.032533914 = weight(_text_:22 in 3494) [ClassicSimilarity], result of:
              0.032533914 = score(doc=3494,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.2708308 = fieldWeight in 3494, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3494)
          0.5 = coord(1/2)
      0.25 = coord(3/12)
    
    Pages
    S.22-36
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  7. Putkey, T.: Using SKOS to express faceted classification on the Semantic Web (2011) 0.01
    0.014437592 = product of:
      0.057750367 = sum of:
        0.036104664 = weight(_text_:web in 311) [ClassicSimilarity], result of:
          0.036104664 = score(doc=311,freq=10.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.32250395 = fieldWeight in 311, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=311)
        0.0066071474 = weight(_text_:information in 311) [ClassicSimilarity], result of:
          0.0066071474 = score(doc=311,freq=4.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.10971737 = fieldWeight in 311, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=311)
        0.015038553 = weight(_text_:system in 311) [ClassicSimilarity], result of:
          0.015038553 = score(doc=311,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.13919188 = fieldWeight in 311, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=311)
      0.25 = coord(3/12)
    
    Abstract
    This paper looks at Simple Knowledge Organization System (SKOS) to investigate how a faceted classification can be expressed in RDF and shared on the Semantic Web. Statement of the Problem Faceted classification outlines facets as well as subfacets and facet values. Hierarchical relationships and associative relationships are established in a faceted classification. RDF is used to describe how a specific URI has a relationship to a facet value. Not only does RDF decompose "information into pieces," but by incorporating facet values RDF also given the URI the hierarchical and associative relationships expressed in the faceted classification. Combining faceted classification and RDF creates more knowledge than if the two stood alone. An application understands the subjectpredicate-object relationship in RDF and can display hierarchical and associative relationships based on the object (facet) value. This paper continues to investigate if the above idea is indeed useful, used, and applicable. If so, how can a faceted classification be expressed in RDF? What would this expression look like? Literature Review This paper used the same articles as the paper A Survey of Faceted Classification: History, Uses, Drawbacks and the Semantic Web (Putkey, 2010). In that paper, appropriate resources were discovered by searching in various databases for "faceted classification" and "faceted search," either in the descriptor or title fields. Citations were also followed to find more articles as well as searching the Internet for the same terms. To retrieve the documents about RDF, searches combined "faceted classification" and "RDF, " looking for these words in either the descriptor or title.
    Methodology Based on information from research papers, more research was done on SKOS and examples of SKOS and shared faceted classifications in the Semantic Web and about SKOS and how to express SKOS in RDF/XML. Once confident with these ideas, the author used a faceted taxonomy created in a Vocabulary Design class and encoded it using SKOS. Instead of writing RDF in a program such as Notepad, a thesaurus tool was used to create the taxonomy according to SKOS standards and then export the thesaurus in RDF/XML format. These processes and tools are then analyzed. Results The initial statement of the problem was simply an extension of the survey paper done earlier in this class. To continue on with the research, more research was done into SKOS - a standard for expressing thesauri, taxonomies and faceted classifications so they can be shared on the semantic web.
  8. Frické, M.: Logic and the organization of information (2012) 0.01
    0.013862123 = product of:
      0.05544849 = sum of:
        0.024470733 = weight(_text_:web in 1782) [ClassicSimilarity], result of:
          0.024470733 = score(doc=1782,freq=6.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.21858418 = fieldWeight in 1782, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1782)
        0.01781902 = weight(_text_:information in 1782) [ClassicSimilarity], result of:
          0.01781902 = score(doc=1782,freq=38.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.29590017 = fieldWeight in 1782, product of:
              6.164414 = tf(freq=38.0), with freq of:
                38.0 = termFreq=38.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1782)
        0.013158734 = weight(_text_:system in 1782) [ClassicSimilarity], result of:
          0.013158734 = score(doc=1782,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.1217929 = fieldWeight in 1782, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1782)
      0.25 = coord(3/12)
    
    Abstract
    Logic and the Organization of Information closely examines the historical and contemporary methodologies used to catalogue information objects-books, ebooks, journals, articles, web pages, images, emails, podcasts and more-in the digital era. This book provides an in-depth technical background for digital librarianship, and covers a broad range of theoretical and practical topics including: classification theory, topic annotation, automatic clustering, generalized synonymy and concept indexing, distributed libraries, semantic web ontologies and Simple Knowledge Organization System (SKOS). It also analyzes the challenges facing today's information architects, and outlines a series of techniques for overcoming them. Logic and the Organization of Information is intended for practitioners and professionals working at a design level as a reference book for digital librarianship. Advanced-level students, researchers and academics studying information science, library science, digital libraries and computer science will also find this book invaluable.
    Footnote
    Rez. in: J. Doc. 70(2014) no.4: "Books on the organization of information and knowledge, aimed at a library/information audience, tend to fall into two clear categories. Most are practical and pragmatic, explaining the "how" as much or more than the "why". Some are theoretical, in part or in whole, showing how the practice of classification, indexing, resource description and the like relates to philosophy, logic, and other foundational bases; the books by Langridge (1992) and by Svenonious (2000) are well-known examples this latter kind. To this category certainly belongs a recent book by Martin Frické (2012). The author takes the reader for an extended tour through a variety of aspects of information organization, including classification and taxonomy, alphabetical vocabularies and indexing, cataloguing and FRBR, and aspects of the semantic web. The emphasis throughout is on showing how practice is, or should be, underpinned by formal structures; there is a particular emphasis on first order predicate calculus. The advantages of a greater, and more explicit, use of symbolic logic is a recurring theme of the book. There is a particularly commendable historical dimension, often omitted in texts on this subject. It cannot be said that this book is entirely an easy read, although it is well written with a helpful index, and its arguments are generally well supported by clear and relevant examples. It is thorough and detailed, but thereby seems better geared to the needs of advanced students and researchers than to the practitioners who are suggested as a main market. For graduate students in library/information science and related disciplines, in particular, this will be a valuable resource. I would place it alongside Svenonious' book as the best insight into the theoretical "why" of information organization. It has evoked a good deal of interest, including a set of essay commentaries in Journal of Information Science (Gilchrist et al., 2013). Introducing these, Alan Gilchrist rightly says that Frické deserves a salute for making explicit the fundamental relationship between the ancient discipline of logic and modern information organization. If information science is to continue to develop, and make a contribution to the organization of the information environments of the future, then this book sets the groundwork for the kind of studies which will be needed." (D. Bawden)
    LCSH
    Information Systems
    Information storage and retrieval systems
    Subject
    Information Systems
    Information storage and retrieval systems
  9. Keshet, Y.: Classification systems in the light of sociology of knowledge (2011) 0.01
    0.013756678 = product of:
      0.055026714 = sum of:
        0.02018312 = weight(_text_:web in 4493) [ClassicSimilarity], result of:
          0.02018312 = score(doc=4493,freq=2.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.18028519 = fieldWeight in 4493, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4493)
        0.008258934 = weight(_text_:information in 4493) [ClassicSimilarity], result of:
          0.008258934 = score(doc=4493,freq=4.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.13714671 = fieldWeight in 4493, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4493)
        0.026584659 = weight(_text_:system in 4493) [ClassicSimilarity], result of:
          0.026584659 = score(doc=4493,freq=4.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.24605882 = fieldWeight in 4493, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4493)
      0.25 = coord(3/12)
    
    Abstract
    Purpose - Classification is an important process in making sense of the world, and has a pronounced social dimension. This paper aims to compare folksonomy, a new social classification system currently being developed on the web, with conventional taxonomy in the light of theoretical sociological and anthropological approaches. The co-existence of these two types of classification system raises the questions: Will and should taxonomies be hybridized with folksonomies? What can each of these systems contribute to information-searching processes, and how can the sociology of knowledge provide an answer to these questions? This paper aims also to address these issues. Design/methodology/approach - This paper is situated at the meeting point of the sociology of knowledge, epistemology and information science and aims at examining systems of classification in the light of both classical theory and current late-modern sociological and anthropological approaches. Findings - Using theoretical approaches current in the sociology of science and knowledge, the paper envisages two divergent possible outcomes. Originality/value - While concentrating on classifications systems, this paper addresses the more general social issue of what we know and how it is known. The concept of hybrid knowledge is suggested in order to illuminate the epistemological basis of late-modern knowledge being constructed by hybridizing contradictory modern knowledge categories, such as the subjective with the objective and the social with the natural. Integrating tree-like taxonomies with folksonomies or, in other words, generating a naturalized structural order of objective relations with social, subjective classification systems, can create a vast range of hybrid knowledge.
  10. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.01
    0.012504656 = product of:
      0.050018623 = sum of:
        0.0058399485 = weight(_text_:information in 1418) [ClassicSimilarity], result of:
          0.0058399485 = score(doc=1418,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.09697737 = fieldWeight in 1418, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.03255942 = weight(_text_:system in 1418) [ClassicSimilarity], result of:
          0.03255942 = score(doc=1418,freq=6.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.30135927 = fieldWeight in 1418, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.011619256 = product of:
          0.023238512 = sum of:
            0.023238512 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
              0.023238512 = score(doc=1418,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.19345059 = fieldWeight in 1418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1418)
          0.5 = coord(1/2)
      0.25 = coord(3/12)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  11. Molholt, P.: Qualities of classification schemes for the Information Superhighway (1995) 0.01
    0.011615712 = product of:
      0.04646285 = sum of:
        0.008258934 = weight(_text_:information in 5562) [ClassicSimilarity], result of:
          0.008258934 = score(doc=5562,freq=4.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.13714671 = fieldWeight in 5562, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5562)
        0.026584659 = weight(_text_:system in 5562) [ClassicSimilarity], result of:
          0.026584659 = score(doc=5562,freq=4.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.24605882 = fieldWeight in 5562, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5562)
        0.011619256 = product of:
          0.023238512 = sum of:
            0.023238512 = weight(_text_:22 in 5562) [ClassicSimilarity], result of:
              0.023238512 = score(doc=5562,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.19345059 = fieldWeight in 5562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5562)
          0.5 = coord(1/2)
      0.25 = coord(3/12)
    
    Abstract
    For my segment of this program I'd like to focus on some basic qualities of classification schemes. These qualities are critical to our ability to truly organize knowledge for access. As I see it, there are at least five qualities of note. The first one of these properties that I want to talk about is "authoritative." By this I mean standardized, but I mean more than standardized with a built in consensus-building process. A classification scheme constructed by a collaborative, consensus-building process carries the approval, and the authority, of the discipline groups that contribute to it and that it affects... The next property of classification systems is "expandable," living, responsive, with a clear locus of responsibility for its continuous upkeep. The worst thing you can do with a thesaurus, or a classification scheme, is to finish it. You can't ever finish it because it reflects ongoing intellectual activity... The third property is "intuitive." That is, the system has to be approachable, it has to be transparent, or at least capable of being transparent. It has to have an underlying logic that supports the classification scheme but doesn't dominate it... The fourth property is "organized and logical." I advocate very strongly, and agree with Lois Chan, that classification must be based on a rule-based structure, on somebody's world-view of the syndetic structure... The fifth property is "universal" by which I mean the classification scheme needs be useable by any specific system or application, and be available as a language for multiple purposes.
    Footnote
    Paper presented at the 36th Allerton Institute, 23-25 Oct 94, Allerton Park, Monticello, IL: "New Roles for Classification in Libraries and Information Networks: Presentation and Reports"
    Source
    Cataloging and classification quarterly. 21(1995) no.2, S.19-22
  12. Fripp, D.: Using linked data to classify web documents (2010) 0.01
    0.010781445 = product of:
      0.06468867 = sum of:
        0.05651274 = weight(_text_:web in 4172) [ClassicSimilarity], result of:
          0.05651274 = score(doc=4172,freq=8.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.50479853 = fieldWeight in 4172, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4172)
        0.008175928 = weight(_text_:information in 4172) [ClassicSimilarity], result of:
          0.008175928 = score(doc=4172,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.13576832 = fieldWeight in 4172, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4172)
      0.16666667 = coord(2/12)
    
    Abstract
    Purpose - The purpose of this paper is to find a relationship between traditional faceted classification schemes and semantic web document annotators, particularly in the linked data environment. Design/methodology/approach - A consideration of the conceptual ideas behind faceted classification and linked data architecture is made. Analysis of selected web documents is performed using Calais' Semantic Proxy to support the considerations. Findings - Technical language aside, the principles of both approaches are very similar. Modern classification techniques have the potential to automatically generate metadata to drive more precise information recall by including a semantic layer. Originality/value - Linked data have not been explicitly considered in this context before in the published literature.
    Theme
    Semantic Web
  13. Winske, E.: ¬The development and structure of an urban, regional, and local documents classification scheme (1996) 0.01
    0.010308359 = product of:
      0.06185015 = sum of:
        0.045583192 = weight(_text_:system in 7241) [ClassicSimilarity], result of:
          0.045583192 = score(doc=7241,freq=6.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.42190298 = fieldWeight in 7241, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7241)
        0.016266957 = product of:
          0.032533914 = sum of:
            0.032533914 = weight(_text_:22 in 7241) [ClassicSimilarity], result of:
              0.032533914 = score(doc=7241,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.2708308 = fieldWeight in 7241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7241)
          0.5 = coord(1/2)
      0.16666667 = coord(2/12)
    
    Abstract
    Discusses the reasons for the decision, taken at Florida International University Library to develop an in house classification system for their local documents collections. Reviews the structures of existing classification systems, noting their strengths and weaknesses in relation to the development of an in house system and describes the 5 components of the new system; geography, subject categories, extensions for population group and/or function, extensions for type of publication, and title/series designator
    Footnote
    Paper presented at conference on 'Local documents, a new classification scheme' at the Research Caucus of the Florida Library Association Annual Conference, Fort Lauderdale, Florida 22 Apr 95
  14. Beghtol, C.: General classification systems : structural principles for multidisciplinary specification (1998) 0.01
    0.009353556 = product of:
      0.05612133 = sum of:
        0.024219744 = weight(_text_:web in 44) [ClassicSimilarity], result of:
          0.024219744 = score(doc=44,freq=2.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.21634221 = fieldWeight in 44, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=44)
        0.031901587 = weight(_text_:system in 44) [ClassicSimilarity], result of:
          0.031901587 = score(doc=44,freq=4.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.29527056 = fieldWeight in 44, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=44)
      0.16666667 = coord(2/12)
    
    Abstract
    In this century, knowledge creation, production, dissemination and use have changed profoundly. Intellectual and physical barriers have been substantially reduced by the rise of multidisciplinarity and by the influence of computerization, particularly by the spread of the World Wide Web (WWW). Bibliographic classification systems need to respond to this situation. Three possible strategic responses are described: 1) adopting an existing system; 2) adapting an existing system; and 3) finding new structural principles for classification systems. Examples of these three responses are given. An extended example of the third option uses the knowledge outline in the Spectrum of Britannica Online to suggest a theory of "viewpoint warrant" that could be used to incorporate differing perspectives into general classification systems
  15. Lin, W.-Y.C.: ¬The concept and applications of faceted classifications (2006) 0.01
    0.008480634 = product of:
      0.0508838 = sum of:
        0.032292992 = weight(_text_:web in 5083) [ClassicSimilarity], result of:
          0.032292992 = score(doc=5083,freq=2.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.2884563 = fieldWeight in 5083, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=5083)
        0.01859081 = product of:
          0.03718162 = sum of:
            0.03718162 = weight(_text_:22 in 5083) [ClassicSimilarity], result of:
              0.03718162 = score(doc=5083,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.30952093 = fieldWeight in 5083, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5083)
          0.5 = coord(1/2)
      0.16666667 = coord(2/12)
    
    Abstract
    The concept of faceted classification has its long history and importance in the human civilization. Recently, more and more consumer Web sites adopt the idea of facet analysis to organize and display their products or services. The aim of this article is to review the origin and develpment of faceted classification, as well as its concepts, essence, advantage and limitation. Further, the applications of faceted classification in various domians have been explored.
    Date
    27. 5.2007 22:19:35
  16. Kleineberg, M.: Klassifikation (2023) 0.01
    0.008130171 = product of:
      0.048781026 = sum of:
        0.0115625085 = weight(_text_:information in 783) [ClassicSimilarity], result of:
          0.0115625085 = score(doc=783,freq=4.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.1920054 = fieldWeight in 783, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=783)
        0.03721852 = weight(_text_:system in 783) [ClassicSimilarity], result of:
          0.03721852 = score(doc=783,freq=4.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.34448233 = fieldWeight in 783, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0546875 = fieldNorm(doc=783)
      0.16666667 = coord(2/12)
    
    Abstract
    Dieser Beitrag nimmt eine informationswissenschaftliche Perspektive ein und betrachtet das Phänomen der Klassifikation als Methode und System der Wissensorganisation. Ein Klassifikationssystem wird dabei als Wissensorganisationssystem (engl. knowledge organization system) verstanden, das vor allem im Bereich der Information und Dokumentation zum Einsatz kommt, um dokumentarische Bezugseinheiten (DBE) mit einem kontrollierten Vokabular zu beschreiben (s. Kapitel B 1 Einführung Wissensorganisation). Als eine solche Dokumentationssprache zeichnet sich ein Klassifikationssystem typischerweise durch seine systematische Ordnung aus und dient der inhaltlichen Groberschließung, eignet sich aber auch als Aufstellungssystematik und Hilfsmittel bei der Recherche wie etwa als systematischer Sucheinstieg oder thematischer Filter für Treffermengen. Beim Information Retrieval liegt die Stärke der klassifikatorischen Erschließung durch das hohe Abstraktionsniveau in Überblicks- und Vollständigkeitsrecherchen.
  17. Jacob, E.K.: Classification and categorization : a difference that makes a difference (2004) 0.01
    0.007724053 = product of:
      0.046344317 = sum of:
        0.020026851 = weight(_text_:information in 834) [ClassicSimilarity], result of:
          0.020026851 = score(doc=834,freq=12.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.3325631 = fieldWeight in 834, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=834)
        0.026317468 = weight(_text_:system in 834) [ClassicSimilarity], result of:
          0.026317468 = score(doc=834,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.2435858 = fieldWeight in 834, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0546875 = fieldNorm(doc=834)
      0.16666667 = coord(2/12)
    
    Abstract
    Examination of the systemic properties and forms of interaction that characterize classification and categorization reveals fundamental syntactic differences between the structure of classification systems and the structure of categorization systems. These distinctions lead to meaningful differences in the contexts within which information can be apprehended and influence the semantic information available to the individual. Structural and semantic differences between classification and categorization are differences that make a difference in the information environment by influencing the functional activities of an information system and by contributing to its constitution as an information environment.
    Footnote
    Artikel in einem Themenheft: The philosophy of information
  18. Howarth, L.C.; Jansen, E.H.: Towards a typology of warrant for 21st century knowledge organization systems (2014) 0.01
    0.0076407823 = product of:
      0.045844693 = sum of:
        0.031901587 = weight(_text_:system in 1425) [ClassicSimilarity], result of:
          0.031901587 = score(doc=1425,freq=4.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.29527056 = fieldWeight in 1425, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=1425)
        0.013943106 = product of:
          0.027886212 = sum of:
            0.027886212 = weight(_text_:22 in 1425) [ClassicSimilarity], result of:
              0.027886212 = score(doc=1425,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.23214069 = fieldWeight in 1425, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1425)
          0.5 = coord(1/2)
      0.16666667 = coord(2/12)
    
    Abstract
    This paper returns to Beghtol's (1986) insightful typology of warrant to consider an empirical example of a traditional top-down hierarchical classification system as it continues to evolve in the early 21st century. Our examination considers there may be multiple warrants identified among the processes of design and the relationships to users of the National Occupational Classification (NOC), the standard occupational classification system published in Canada. We argue that this shift in semantic warrant signals a transition for traditional knowledge organization systems, and that warrant continues to be a relevant analytical concept and organizing principle, both within and beyond the domain of bibliographic control.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  19. Broughton, V.: ¬The need for a faceted classification as the basis of all methods of information retrieval (2006) 0.01
    0.0071413564 = product of:
      0.042848136 = sum of:
        0.028543243 = weight(_text_:web in 2874) [ClassicSimilarity], result of:
          0.028543243 = score(doc=2874,freq=4.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.25496176 = fieldWeight in 2874, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
        0.014304894 = weight(_text_:information in 2874) [ClassicSimilarity], result of:
          0.014304894 = score(doc=2874,freq=12.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.23754507 = fieldWeight in 2874, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
      0.16666667 = coord(2/12)
    
    Abstract
    Purpose - The aim of this article is to estimate the impact of faceted classification and the faceted analytical method on the development of various information retrieval tools over the latter part of the twentieth and early twenty-first centuries. Design/methodology/approach - The article presents an examination of various subject access tools intended for retrieval of both print and digital materials to determine whether they exhibit features of faceted systems. Some attention is paid to use of the faceted approach as a means of structuring information on commercial web sites. The secondary and research literature is also surveyed for commentary on and evaluation of facet analysis as a basis for the building of vocabulary and conceptual tools. Findings - The study finds that faceted systems are now very common, with a major increase in their use over the last 15 years. Most LIS subject indexing tools (classifications, subject heading lists and thesauri) now demonstrate features of facet analysis to a greater or lesser degree. A faceted approach is frequently taken to the presentation of product information on commercial web sites, and there is an independent strand of theory and documentation related to this application. There is some significant research on semi-automatic indexing and retrieval (query expansion and query formulation) using facet analytical techniques. Originality/value - This article provides an overview of an important conceptual approach to information retrieval, and compares different understandings and applications of this methodology.
    Footnote
    Beitrag in einem Themenheft: UK library & information schools: UCL SLAIS.
  20. Beghtol, C.: Relationships in classificatory structure and meaning (2001) 0.01
    0.006968718 = product of:
      0.041812308 = sum of:
        0.009910721 = weight(_text_:information in 1138) [ClassicSimilarity], result of:
          0.009910721 = score(doc=1138,freq=4.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.16457605 = fieldWeight in 1138, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1138)
        0.031901587 = weight(_text_:system in 1138) [ClassicSimilarity], result of:
          0.031901587 = score(doc=1138,freq=4.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.29527056 = fieldWeight in 1138, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=1138)
      0.16666667 = coord(2/12)
    
    Abstract
    In a changing information environment, we need to reassess each element of bibliographic control, including classification theories and systems. Every classification system is a theoretical construct imposed an "reality." The classificatory relationships that are assumed to be valuable have generally received less attention than the topics included in the systems. Relationships are functions of both the syntactic and semantic axes of classification systems, and both explicit and implicit relationships are discussed. Examples are drawn from a number of different systems, both bibliographic and non-bibliographic, and the cultural warrant (i. e., the sociocultural context) of classification systems is examined. The part-whole relationship is discussed as an example of a universally valid concept that is treated as a component of the cultural warrant of a classification system.
    Series
    Information science and knowledge management; vol.2

Authors

Languages

Types

  • a 139
  • m 12
  • el 7
  • s 4
  • More… Less…