Search (241 results, page 1 of 13)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  1. Horch, A.; Kett, H.; Weisbecker, A.: Semantische Suchsysteme für das Internet : Architekturen und Komponenten semantischer Suchmaschinen (2013) 0.05
    0.048509195 = product of:
      0.14552759 = sum of:
        0.04036624 = weight(_text_:web in 4063) [ClassicSimilarity], result of:
          0.04036624 = score(doc=4063,freq=8.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.36057037 = fieldWeight in 4063, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4063)
        0.011679897 = weight(_text_:information in 4063) [ClassicSimilarity], result of:
          0.011679897 = score(doc=4063,freq=8.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.19395474 = fieldWeight in 4063, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4063)
        0.066896796 = weight(_text_:suche in 4063) [ClassicSimilarity], result of:
          0.066896796 = score(doc=4063,freq=4.0), product of:
            0.17138755 = queryWeight, product of:
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03430388 = queryNorm
            0.3903247 = fieldWeight in 4063, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4063)
        0.026584659 = weight(_text_:system in 4063) [ClassicSimilarity], result of:
          0.026584659 = score(doc=4063,freq=4.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.24605882 = fieldWeight in 4063, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4063)
      0.33333334 = coord(4/12)
    
    Abstract
    In der heutigen Zeit nimmt die Flut an Informationen exponentiell zu. In dieser »Informationsexplosion« entsteht täglich eine unüberschaubare Menge an neuen Informationen im Web: Beispielsweise 430 deutschsprachige Artikel bei Wikipedia, 2,4 Mio. Tweets bei Twitter und 12,2 Mio. Kommentare bei Facebook. Während in Deutschland vor einigen Jahren noch Google als nahezu einzige Suchmaschine beim Zugriff auf Informationen im Web genutzt wurde, nehmen heute die u.a. in Social Media veröffentlichten Meinungen und damit die Vorauswahl sowie Bewertung von Informationen einzelner Experten und Meinungsführer an Bedeutung zu. Aber wie können themenspezifische Informationen nun effizient für konkrete Fragestellungen identifiziert und bedarfsgerecht aufbereitet und visualisiert werden? Diese Studie gibt einen Überblick über semantische Standards und Formate, die Prozesse der semantischen Suche, Methoden und Techniken semantischer Suchsysteme, Komponenten zur Entwicklung semantischer Suchmaschinen sowie den Aufbau bestehender Anwendungen. Die Studie erläutert den prinzipiellen Aufbau semantischer Suchsysteme und stellt Methoden der semantischen Suche vor. Zudem werden Softwarewerkzeuge vorgestellt, mithilfe derer einzelne Funktionalitäten von semantischen Suchmaschinen realisiert werden können. Abschließend erfolgt die Betrachtung bestehender semantischer Suchmaschinen zur Veranschaulichung der Unterschiede der Systeme im Aufbau sowie in der Funktionalität.
    RSWK
    Suchmaschine / Semantic Web / Information Retrieval
    Suchmaschine / Information Retrieval / Ranking / Datenstruktur / Kontextbezogenes System
    Subject
    Suchmaschine / Semantic Web / Information Retrieval
    Suchmaschine / Information Retrieval / Ranking / Datenstruktur / Kontextbezogenes System
  2. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie (2005) 0.03
    0.03478675 = product of:
      0.139147 = sum of:
        0.008175928 = weight(_text_:information in 1852) [ClassicSimilarity], result of:
          0.008175928 = score(doc=1852,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.13576832 = fieldWeight in 1852, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1852)
        0.11470412 = weight(_text_:suche in 1852) [ClassicSimilarity], result of:
          0.11470412 = score(doc=1852,freq=6.0), product of:
            0.17138755 = queryWeight, product of:
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03430388 = queryNorm
            0.6692675 = fieldWeight in 1852, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1852)
        0.016266957 = product of:
          0.032533914 = sum of:
            0.032533914 = weight(_text_:22 in 1852) [ClassicSimilarity], result of:
              0.032533914 = score(doc=1852,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.2708308 = fieldWeight in 1852, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1852)
          0.5 = coord(1/2)
      0.25 = coord(3/12)
    
    Abstract
    Ontologien werden eingesetzt, um durch semantische Fundierung insbesondere für das Dokumentenretrieval eine grundlegend bessere Basis zu haben, als dies gegenwärtiger Stand der Technik ist. Vorgestellt wird eine an der FH Darmstadt entwickelte und eingesetzte Ontologie, die den Gegenstandsbereich Hochschule sowohl breit abdecken und gleichzeitig differenziert semantisch beschreiben soll. Das Problem der semantischen Suche besteht nun darin, dass sie für Informationssuchende so einfach wie bei gängigen Suchmaschinen zu nutzen sein soll, und gleichzeitig auf der Grundlage des aufwendigen Informationsmodells hochwertige Ergebnisse liefern muss. Es wird beschrieben, welche Möglichkeiten die verwendete Software K-Infinity bereitstellt und mit welchem Konzept diese Möglichkeiten für eine semantische Suche nach Dokumenten und anderen Informationseinheiten (Personen, Veranstaltungen, Projekte etc.) eingesetzt werden.
    Date
    11. 2.2011 18:22:58
    Source
    Information - Wissenschaft und Praxis. 56(2005) H.5/6, S.281-290
  3. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie : Ontologie-basiertes Information-Filtering und -Retrieval mit relationalen Datenbanken (2005) 0.03
    0.03478675 = product of:
      0.139147 = sum of:
        0.008175928 = weight(_text_:information in 4324) [ClassicSimilarity], result of:
          0.008175928 = score(doc=4324,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.13576832 = fieldWeight in 4324, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4324)
        0.11470412 = weight(_text_:suche in 4324) [ClassicSimilarity], result of:
          0.11470412 = score(doc=4324,freq=6.0), product of:
            0.17138755 = queryWeight, product of:
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03430388 = queryNorm
            0.6692675 = fieldWeight in 4324, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4324)
        0.016266957 = product of:
          0.032533914 = sum of:
            0.032533914 = weight(_text_:22 in 4324) [ClassicSimilarity], result of:
              0.032533914 = score(doc=4324,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.2708308 = fieldWeight in 4324, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4324)
          0.5 = coord(1/2)
      0.25 = coord(3/12)
    
    Abstract
    Ontologien werden eingesetzt, um durch semantische Fundierung insbesondere für das Dokumentenretrieval eine grundlegend bessere Basis zu haben, als dies gegenwärtiger Stand der Technik ist. Vorgestellt wird eine an der FH Darmstadt entwickelte und eingesetzte Ontologie, die den Gegenstandsbereich Hochschule sowohl breit abdecken und gleichzeitig differenziert semantisch beschreiben soll. Das Problem der semantischen Suche besteht nun darin, dass sie für Informationssuchende so einfach wie bei gängigen Suchmaschinen zu nutzen sein soll, und gleichzeitig auf der Grundlage des aufwendigen Informationsmodells hochwertige Ergebnisse liefern muss. Es wird beschrieben, welche Möglichkeiten die verwendete Software K-Infinity bereitstellt und mit welchem Konzept diese Möglichkeiten für eine semantische Suche nach Dokumenten und anderen Informationseinheiten (Personen, Veranstaltungen, Projekte etc.) eingesetzt werden.
    Date
    11. 2.2011 18:22:25
  4. ALEPH 500 mit multilingualem Thesaurus (2003) 0.03
    0.03176343 = product of:
      0.12705372 = sum of:
        0.024219744 = weight(_text_:web in 1639) [ClassicSimilarity], result of:
          0.024219744 = score(doc=1639,freq=2.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.21634221 = fieldWeight in 1639, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1639)
        0.080276154 = weight(_text_:suche in 1639) [ClassicSimilarity], result of:
          0.080276154 = score(doc=1639,freq=4.0), product of:
            0.17138755 = queryWeight, product of:
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03430388 = queryNorm
            0.46838963 = fieldWeight in 1639, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.046875 = fieldNorm(doc=1639)
        0.02255783 = weight(_text_:system in 1639) [ClassicSimilarity], result of:
          0.02255783 = score(doc=1639,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.20878783 = fieldWeight in 1639, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=1639)
      0.25 = coord(3/12)
    
    Abstract
    Das System ALEPH 500 (Version 14.2) bietet den Benutzern mit der Weiterentwicklung des "Multilingualen Thesaurus" verfeinerte Recherchefunktionen an, z.B. - Erhöhung der Treffsicherheit - Ausschluss von nicht zutreffenden Suchergebnissen - Aufspüren aller für die Suche relevanter Titel - Sprachunabhängige Suche - Beziehungen zwischen Begriffen. Im ALEPH 500-Web OPAC wird der Thesaurus in zwei Fenstern angezeigt. Links ist der Thesaurus-Baum mit Hierarchien und Begriffsbeziehungen abgebildet. Parallel dazu werden rechts die Informationen zum ausgewählten Deskriptor dargestellt. Von diesem Fenster aus sind weitere thesaurusbezogene Funktionen ausführbar. Der Thesaurus ist direkt mit dem Titelkatalog verknüpft. Somit kann sich der Benutzer vom gewählten Deskriptor ausgehend sofort die vorhandenen Titel im OPAC anzeigen lassen. Sowohl die Einzelrecherche über einen Deskriptor als auch die Top DownRecherche über einen Thesaurus-Baumzweig werden im Suchverlauf des Titelkatalogs mitgeführt. Die Recherche kann mit den bekannten Funktionen in ALEPH 500 erweitert, eingeschränkt, modifiziert oder als SDI-Profil abgelegt werden. Erfassung und Pflege des Thesaurusvokabublars erfolgen im Katalogisierungsmodul unter Beachtung allgemein gültiger Regeln mit Hilfe maßgeschneiderter Schablonen, die modifizierbar sind. Durch entsprechende Feldbelegungen können die vielfältigen Beziehungen eines Deskriptors abgebildet sowie Sprachvarianten hinterlegt werden. Hintergrundverknüpfungen sorgen dafür, dass sich Änderungen im Thesaurus sofort und direkt auf die bibliographischen Daten auswirken.
  5. Küssow, J.: ALEPH 500 mit multilingualem Thesaurus (2003) 0.03
    0.03176343 = product of:
      0.12705372 = sum of:
        0.024219744 = weight(_text_:web in 1640) [ClassicSimilarity], result of:
          0.024219744 = score(doc=1640,freq=2.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.21634221 = fieldWeight in 1640, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1640)
        0.080276154 = weight(_text_:suche in 1640) [ClassicSimilarity], result of:
          0.080276154 = score(doc=1640,freq=4.0), product of:
            0.17138755 = queryWeight, product of:
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.03430388 = queryNorm
            0.46838963 = fieldWeight in 1640, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.996156 = idf(docFreq=812, maxDocs=44218)
              0.046875 = fieldNorm(doc=1640)
        0.02255783 = weight(_text_:system in 1640) [ClassicSimilarity], result of:
          0.02255783 = score(doc=1640,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.20878783 = fieldWeight in 1640, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=1640)
      0.25 = coord(3/12)
    
    Abstract
    Das System ALEPH 500 (Version 14.2) bietet den Benutzern mit der Weiterentwicklung des "Multilingualen Thesaurus" verfeinerte Recherchefunktionen an, z.B. - Erhöhung der Treffsicherheit - Ausschluss von nicht zutreffenden Suchergebnissen - Aufspüren aller für die Suche relevanter Titel - Sprachunabhängige Suche - Beziehungen zwischen Begriffen. Im ALEPH 500-Web OPAC wird der Thesaurus in zwei Fenstern angezeigt. Links ist der Thesaurus-Baum mit Hierarchien und Begriffsbeziehungen abgebildet. Parallel dazu werden rechts die Informationen zum ausgewählten Deskriptor dargestellt. Von diesem Fenster aus sind weitere thesaurusbezogene Funktionen ausführbar. Der Thesaurus ist direkt mit dem Titelkatalog verknüpft. Somit kann sich der Benutzer vom gewählten Deskriptor ausgehend sofort die vorhandenen Titel im OPAC anzeigen lassen. Sowohl die Einzelrecherche über einen Deskriptor als auch die Top DownRecherche über einen Thesaurus-Baumzweig werden im Suchverlauf des Titelkatalogs mitgeführt. Die Recherche kann mit den bekannten Funktionen in ALEPH 500 erweitert, eingeschränkt, modifiziert oder als SDI-Profil abgelegt werden. Erfassung und Pflege des Thesaurusvokabublars erfolgen im Katalogisierungsmodul unter Beachtung allgemein gültiger Regeln mit Hilfe maßgeschneiderter Schablonen, die modifizierbar sind. Durch entsprechende Feldbelegungen können die vielfältigen Beziehungen eines Deskriptors abgebildet sowie Sprachvarianten hinterlegt werden. Hintergrundverknüpfungen sorgen dafür, dass sich Änderungen im Thesaurus sofort und direkt auf die bibliographischen Daten auswirken.
  6. Koike, A.; Takagi, T.: Knowledge discovery based on an implicit and explicit conceptual network (2007) 0.03
    0.029041467 = product of:
      0.11616587 = sum of:
        0.011679897 = weight(_text_:information in 85) [ClassicSimilarity], result of:
          0.011679897 = score(doc=85,freq=8.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.19395474 = fieldWeight in 85, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=85)
        0.06688959 = weight(_text_:extraction in 85) [ClassicSimilarity], result of:
          0.06688959 = score(doc=85,freq=2.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.32820496 = fieldWeight in 85, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.0390625 = fieldNorm(doc=85)
        0.037596382 = weight(_text_:system in 85) [ClassicSimilarity], result of:
          0.037596382 = score(doc=85,freq=8.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.3479797 = fieldWeight in 85, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=85)
      0.25 = coord(3/12)
    
    Abstract
    The amount of knowledge accumulated in published scientific papers has increased due to the continuing progress being made in scientific research. Since numerous papers have only reported fragments of scientific facts, there are possibilities for discovering new knowledge by connecting these facts. We therefore developed a system called BioTermNet to draft a conceptual network with hybrid methods of information extraction and information retrieval. Two concepts are regarded as related in this system if (a) their relationship is clearly described in MEDLINE abstracts or (b) they have distinctively co-occurred in abstracts. PRIME data, including protein interactions and functions extracted by NLP techniques, are used in the former, and the Singhalmeasure for information retrieval is used in the latter. Relationships that are not clearly or directly described in an abstract can be extracted by connecting multiple concepts. To evaluate how well this system performs, Swanson's association between Raynaud's disease and fish oil and that between migraine and magnesium were tested with abstracts that had been published before the discovery of these associations. The result was that when start and end concepts were given, plausible and understandable intermediate concepts connecting them could be detected. When only the start concept was given, not only the focused concept (magnesium and fish oil) but also other probable concepts could be detected as related concept candidates. Finally, this system was applied to find diseases related to the BRCA1 gene. Some other new potentially related diseases were detected along with diseases whose relations to BRCA1 were already known.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.1, S.51-65
  7. Ru, C.; Tang, J.; Li, S.; Xie, S.; Wang, T.: Using semantic similarity to reduce wrong labels in distant supervision for relation extraction (2018) 0.03
    0.025901606 = product of:
      0.15540963 = sum of:
        0.0058399485 = weight(_text_:information in 5055) [ClassicSimilarity], result of:
          0.0058399485 = score(doc=5055,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.09697737 = fieldWeight in 5055, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5055)
        0.14956969 = weight(_text_:extraction in 5055) [ClassicSimilarity], result of:
          0.14956969 = score(doc=5055,freq=10.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.7338887 = fieldWeight in 5055, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5055)
      0.16666667 = coord(2/12)
    
    Abstract
    Distant supervision (DS) has the advantage of automatically generating large amounts of labelled training data and has been widely used for relation extraction. However, there are usually many wrong labels in the automatically labelled data in distant supervision (Riedel, Yao, & McCallum, 2010). This paper presents a novel method to reduce the wrong labels. The proposed method uses the semantic Jaccard with word embedding to measure the semantic similarity between the relation phrase in the knowledge base and the dependency phrases between two entities in a sentence to filter the wrong labels. In the process of reducing wrong labels, the semantic Jaccard algorithm selects a core dependency phrase to represent the candidate relation in a sentence, which can capture features for relation classification and avoid the negative impact from irrelevant term sequences that previous neural network models of relation extraction often suffer. In the process of relation classification, the core dependency phrases are also used as the input of a convolutional neural network (CNN) for relation classification. The experimental results show that compared with the methods using original DS data, the methods using filtered DS data performed much better in relation extraction. It indicates that the semantic similarity based method is effective in reducing wrong labels. The relation extraction performance of the CNN model using the core dependency phrases as input is the best of all, which indicates that using the core dependency phrases as input of CNN is enough to capture the features for relation classification and could avoid negative impact from irrelevant terms.
    Source
    Information processing and management. 54(2018) no.4, S.593-608
  8. Faaborg, A.; Lagoze, C.: Semantic browsing (2003) 0.02
    0.023414142 = product of:
      0.09365657 = sum of:
        0.06921369 = weight(_text_:web in 1026) [ClassicSimilarity], result of:
          0.06921369 = score(doc=1026,freq=12.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.6182494 = fieldWeight in 1026, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1026)
        0.008175928 = weight(_text_:information in 1026) [ClassicSimilarity], result of:
          0.008175928 = score(doc=1026,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.13576832 = fieldWeight in 1026, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1026)
        0.016266957 = product of:
          0.032533914 = sum of:
            0.032533914 = weight(_text_:22 in 1026) [ClassicSimilarity], result of:
              0.032533914 = score(doc=1026,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.2708308 = fieldWeight in 1026, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1026)
          0.5 = coord(1/2)
      0.25 = coord(3/12)
    
    Abstract
    We have created software applications that allow users to both author and use Semantic Web metadata. To create and use a layer of semantic content on top of the existing Web, we have (1) implemented a user interface that expedites the task of attributing metadata to resources on the Web, and (2) augmented a Web browser to leverage this semantic metadata to provide relevant information and tasks to the user. This project provides a framework for annotating and reorganizing existing files, pages, and sites on the Web that is similar to Vannevar Bushrsquos original concepts of trail blazing and associative indexing.
    Source
    Research and advanced technology for digital libraries : 7th European Conference, proceedings / ECDL 2003, Trondheim, Norway, August 17-22, 2003
    Theme
    Semantic Web
  9. Atanassova, I.; Bertin, M.: Semantic facets for scientific information retrieval (2014) 0.02
    0.020456687 = product of:
      0.08182675 = sum of:
        0.02825637 = weight(_text_:web in 4471) [ClassicSimilarity], result of:
          0.02825637 = score(doc=4471,freq=2.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.25239927 = fieldWeight in 4471, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4471)
        0.016351856 = weight(_text_:information in 4471) [ClassicSimilarity], result of:
          0.016351856 = score(doc=4471,freq=8.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.27153665 = fieldWeight in 4471, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4471)
        0.03721852 = weight(_text_:system in 4471) [ClassicSimilarity], result of:
          0.03721852 = score(doc=4471,freq=4.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.34448233 = fieldWeight in 4471, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4471)
      0.25 = coord(3/12)
    
    Abstract
    We present an Information Retrieval System for scientific publications that provides the possibility to filter results according to semantic facets. We use sentence-level semantic annotations that identify specific semantic relations in texts, such as methods, definitions, hypotheses, that correspond to common information needs related to scientific literature. The semantic annotations are obtained using a rule-based method that identifies linguistic clues organized into a linguistic ontology. The system is implemented using Solr Search Server and offers efficient search and navigation in scientific papers.
    Series
    Communications in computer and information science; vol.475
    Source
    Semantic Web Evaluation Challenge. SemWebEval 2014 at ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014, Revised Selected Papers. Eds.: V. Presutti et al
  10. Chang, C.-H.; Hsu, C.-C.: Integrating query expansion and conceptual relevance feedback for personalized Web information retrieval (1998) 0.02
    0.020390071 = product of:
      0.081560284 = sum of:
        0.048941467 = weight(_text_:web in 1319) [ClassicSimilarity], result of:
          0.048941467 = score(doc=1319,freq=6.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.43716836 = fieldWeight in 1319, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1319)
        0.016351856 = weight(_text_:information in 1319) [ClassicSimilarity], result of:
          0.016351856 = score(doc=1319,freq=8.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.27153665 = fieldWeight in 1319, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1319)
        0.016266957 = product of:
          0.032533914 = sum of:
            0.032533914 = weight(_text_:22 in 1319) [ClassicSimilarity], result of:
              0.032533914 = score(doc=1319,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.2708308 = fieldWeight in 1319, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1319)
          0.5 = coord(1/2)
      0.25 = coord(3/12)
    
    Abstract
    Keyword based querying has been an immediate and efficient way to specify and retrieve related information that the user inquired. However, conventional document ranking based on an automatic assessment of document relevance to the query may not be the best approach when little information is given. Proposes an idea to integrate 2 existing techniques, query expansion and relevance feedback to achieve a concept-based information search for the Web
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue devoted to the Proceedings of the 7th International World Wide Web Conference, held 14-18 April 1998, Brisbane, Australia
  11. Colace, F.; Santo, M. de; Greco, L.; Napoletano, P.: Improving relevance feedback-based query expansion by the use of a weighted word pairs approach (2015) 0.02
    0.020087227 = product of:
      0.120523356 = sum of:
        0.0070079383 = weight(_text_:information in 2263) [ClassicSimilarity], result of:
          0.0070079383 = score(doc=2263,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.116372846 = fieldWeight in 2263, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2263)
        0.113515414 = weight(_text_:extraction in 2263) [ClassicSimilarity], result of:
          0.113515414 = score(doc=2263,freq=4.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.55698234 = fieldWeight in 2263, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.046875 = fieldNorm(doc=2263)
      0.16666667 = coord(2/12)
    
    Abstract
    In this article, the use of a new term extraction method for query expansion (QE) in text retrieval is investigated. The new method expands the initial query with a structured representation made of weighted word pairs (WWP) extracted from a set of training documents (relevance feedback). Standard text retrieval systems can handle a WWP structure through custom Boolean weighted models. We experimented with both the explicit and pseudorelevance feedback schemas and compared the proposed term extraction method with others in the literature, such as KLD and RM3. Evaluations have been conducted on a number of test collections (Text REtrivel Conference [TREC]-6, -7, -8, -9, and -10). Results demonstrated that the QE method based on this new structure outperforms the baseline.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.11, S.2223-2234
  12. Vo, D.-T.; Bagheri, E.: Feature-enriched matrix factorization for relation extraction (2019) 0.02
    0.019394545 = product of:
      0.116367266 = sum of:
        0.009343918 = weight(_text_:information in 5105) [ClassicSimilarity], result of:
          0.009343918 = score(doc=5105,freq=8.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.1551638 = fieldWeight in 5105, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=5105)
        0.10702335 = weight(_text_:extraction in 5105) [ClassicSimilarity], result of:
          0.10702335 = score(doc=5105,freq=8.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.52512795 = fieldWeight in 5105, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03125 = fieldNorm(doc=5105)
      0.16666667 = coord(2/12)
    
    Abstract
    Relation extraction aims at finding meaningful relationships between two named entities from within unstructured textual content. In this paper, we define the problem of information extraction as a matrix completion problem where we employ the notion of universal schemas formed as a collection of patterns derived from open information extraction systems as well as additional features derived from grammatical clause patterns and statistical topic models. One of the challenges with earlier work that employ matrix completion methods is that such approaches require a sufficient number of observed relation instances to be able to make predictions. However, in practice there is often insufficient number of explicit evidence supporting each relation type that could be used within the matrix model. Hence, existing work suffer from a low recall. In our work, we extend the work in the state of the art by proposing novel ways of integrating two sets of features, i.e., topic models and grammatical clause structures, for alleviating the low recall problem. More specifically, we propose that it is possible to (1) employ grammatical clause information from textual sentences to serve as an implicit indication of relation type and argument similarity. The basis for this is that it is likely that similar relation types and arguments are observed within similar grammatical structures, and (2) benefit from statistical topic models to determine similarity between relation types and arguments. We employ statistical topic models to determine relation type and argument similarity based on their co-occurrence within the same topics. We have performed extensive experiments based on both gold standard and silver standard datasets. The experiments show that our approach has been able to address the low recall problem in existing methods, by showing an improvement of 21% on recall and 8% on f-measure over the state of the art baseline.
    Source
    Information processing and management. 56(2019) no.3, S.424-444
  13. Shiri, A.A.; Revie, C.: Query expansion behavior within a thesaurus-enhanced search environment : a user-centered evaluation (2006) 0.02
    0.018813506 = product of:
      0.056440514 = sum of:
        0.02018312 = weight(_text_:web in 56) [ClassicSimilarity], result of:
          0.02018312 = score(doc=56,freq=2.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.18028519 = fieldWeight in 56, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=56)
        0.0058399485 = weight(_text_:information in 56) [ClassicSimilarity], result of:
          0.0058399485 = score(doc=56,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.09697737 = fieldWeight in 56, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=56)
        0.018798191 = weight(_text_:system in 56) [ClassicSimilarity], result of:
          0.018798191 = score(doc=56,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.17398985 = fieldWeight in 56, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=56)
        0.011619256 = product of:
          0.023238512 = sum of:
            0.023238512 = weight(_text_:22 in 56) [ClassicSimilarity], result of:
              0.023238512 = score(doc=56,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.19345059 = fieldWeight in 56, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=56)
          0.5 = coord(1/2)
      0.33333334 = coord(4/12)
    
    Abstract
    The study reported here investigated the query expansion behavior of end-users interacting with a thesaurus-enhanced search system on the Web. Two groups, namely academic staff and postgraduate students, were recruited into this study. Data were collected from 90 searches performed by 30 users using the OVID interface to the CAB abstracts database. Data-gathering techniques included questionnaires, screen capturing software, and interviews. The results presented here relate to issues of search-topic and search-term characteristics, number and types of expanded queries, usefulness of thesaurus terms, and behavioral differences between academic staff and postgraduate students in their interaction. The key conclusions drawn were that (a) academic staff chose more narrow and synonymous terms than did postgraduate students, who generally selected broader and related terms; (b) topic complexity affected users' interaction with the thesaurus in that complex topics required more query expansion and search term selection; (c) users' prior topic-search experience appeared to have a significant effect on their selection and evaluation of thesaurus terms; (d) in 50% of the searches where additional terms were suggested from the thesaurus, users stated that they had not been aware of the terms at the beginning of the search; this observation was particularly noticeable in the case of postgraduate students.
    Date
    22. 7.2006 16:32:43
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.4, S.462-478
  14. Bradford, R.B.: Relationship discovery in large text collections using Latent Semantic Indexing (2006) 0.02
    0.018791981 = product of:
      0.075167924 = sum of:
        0.012360842 = weight(_text_:information in 1163) [ClassicSimilarity], result of:
          0.012360842 = score(doc=1163,freq=14.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.20526241 = fieldWeight in 1163, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1163)
        0.053511675 = weight(_text_:extraction in 1163) [ClassicSimilarity], result of:
          0.053511675 = score(doc=1163,freq=2.0), product of:
            0.20380433 = queryWeight, product of:
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03430388 = queryNorm
            0.26256397 = fieldWeight in 1163, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.941145 = idf(docFreq=315, maxDocs=44218)
              0.03125 = fieldNorm(doc=1163)
        0.009295405 = product of:
          0.01859081 = sum of:
            0.01859081 = weight(_text_:22 in 1163) [ClassicSimilarity], result of:
              0.01859081 = score(doc=1163,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.15476047 = fieldWeight in 1163, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1163)
          0.5 = coord(1/2)
      0.25 = coord(3/12)
    
    Abstract
    This paper addresses the problem of information discovery in large collections of text. For users, one of the key problems in working with such collections is determining where to focus their attention. In selecting documents for examination, users must be able to formulate reasonably precise queries. Queries that are too broad will greatly reduce the efficiency of information discovery efforts by overwhelming the users with peripheral information. In order to formulate efficient queries, a mechanism is needed to automatically alert users regarding potentially interesting information contained within the collection. This paper presents the results of an experiment designed to test one approach to generation of such alerts. The technique of latent semantic indexing (LSI) is used to identify relationships among entities of interest. Entity extraction software is used to pre-process the text of the collection so that the LSI space contains representation vectors for named entities in addition to those for individual terms. In the LSI space, the cosine of the angle between the representation vectors for two entities captures important information regarding the degree of association of those two entities. For appropriate choices of entities, determining the entity pairs with the highest mutual cosine values yields valuable information regarding the contents of the text collection. The test database used for the experiment consists of 150,000 news articles. The proposed approach for alert generation is tested using a counterterrorism analysis example. The approach is shown to have significant potential for aiding users in rapidly focusing on information of potential importance in large text collections. The approach also has value in identifying possible use of aliases.
    Source
    Proceedings of the Fourth Workshop on Link Analysis, Counterterrorism, and Security, SIAM Data Mining Conference, Bethesda, MD, 20-22 April, 2006. [http://www.siam.org/meetings/sdm06/workproceed/Link%20Analysis/15.pdf]
  15. Bilal, D.; Kirby, J.: Differences and similarities in information seeking : children and adults as Web users (2002) 0.02
    0.01873049 = product of:
      0.07492196 = sum of:
        0.048439488 = weight(_text_:web in 2591) [ClassicSimilarity], result of:
          0.048439488 = score(doc=2591,freq=18.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.43268442 = fieldWeight in 2591, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2591)
        0.011443916 = weight(_text_:information in 2591) [ClassicSimilarity], result of:
          0.011443916 = score(doc=2591,freq=12.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.19003606 = fieldWeight in 2591, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2591)
        0.015038553 = weight(_text_:system in 2591) [ClassicSimilarity], result of:
          0.015038553 = score(doc=2591,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.13919188 = fieldWeight in 2591, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=2591)
      0.25 = coord(3/12)
    
    Abstract
    This study examined the success and information seeking behaviors of seventh-grade science students and graduate students in information science in using Yahooligans! Web search engine/directory. It investigated these users' cognitive, affective, and physical behaviors as they sought the answer for a fact-finding task. It analyzed and compared the overall patterns of children's and graduate students' Web activities, including searching moves, browsing moves, backtracking moves, looping moves, screen scrolling, target location and deviation moves, and the time they took to complete the task. The authors applied Bilal's Web Traversal Measure to quantify these users' effectiveness, efficiency, and quality of moves they made. Results were based on 14 children's Web sessions and nine graduate students' sessions. Both groups' Web activities were captured online using Lotus ScreenCam, a software package that records and replays online activities in Web browsers. Children's affective states were captured via exit interviews. Graduate students' affective states were extracted from the journal writings they kept during the traversal process. The study findings reveal that 89% of the graduate students found the correct answer to the search task as opposed to 50% of the children. Based on the Measure, graduate students' weighted effectiveness, efficiency, and quality of the Web moves they made were much higher than those of the children. Regardless of success and weighted scores, however, similarities and differences in information seeking were found between the two groups. Yahooligans! poor structure of keyword searching was a major factor that contributed to the "breakdowns" children and graduate students experienced. Unlike children, graduate students were able to recover from "breakdowns" quickly and effectively. Three main factors influenced these users' performance: ability to recover from "breakdowns", navigational style, and focus on task. Children and graduate students made recommendations for improving Yahooligans! interface design. Implications for Web user training and system design improvements are made.
    Footnote
    Beitrag in einem Themenheft: "Issues of context in information retrieval (IR)"
    Source
    Information processing and management. 38(2002) no.5, S.649-670
  16. Semantic search over the Web (2012) 0.02
    0.018315595 = product of:
      0.07326238 = sum of:
        0.05355187 = weight(_text_:web in 411) [ClassicSimilarity], result of:
          0.05355187 = score(doc=411,freq=22.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.47835067 = fieldWeight in 411, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=411)
        0.004671959 = weight(_text_:information in 411) [ClassicSimilarity], result of:
          0.004671959 = score(doc=411,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.0775819 = fieldWeight in 411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=411)
        0.015038553 = weight(_text_:system in 411) [ClassicSimilarity], result of:
          0.015038553 = score(doc=411,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.13919188 = fieldWeight in 411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=411)
      0.25 = coord(3/12)
    
    Abstract
    The Web has become the world's largest database, with search being the main tool that allows organizations and individuals to exploit its huge amount of information. Search on the Web has been traditionally based on textual and structural similarities, ignoring to a large degree the semantic dimension, i.e., understanding the meaning of the query and of the document content. Combining search and semantics gives birth to the idea of semantic search. Traditional search engines have already advertised some semantic dimensions. Some of them, for instance, can enhance their generated result sets with documents that are semantically related to the query terms even though they may not include these terms. Nevertheless, the exploitation of the semantic search has not yet reached its full potential. In this book, Roberto De Virgilio, Francesco Guerra and Yannis Velegrakis present an extensive overview of the work done in Semantic Search and other related areas. They explore different technologies and solutions in depth, making their collection a valuable and stimulating reading for both academic and industrial researchers. The book is divided into three parts. The first introduces the readers to the basic notions of the Web of Data. It describes the different kinds of data that exist, their topology, and their storing and indexing techniques. The second part is dedicated to Web Search. It presents different types of search, like the exploratory or the path-oriented, alongside methods for their efficient and effective implementation. Other related topics included in this part are the use of uncertainty in query answering, the exploitation of ontologies, and the use of semantics in mashup design and operation. The focus of the third part is on linked data, and more specifically, on applying ideas originating in recommender systems on linked data management, and on techniques for the efficiently querying answering on linked data.
    Content
    Inhalt: Introduction.- Part I Introduction to Web of Data.- Topology of the Web of Data.- Storing and Indexing Massive RDF Data Sets.- Designing Exploratory Search Applications upon Web Data Sources.- Part II Search over the Web.- Path-oriented Keyword Search query over RDF.- Interactive Query Construction for Keyword Search on the SemanticWeb.- Understanding the Semantics of Keyword Queries on Relational DataWithout Accessing the Instance.- Keyword-Based Search over Semantic Data.- Semantic Link Discovery over Relational Data.- Embracing Uncertainty in Entity Linking.- The Return of the Entity-Relationship Model: Ontological Query Answering.- Linked Data Services and Semantics-enabled Mashup.- Part III Linked Data Search engines.- A Recommender System for Linked Data.- Flint: from Web Pages to Probabilistic Semantic Data.- Searching and Browsing Linked Data with SWSE.
    Theme
    Semantic Web
  17. Mäkelä, E.; Hyvönen, E.; Saarela, S.; Vilfanen, K.: Application of ontology techniques to view-based semantic serach and browsing (2012) 0.02
    0.018300444 = product of:
      0.073201776 = sum of:
        0.024219744 = weight(_text_:web in 3264) [ClassicSimilarity], result of:
          0.024219744 = score(doc=3264,freq=2.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.21634221 = fieldWeight in 3264, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3264)
        0.009910721 = weight(_text_:information in 3264) [ClassicSimilarity], result of:
          0.009910721 = score(doc=3264,freq=4.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.16457605 = fieldWeight in 3264, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3264)
        0.039071307 = weight(_text_:system in 3264) [ClassicSimilarity], result of:
          0.039071307 = score(doc=3264,freq=6.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.36163113 = fieldWeight in 3264, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=3264)
      0.25 = coord(3/12)
    
    Abstract
    We scho how the beenfits of the view-based search method, developed within the information retrieval community, can be extended with ontology-based search, developed within the Semantic Web community, and with semantic recommendations. As a proof of the concept, we have implemented an ontology-and view-based search engine and recommendations system Ontogaotr for RDF(S) repositories. Ontogator is innovative in two ways. Firstly, the RDFS.based ontologies used for annotating metadata are used in the user interface to facilitate view-based information retrieval. The views provide the user with an overview of the repositorys contents and a vocabulary for expressing search queries. Secondlyy, a semantic browsing function is provided by a recommender system. This system enriches instance level metadata by ontologies and provides the user with links to semantically related relevant resources. The semantic linkage is specified in terms of logical rules. To illustrate and discuss the ideas, a deployed application of Ontogator to a photo repository of the Helsinki University Museum is presented.
  18. Kopácsi, S. et al.: Development of a classification server to support metadata harmonization in a long term preservation system (2016) 0.02
    0.018128697 = product of:
      0.07251479 = sum of:
        0.011679897 = weight(_text_:information in 3280) [ClassicSimilarity], result of:
          0.011679897 = score(doc=3280,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.19395474 = fieldWeight in 3280, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=3280)
        0.037596382 = weight(_text_:system in 3280) [ClassicSimilarity], result of:
          0.037596382 = score(doc=3280,freq=2.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.3479797 = fieldWeight in 3280, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.078125 = fieldNorm(doc=3280)
        0.023238512 = product of:
          0.046477024 = sum of:
            0.046477024 = weight(_text_:22 in 3280) [ClassicSimilarity], result of:
              0.046477024 = score(doc=3280,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.38690117 = fieldWeight in 3280, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3280)
          0.5 = coord(1/2)
      0.25 = coord(3/12)
    
    Series
    Communications in computer and information science; 672
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  19. Kruschwitz, U.; AI-Bakour, H.: Users want more sophisticated search assistants : results of a task-based evaluation (2005) 0.02
    0.018017262 = product of:
      0.07206905 = sum of:
        0.02018312 = weight(_text_:web in 4575) [ClassicSimilarity], result of:
          0.02018312 = score(doc=4575,freq=2.0), product of:
            0.111951075 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03430388 = queryNorm
            0.18028519 = fieldWeight in 4575, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4575)
        0.0058399485 = weight(_text_:information in 4575) [ClassicSimilarity], result of:
          0.0058399485 = score(doc=4575,freq=2.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.09697737 = fieldWeight in 4575, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4575)
        0.046045978 = weight(_text_:system in 4575) [ClassicSimilarity], result of:
          0.046045978 = score(doc=4575,freq=12.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.42618635 = fieldWeight in 4575, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4575)
      0.25 = coord(3/12)
    
    Abstract
    The Web provides a massive knowledge source, as do intranets and other electronic document collections. However, much of that knowledge is encoded implicitly and cannot be applied directly without processing into some more appropriate structures. Searching, browsing, question answering, for example, could all benefit from domain-specific knowledge contained in the documents, and in applications such as simple search we do not actually need very "deep" knowledge structures such as ontologies, but we can get a long way with a model of the domain that consists of term hierarchies. We combine domain knowledge automatically acquired by exploiting the documents' markup structure with knowledge extracted an the fly to assist a user with ad hoc search requests. Such a search system can suggest query modification options derived from the actual data and thus guide a user through the space of documents. This article gives a detailed account of a task-based evaluation that compares a search system that uses the outlined domain knowledge with a standard search system. We found that users do use the query modification suggestions proposed by the system. The main conclusion we can draw from this evaluation, however, is that users prefer a system that can suggest query modifications over a standard search engine, which simply presents a ranked list of documents. Most interestingly, we observe this user preference despite the fact that the baseline system even performs slightly better under certain criteria.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.13, S.1377-1393
  20. Klas, C.-P.; Fuhr, N.; Schaefer, A.: Evaluating strategic support for information access in the DAFFODIL system (2004) 0.02
    0.01754507 = product of:
      0.07018028 = sum of:
        0.017165873 = weight(_text_:information in 2419) [ClassicSimilarity], result of:
          0.017165873 = score(doc=2419,freq=12.0), product of:
            0.060219705 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03430388 = queryNorm
            0.2850541 = fieldWeight in 2419, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2419)
        0.039071307 = weight(_text_:system in 2419) [ClassicSimilarity], result of:
          0.039071307 = score(doc=2419,freq=6.0), product of:
            0.10804188 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03430388 = queryNorm
            0.36163113 = fieldWeight in 2419, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=2419)
        0.013943106 = product of:
          0.027886212 = sum of:
            0.027886212 = weight(_text_:22 in 2419) [ClassicSimilarity], result of:
              0.027886212 = score(doc=2419,freq=2.0), product of:
                0.120126344 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03430388 = queryNorm
                0.23214069 = fieldWeight in 2419, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2419)
          0.5 = coord(1/2)
      0.25 = coord(3/12)
    
    Abstract
    The digital library system Daffodil is targeted at strategic support of users during the information search process. For searching, exploring and managing digital library objects it provides user-customisable information seeking patterns over a federation of heterogeneous digital libraries. In this paper evaluation results with respect to retrieval effectiveness, efficiency and user satisfaction are presented. The analysis focuses on strategic support for the scientific work-flow. Daffodil supports the whole work-flow, from data source selection over information seeking to the representation, organisation and reuse of information. By embedding high level search functionality into the scientific work-flow, the user experiences better strategic system support due to a more systematic work process. These ideas have been implemented in Daffodil followed by a qualitative evaluation. The evaluation has been conducted with 28 participants, ranging from information seeking novices to experts. The results are promising, as they support the chosen model.
    Date
    16.11.2008 16:22:48

Years

Languages

  • e 204
  • d 33
  • chi 1
  • f 1
  • More… Less…

Types

  • a 209
  • el 22
  • m 16
  • r 7
  • x 3
  • p 2
  • s 2
  • More… Less…