Search (214 results, page 1 of 11)

  • × theme_ss:"Metadaten"
  1. Handbook of metadata, semantics and ontologies (2014) 0.02
    0.021134598 = product of:
      0.105672985 = sum of:
        0.022234684 = weight(_text_:web in 5134) [ClassicSimilarity], result of:
          0.022234684 = score(doc=5134,freq=6.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.24981049 = fieldWeight in 5134, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=5134)
        0.0834383 = weight(_text_:ontologie in 5134) [ClassicSimilarity], result of:
          0.0834383 = score(doc=5134,freq=4.0), product of:
            0.19081406 = queryWeight, product of:
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.02727315 = queryNorm
            0.43727544 = fieldWeight in 5134, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              6.996407 = idf(docFreq=109, maxDocs=44218)
              0.03125 = fieldNorm(doc=5134)
      0.2 = coord(2/10)
    
    Abstract
    Metadata research has emerged as a discipline cross-cutting many domains, focused on the provision of distributed descriptions (often called annotations) to Web resources or applications. Such associated descriptions are supposed to serve as a foundation for advanced services in many application areas, including search and location, personalization, federation of repositories and automated delivery of information. Indeed, the Semantic Web is in itself a concrete technological framework for ontology-based metadata. For example, Web-based social networking requires metadata describing people and their interrelations, and large databases with biological information use complex and detailed metadata schemas for more precise and informed search strategies. There is a wide diversity in the languages and idioms used for providing meta-descriptions, from simple structured text in metadata schemas to formal annotations using ontologies, and the technologies for storing, sharing and exploiting meta-descriptions are also diverse and evolve rapidly. In addition, there is a proliferation of schemas and standards related to metadata, resulting in a complex and moving technological landscape - hence, the need for specialized knowledge and skills in this area. The Handbook of Metadata, Semantics and Ontologies is intended as an authoritative reference for students, practitioners and researchers, serving as a roadmap for the variety of metadata schemas and ontologies available in a number of key domain areas, including culture, biology, education, healthcare, engineering and library science.
    RSWK
    Metadaten / Ontologie <Wissensverarbeitung> / Aufsatzsammlung
    Subject
    Metadaten / Ontologie <Wissensverarbeitung> / Aufsatzsammlung
  2. Liechti, O.; Sifer, M.J.; Ichikawa, T.: Structured graph format : XML metadata for describing Web site structure (1998) 0.01
    0.012730004 = product of:
      0.06365002 = sum of:
        0.055028036 = weight(_text_:web in 3597) [ClassicSimilarity], result of:
          0.055028036 = score(doc=3597,freq=12.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.6182494 = fieldWeight in 3597, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3597)
        0.008621982 = product of:
          0.025865946 = sum of:
            0.025865946 = weight(_text_:22 in 3597) [ClassicSimilarity], result of:
              0.025865946 = score(doc=3597,freq=2.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.2708308 = fieldWeight in 3597, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3597)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    To improve searching, filtering and processing of information on the Web, a common effort is made in the direction of metadata, defined as machine understandable information about Web resources or other things. In particular, the eXtensible Markup Language (XML) aims at providing a common syntax to emerging metadata formats. Proposes the Structured Graph Format (SGF) an XML compliant markup language based on structured graphs, for capturing Web sites' structure. Presents SGMapper, a client-site tool, which aims to facilitate navigation in large Web sites by generating highly interactive site maps using SGF metadata
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue devoted to the Proceedings of the 7th International World Wide Web Conference, held 14-18 April 1998, Brisbane, Australia
  3. Marchiori, M.: ¬The limits of Web metadata, and beyond (1998) 0.01
    0.011771095 = product of:
      0.058855474 = sum of:
        0.05023349 = weight(_text_:web in 3383) [ClassicSimilarity], result of:
          0.05023349 = score(doc=3383,freq=10.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.5643819 = fieldWeight in 3383, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3383)
        0.008621982 = product of:
          0.025865946 = sum of:
            0.025865946 = weight(_text_:22 in 3383) [ClassicSimilarity], result of:
              0.025865946 = score(doc=3383,freq=2.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.2708308 = fieldWeight in 3383, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3383)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    Highlights 2 major problems of the WWW metadata: it will take some time before a reasonable number of people start using metadata to provide a better Web classification, and that no one can guarantee that a majority of the Web objects will be ever properly classified via metadata. Addresses the problem of how to cope with intrinsic limits of Web metadata, proposes a method to solve these problems and show evidence of its effectiveness. Examines the important problem of what is the required critical mass in the WWW for metadata in order for it to be really useful
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue devoted to the Proceedings of the 7th International World Wide Web Conference, held 14-18 April 1998, Brisbane, Australia
  4. Franklin, R.A.: Re-inventing subject access for the semantic web (2003) 0.01
    0.0116672665 = product of:
      0.058336332 = sum of:
        0.050946064 = weight(_text_:web in 2556) [ClassicSimilarity], result of:
          0.050946064 = score(doc=2556,freq=14.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.57238775 = fieldWeight in 2556, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2556)
        0.00739027 = product of:
          0.02217081 = sum of:
            0.02217081 = weight(_text_:22 in 2556) [ClassicSimilarity], result of:
              0.02217081 = score(doc=2556,freq=2.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.23214069 = fieldWeight in 2556, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2556)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    First generation scholarly research on the Web lacked a firm system of authority control. Second generation Web research is beginning to model subject access with library science principles of bibliographic control and cataloguing. Harnessing the Web and organising the intellectual content with standards and controlled vocabulary provides precise search and retrieval capability, increasing relevance and efficient use of technology. Dublin Core metadata standards permit a full evaluation and cataloguing of Web resources appropriate to highly specific research needs and discovery. Current research points to a type of structure based on a system of faceted classification. This system allows the semantic and syntactic relationships to be defined. Controlled vocabulary, such as the Library of Congress Subject Headings, can be assigned, not in a hierarchical structure, but rather as descriptive facets of relating concepts. Web design features such as this are adding value to discovery and filtering out data that lack authority. The system design allows for scalability and extensibility, two technical features that are integral to future development of the digital library and resource discovery.
    Date
    30.12.2008 18:22:46
    Theme
    Semantic Web
  5. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.01
    0.010658428 = product of:
      0.05329214 = sum of:
        0.0385116 = weight(_text_:web in 6048) [ClassicSimilarity], result of:
          0.0385116 = score(doc=6048,freq=2.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.43268442 = fieldWeight in 6048, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.09375 = fieldNorm(doc=6048)
        0.01478054 = product of:
          0.04434162 = sum of:
            0.04434162 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.04434162 = score(doc=6048,freq=2.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Date
    22. 9.2007 15:41:14
    Theme
    Semantic Web
  6. Wolfekuhler, M.R.; Punch, W.F.: Finding salient features for personal Web pages categories (1997) 0.01
    0.009506537 = product of:
      0.04753268 = sum of:
        0.0389107 = weight(_text_:web in 2673) [ClassicSimilarity], result of:
          0.0389107 = score(doc=2673,freq=6.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.43716836 = fieldWeight in 2673, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2673)
        0.008621982 = product of:
          0.025865946 = sum of:
            0.025865946 = weight(_text_:22 in 2673) [ClassicSimilarity], result of:
              0.025865946 = score(doc=2673,freq=2.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.2708308 = fieldWeight in 2673, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2673)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    Examines techniques that discover features in sets of pre-categorized documents, such that similar documents can be found on the WWW. Examines techniques which will classifiy training examples with high accuracy, then explains why this is not necessarily useful. Describes a method for extracting word clusters from the raw document features. Results show that the clustering technique is successful in discovering word groups in personal Web pages which can be used to find similar information on the WWW
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue of papers from the 6th International World Wide Web conference, held 7-11 Apr 1997, Santa Clara, California
  7. Brasethvik, T.: ¬A semantic modeling approach to metadata (1998) 0.01
    0.008078488 = product of:
      0.040392436 = sum of:
        0.031770453 = weight(_text_:web in 5165) [ClassicSimilarity], result of:
          0.031770453 = score(doc=5165,freq=4.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.35694647 = fieldWeight in 5165, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5165)
        0.008621982 = product of:
          0.025865946 = sum of:
            0.025865946 = weight(_text_:22 in 5165) [ClassicSimilarity], result of:
              0.025865946 = score(doc=5165,freq=2.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.2708308 = fieldWeight in 5165, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5165)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    States that heterogeneous project groups today may be expected to use the mechanisms of the Web for sharing information. Metadata has been proposed as a mechanism for expressing the semantics of information and, hence, facilitate information retrieval, understanding and use. Presents an approach to sharing information which aims to use a semantic modeling language as the basis for expressing the semantics of information and designing metadata schemes. Functioning on the borderline between human and computer understandability, the modeling language would be able to express the semantics of published Web documents. Reporting on work in progress, presents the overall framework and ideas
    Date
    9. 9.2000 17:22:23
  8. Tennant, R.: ¬A bibliographic metadata infrastructure for the twenty-first century (2004) 0.01
    0.007921926 = product of:
      0.03960963 = sum of:
        0.0256744 = weight(_text_:web in 2845) [ClassicSimilarity], result of:
          0.0256744 = score(doc=2845,freq=2.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.2884563 = fieldWeight in 2845, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=2845)
        0.013935229 = product of:
          0.041805685 = sum of:
            0.041805685 = weight(_text_:22 in 2845) [ClassicSimilarity], result of:
              0.041805685 = score(doc=2845,freq=4.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.4377287 = fieldWeight in 2845, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2845)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    The current library bibliographic infrastructure was constructed in the early days of computers - before the Web, XML, and a variety of other technological advances that now offer new opportunities. General requirements of a modern metadata infrastructure for libraries are identified, including such qualities as versatility, extensibility, granularity, and openness. A new kind of metadata infrastructure is then proposed that exhibits at least some of those qualities. Some key challenges that must be overcome to implement a change of this magnitude are identified.
    Date
    9.12.2005 19:22:38
    Source
    Library hi tech. 22(2004) no.2, S.175-181
  9. Catarino, M.E.; Baptista, A.A.: Relating folksonomies with Dublin Core (2008) 0.01
    0.0073005743 = product of:
      0.03650287 = sum of:
        0.027793355 = weight(_text_:web in 2652) [ClassicSimilarity], result of:
          0.027793355 = score(doc=2652,freq=6.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.3122631 = fieldWeight in 2652, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2652)
        0.008709517 = product of:
          0.026128551 = sum of:
            0.026128551 = weight(_text_:22 in 2652) [ClassicSimilarity], result of:
              0.026128551 = score(doc=2652,freq=4.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.27358043 = fieldWeight in 2652, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2652)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    Folksonomy is the result of describing Web resources with tags created by Web users. Although it has become a popular application for the description of resources, in general terms Folksonomies are not being conveniently integrated in metadata. However, if the appropriate metadata elements are identified, then further work may be conducted to automatically assign tags to these elements (RDF properties) and use them in Semantic Web applications. This article presents research carried out to continue the project Kinds of Tags, which intends to identify elements required for metadata originating from folksonomies and to propose an application profile for DC Social Tagging. The work provides information that may be used by software applications to assign tags to metadata elements and, therefore, means for tags to be conveniently gathered by metadata interoperability tools. Despite the unquestionably high value of DC and the significance of the already existing properties in DC Terms, the pilot study show revealed a significant number of tags for which no corresponding properties yet existed. A need for new properties, such as Action, Depth, Rate, and Utility was determined. Those potential new properties will have to be validated in a later stage by the DC Social Tagging Community.
    Pages
    S.14-22
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  10. Wusteman, J.: Whither HTML? (2004) 0.01
    0.0071056187 = product of:
      0.035528094 = sum of:
        0.0256744 = weight(_text_:web in 1001) [ClassicSimilarity], result of:
          0.0256744 = score(doc=1001,freq=2.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.2884563 = fieldWeight in 1001, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=1001)
        0.009853695 = product of:
          0.029561082 = sum of:
            0.029561082 = weight(_text_:22 in 1001) [ClassicSimilarity], result of:
              0.029561082 = score(doc=1001,freq=2.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.30952093 = fieldWeight in 1001, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1001)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    HTML has reinvented itself as an XML application. The working draft of the latest version, XHTML 2.0, is causing controversy due to its lack of backward compatibility and the deprecation - and in some cases disappearance - of some popular tags. But is this commotion distracting us from the big picture of what XHTML has to offer? Where is HTML going? And is it taking the Web community with it?
    Source
    Library hi tech. 22(2004) no.1, S.99-105
  11. Waugh, A.: Specifying metadata standards for metadata tool configuration (1998) 0.01
    0.0071056187 = product of:
      0.035528094 = sum of:
        0.0256744 = weight(_text_:web in 3596) [ClassicSimilarity], result of:
          0.0256744 = score(doc=3596,freq=2.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.2884563 = fieldWeight in 3596, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=3596)
        0.009853695 = product of:
          0.029561082 = sum of:
            0.029561082 = weight(_text_:22 in 3596) [ClassicSimilarity], result of:
              0.029561082 = score(doc=3596,freq=2.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.30952093 = fieldWeight in 3596, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3596)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Date
    1. 8.1996 22:08:06
    Footnote
    Contribution to a special issue devoted to the Proceedings of the 7th International World Wide Web Conference, held 14-18 April 1998, Brisbane, Australia
  12. Méndez, E.; López, L.M.; Siches, A.; Bravo, A.G.: DCMF: DC & Microformats, a good marriage (2008) 0.01
    0.006924417 = product of:
      0.034622084 = sum of:
        0.027231814 = weight(_text_:web in 2634) [ClassicSimilarity], result of:
          0.027231814 = score(doc=2634,freq=4.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.3059541 = fieldWeight in 2634, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2634)
        0.00739027 = product of:
          0.02217081 = sum of:
            0.02217081 = weight(_text_:22 in 2634) [ClassicSimilarity], result of:
              0.02217081 = score(doc=2634,freq=2.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.23214069 = fieldWeight in 2634, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2634)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    This report introduces the Dublin Core Microformats (DCMF) project, a new way to use the DC element set within X/HTML. The DC microformats encode explicit semantic expressions in an X/HTML webpage, by using a specific list of terms for values of the attributes "rev" and "rel" for <a> and <link> elements, and "class" and "id" of other elements. Microformats can be easily processed by user agents and software, enabling a high level of interoperability. These characteristics are crucial for the growing number of social applications allowing users to participate in the Web 2.0 environment as information creators and consumers. This report reviews the origins of microformats; illustrates the coding of DC microformats using the Dublin Core Metadata Gen tool, and a Firefox extension for extraction and visualization; and discusses the benefits of creating Web services utilizing DC microformats.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  13. Godby, C.J.; Smith, D.; Childress, E.: Encoding application profiles in a computational model of the crosswalk (2008) 0.01
    0.0067903833 = product of:
      0.033951916 = sum of:
        0.027793355 = weight(_text_:web in 2649) [ClassicSimilarity], result of:
          0.027793355 = score(doc=2649,freq=6.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.3122631 = fieldWeight in 2649, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2649)
        0.0061585587 = product of:
          0.018475676 = sum of:
            0.018475676 = weight(_text_:22 in 2649) [ClassicSimilarity], result of:
              0.018475676 = score(doc=2649,freq=2.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.19345059 = fieldWeight in 2649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2649)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    OCLC's Crosswalk Web Service (Godby, Smith and Childress, 2008) formalizes the notion of crosswalk, as defined in Gill,et al. (n.d.), by hiding technical details and permitting the semantic equivalences to emerge as the centerpiece. One outcome is that metadata experts, who are typically not programmers, can enter the translation logic into a spreadsheet that can be automatically converted into executable code. In this paper, we describe the implementation of the Dublin Core Terms application profile in the management of crosswalks involving MARC. A crosswalk that encodes an application profile extends the typical format with two columns: one that annotates the namespace to which an element belongs, and one that annotates a 'broader-narrower' relation between a pair of elements, such as Dublin Core coverage and Dublin Core Terms spatial. This information is sufficient to produce scripts written in OCLC's Semantic Equivalence Expression Language (or Seel), which are called from the Crosswalk Web Service to generate production-grade translations. With its focus on elements that can be mixed, matched, added, and redefined, the application profile (Heery and Patel, 2000) is a natural fit with the translation model of the Crosswalk Web Service, which attempts to achieve interoperability by mapping one pair of elements at a time.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  14. Heery, R.: Information gateways : collaboration and content (2000) 0.01
    0.0062174173 = product of:
      0.031087086 = sum of:
        0.022465102 = weight(_text_:web in 4866) [ClassicSimilarity], result of:
          0.022465102 = score(doc=4866,freq=2.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.25239927 = fieldWeight in 4866, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4866)
        0.008621982 = product of:
          0.025865946 = sum of:
            0.025865946 = weight(_text_:22 in 4866) [ClassicSimilarity], result of:
              0.025865946 = score(doc=4866,freq=2.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.2708308 = fieldWeight in 4866, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4866)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    Information subject gateways provide targeted discovery services for their users, giving access to Web resources selected according to quality and subject coverage criteria. Information gateways recognise that they must collaborate on a wide range of issues relating to content to ensure continued success. This report is informed by discussion of content activities at the 1999 Imesh Workshop. The author considers the implications for subject based gateways of co-operation regarding coverage policy, creation of metadata, and provision of searching and browsing across services. Other possibilities for co-operation include working more closely with information providers, and diclosure of information in joint metadata registries
    Date
    22. 6.2002 19:38:54
  15. Guenther, R.S.: Using the Metadata Object Description Schema (MODS) for resource description : guidelines and applications (2004) 0.01
    0.0062174173 = product of:
      0.031087086 = sum of:
        0.022465102 = weight(_text_:web in 2837) [ClassicSimilarity], result of:
          0.022465102 = score(doc=2837,freq=2.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.25239927 = fieldWeight in 2837, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2837)
        0.008621982 = product of:
          0.025865946 = sum of:
            0.025865946 = weight(_text_:22 in 2837) [ClassicSimilarity], result of:
              0.025865946 = score(doc=2837,freq=2.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.2708308 = fieldWeight in 2837, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2837)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    This paper describes the Metadata Object Description Schema (MODS), its accompanying documentation and some of its applications. It reviews the MODS user guidelines provided by the Library of Congress and how they enable a user of the schema to consistently apply MODS as a metadata scheme. Because the schema itself could not fully document appropriate usage, the guidelines provide element definitions, history, relationships with other elements, usage conventions, and examples. Short descriptions of some MODS applications are given and a more detailed discussion of its use in the Library of Congress's Minerva project for Web archiving is given.
    Source
    Library hi tech. 22(2004) no.1, S.89-98
  16. Ilik, V.; Storlien, J.; Olivarez, J.: Metadata makeover (2014) 0.01
    0.0062174173 = product of:
      0.031087086 = sum of:
        0.022465102 = weight(_text_:web in 2606) [ClassicSimilarity], result of:
          0.022465102 = score(doc=2606,freq=2.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.25239927 = fieldWeight in 2606, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2606)
        0.008621982 = product of:
          0.025865946 = sum of:
            0.025865946 = weight(_text_:22 in 2606) [ClassicSimilarity], result of:
              0.025865946 = score(doc=2606,freq=2.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.2708308 = fieldWeight in 2606, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2606)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    Catalogers have become fluent in information technology such as web design skills, HyperText Markup Language (HTML), Cascading Stylesheets (CSS), eXensible Markup Language (XML), and programming languages. The knowledge gained from learning information technology can be used to experiment with methods of transforming one metadata schema into another using various software solutions. This paper will discuss the use of eXtensible Stylesheet Language Transformations (XSLT) for repurposing, editing, and reformatting metadata. Catalogers have the requisite skills for working with any metadata schema, and if they are excluded from metadata work, libraries are wasting a valuable human resource.
    Date
    10. 9.2000 17:38:22
  17. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.01
    0.0062174173 = product of:
      0.031087086 = sum of:
        0.022465102 = weight(_text_:web in 3283) [ClassicSimilarity], result of:
          0.022465102 = score(doc=3283,freq=2.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.25239927 = fieldWeight in 3283, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3283)
        0.008621982 = product of:
          0.025865946 = sum of:
            0.025865946 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
              0.025865946 = score(doc=3283,freq=2.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.2708308 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Theme
    Semantic Web
  18. Belém, F.M.; Almeida, J.M.; Gonçalves, M.A.: ¬A survey on tag recommendation methods : a review (2017) 0.01
    0.0057703475 = product of:
      0.028851738 = sum of:
        0.02269318 = weight(_text_:web in 3524) [ClassicSimilarity], result of:
          0.02269318 = score(doc=3524,freq=4.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.25496176 = fieldWeight in 3524, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3524)
        0.0061585587 = product of:
          0.018475676 = sum of:
            0.018475676 = weight(_text_:22 in 3524) [ClassicSimilarity], result of:
              0.018475676 = score(doc=3524,freq=2.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.19345059 = fieldWeight in 3524, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3524)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    Tags (keywords freely assigned by users to describe web content) have become highly popular on Web 2.0 applications, because of the strong stimuli and easiness for users to create and describe their own content. This increase in tag popularity has led to a vast literature on tag recommendation methods. These methods aim at assisting users in the tagging process, possibly increasing the quality of the generated tags and, consequently, improving the quality of the information retrieval (IR) services that rely on tags as data sources. Regardless of the numerous and diversified previous studies on tag recommendation, to our knowledge, no previous work has summarized and organized them into a single survey article. In this article, we propose a taxonomy for tag recommendation methods, classifying them according to the target of the recommendations, their objectives, exploited data sources, and underlying techniques. Moreover, we provide a critical overview of these methods, pointing out their advantages and disadvantages. Finally, we describe the main open challenges related to the field, such as tag ambiguity, cold start, and evaluation issues.
    Date
    16.11.2017 13:30:22
  19. Roy, W.; Gray, C.: Preparing existing metadata for repository batch import : a recipe for a fickle food (2018) 0.01
    0.0057703475 = product of:
      0.028851738 = sum of:
        0.02269318 = weight(_text_:web in 4550) [ClassicSimilarity], result of:
          0.02269318 = score(doc=4550,freq=4.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.25496176 = fieldWeight in 4550, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4550)
        0.0061585587 = product of:
          0.018475676 = sum of:
            0.018475676 = weight(_text_:22 in 4550) [ClassicSimilarity], result of:
              0.018475676 = score(doc=4550,freq=2.0), product of:
                0.09550592 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02727315 = queryNorm
                0.19345059 = fieldWeight in 4550, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4550)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    In 2016, the University of Waterloo began offering a mediated copyright review and deposit service to support the growth of our institutional repository UWSpace. This resulted in the need to batch import large lists of published works into the institutional repository quickly and accurately. A range of methods have been proposed for harvesting publications metadata en masse, but many technological solutions can easily become detached from a workflow that is both reproducible for support staff and applicable to a range of situations. Many repositories offer the capacity for batch upload via CSV, so our method provides a template Python script that leverages the Habanero library for populating CSV files with existing metadata retrieved from the CrossRef API. In our case, we have combined this with useful metadata contained in a TSV file downloaded from Web of Science in order to enrich our metadata as well. The appeal of this 'low-maintenance' method is that it provides more robust options for gathering metadata semi-automatically, and only requires the user's ability to access Web of Science and the Python program, while still remaining flexible enough for local customizations.
    Date
    10.11.2018 16:27:22
  20. Dillon, M.: Metadata for Web resources : how metadata works on the Web (2000) 0.01
    0.005446363 = product of:
      0.05446363 = sum of:
        0.05446363 = weight(_text_:web in 6798) [ClassicSimilarity], result of:
          0.05446363 = score(doc=6798,freq=4.0), product of:
            0.08900621 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02727315 = queryNorm
            0.6119082 = fieldWeight in 6798, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.09375 = fieldNorm(doc=6798)
      0.1 = coord(1/10)
    

Years

Languages

Types

  • a 178
  • el 32
  • m 16
  • s 14
  • x 3
  • b 2
  • More… Less…

Subjects