Search (5 results, page 1 of 1)

  • × subject_ss:"Information organization"
  • × year_i:[2010 TO 2020}
  1. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.11
    0.1093985 = product of:
      0.2625564 = sum of:
        0.06656578 = weight(_text_:web in 987) [ClassicSimilarity], result of:
          0.06656578 = score(doc=987,freq=14.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.57238775 = fieldWeight in 987, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.049355935 = weight(_text_:world in 987) [ClassicSimilarity], result of:
          0.049355935 = score(doc=987,freq=4.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.36034414 = fieldWeight in 987, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.06558479 = weight(_text_:wide in 987) [ClassicSimilarity], result of:
          0.06558479 = score(doc=987,freq=4.0), product of:
            0.1578897 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.035634913 = queryNorm
            0.4153836 = fieldWeight in 987, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.06656578 = weight(_text_:web in 987) [ClassicSimilarity], result of:
          0.06656578 = score(doc=987,freq=14.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.57238775 = fieldWeight in 987, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.014484116 = product of:
          0.028968232 = sum of:
            0.028968232 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.028968232 = score(doc=987,freq=2.0), product of:
                0.12478739 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.035634913 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.5 = coord(1/2)
      0.41666666 = coord(5/12)
    
    Abstract
    This book covers the basics of semantic web technologies and indexing languages, and describes their contribution to improve languages as a tool for subject queries and knowledge exploration. The book is relevant to information scientists, knowledge workers and indexers. It provides a suitable combination of theoretical foundations and practical applications.
    Date
    23. 7.2017 13:49:22
    LCSH
    Semantic Web
    World Wide Web / Subject access
    RSWK
    Semantic Web
    Subject
    Semantic Web
    World Wide Web / Subject access
    Semantic Web
  2. Suman, A.: From knowledge abstraction to management : using Ranganathan's faceted schema to develop conceptual frameworks for digital libraries (2014) 0.03
    0.026515432 = product of:
      0.10606173 = sum of:
        0.035580907 = weight(_text_:web in 2032) [ClassicSimilarity], result of:
          0.035580907 = score(doc=2032,freq=4.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.3059541 = fieldWeight in 2032, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2032)
        0.034899916 = weight(_text_:world in 2032) [ClassicSimilarity], result of:
          0.034899916 = score(doc=2032,freq=2.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.25480178 = fieldWeight in 2032, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.046875 = fieldNorm(doc=2032)
        0.035580907 = weight(_text_:web in 2032) [ClassicSimilarity], result of:
          0.035580907 = score(doc=2032,freq=4.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.3059541 = fieldWeight in 2032, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2032)
      0.25 = coord(3/12)
    
    Abstract
    The increasing volume of information in the contemporary world entails demand for efficient knowledge management (KM) systems; a logical method of information organization that will allow proper semantic querying to identify things that match meaning in natural language. On this concept, the role of an information manager goes beyond implementing a search and clustering system, to the ability to map and logically present the subject domain and related cross domains. From Knowledge Abstraction to Management answers this need by analysing ontology tools and techniques, helping the reader develop
    LCSH
    Semantic Web
    Subject
    Semantic Web
  3. Abbas, J.: Structures for organizing knowledge : exploring taxonomies, ontologies, and other schemas (2010) 0.02
    0.01787702 = product of:
      0.10726211 = sum of:
        0.068615906 = weight(_text_:tagging in 480) [ClassicSimilarity], result of:
          0.068615906 = score(doc=480,freq=2.0), product of:
            0.21038401 = queryWeight, product of:
              5.9038734 = idf(docFreq=327, maxDocs=44218)
              0.035634913 = queryNorm
            0.326146 = fieldWeight in 480, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.9038734 = idf(docFreq=327, maxDocs=44218)
              0.0390625 = fieldNorm(doc=480)
        0.038646206 = weight(_text_:wide in 480) [ClassicSimilarity], result of:
          0.038646206 = score(doc=480,freq=2.0), product of:
            0.1578897 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.035634913 = queryNorm
            0.24476713 = fieldWeight in 480, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=480)
      0.16666667 = coord(2/12)
    
    Abstract
    LIS professionals use structures for organizing knowledge when they catalog and classify objects in the collection, when they develop databases, when they design customized taxonomies, or when they search online. Structures for Organizing Knowledge: Exploring Taxonomies, Ontologies, and Other Schema explores and explains this basic function by looking at three questions: 1) How do we organize objects so that they make sense and are useful? 2) What role do categories, classifications, taxonomies, and other structures play in the process of organizing? 3) What do information professionals need to know about organizing behaviors in order to design useful structures for organizing knowledge? Taking a broad, yet specialized approach that is a first in the field, this book answers those questions by examining three threads: traditional structures for organizing knowledge; personal structures for organizing knowledge; and socially-constructed structures for organizing knowledge. Through these threads, it offers avenues for expanding thinking on classification and classification schemes, taxonomy and ontology development, and structures. Both a history of the development of taxonomies and an analysis of current research, theories, and applications, this volume explores a wide array of topics, including the new digital, social aspect of taxonomy development. Examples of subjects covered include: Formal and informal structures Applications of knowledge structures Classification schemes Early taxonomists and their contributions Social networking, bookmarking, and cataloging sites Cataloging codes Standards and best practices Tags, tagging, and folksonomies Descriptive cataloging Metadata schema standards Thought exercises, references, and a list of helpful websites augment each section. A final chapter, "Thinking Ahead: Are We at a Crossroads?" uses "envisioning exercises" to help LIS professionals look into the future.
  4. ¬The discipline of organizing (2013) 0.01
    0.007906868 = product of:
      0.047441207 = sum of:
        0.023720603 = weight(_text_:web in 2172) [ClassicSimilarity], result of:
          0.023720603 = score(doc=2172,freq=4.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.2039694 = fieldWeight in 2172, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2172)
        0.023720603 = weight(_text_:web in 2172) [ClassicSimilarity], result of:
          0.023720603 = score(doc=2172,freq=4.0), product of:
            0.11629491 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.035634913 = queryNorm
            0.2039694 = fieldWeight in 2172, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2172)
      0.16666667 = coord(2/12)
    
    Abstract
    Organizing is such a common activity that we often do it without thinking much about it. In our daily lives we organize physical things--books on shelves, cutlery in kitchen drawers--and digital things--Web pages, MP3 files, scientific datasets. Millions of people create and browse Web sites, blog, tag, tweet, and upload and download content of all media types without thinking "I'm organizing now" or "I'm retrieving now." This book offers a framework for the theory and practice of organizing that integrates information organization (IO) and information retrieval (IR), bridging the disciplinary chasms between Library and Information Science and Computer Science, each of which views and teaches IO and IR as separate topics and in substantially different ways. It introduces the unifying concept of an Organizing System--an intentionally arranged collection of resources and the interactions they support--and then explains the key concepts and challenges in the design and deployment of Organizing Systems in many domains, including libraries, museums, business information systems, personal information management, and social computing. Intended for classroom use or as a professional reference, the book covers the activities common to all organizing systems: identifying resources to be organized; organizing resources by describing and classifying them; designing resource-based interactions; and maintaining resources and organization over time. The book is extensively annotated with disciplinary-specific notes to ground it with relevant concepts and references of library science, computing, cognitive science, law, and business.
  5. Hedden, H.: ¬The accidental taxonomist (2012) 0.00
    0.0019388841 = product of:
      0.02326661 = sum of:
        0.02326661 = weight(_text_:world in 2915) [ClassicSimilarity], result of:
          0.02326661 = score(doc=2915,freq=2.0), product of:
            0.13696888 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.035634913 = queryNorm
            0.16986786 = fieldWeight in 2915, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.03125 = fieldNorm(doc=2915)
      0.083333336 = coord(1/12)
    
    Abstract
    "Clearly details the conceptual and practical notions of controlled vocabularies. . provides a crash course for newcomers and offers experienced practitioners a common frame of reference. A valuable book." - Christine Connors, TriviumRLG LLC The Accidental Taxonomist is the most comprehensive guide available to the art and science of building information taxonomies. Heather Hedden-one of today's leading writers, instructors, and consultants on indexing and taxonomy topics-walks readers through the process, displaying her trademark ability to present highly technical information in straightforward, comprehensible English. Drawing on numerous real-world examples, Hedden explains how to create terms and relationships, select taxonomy management software, design taxonomies for human versus automated indexing, manage enterprise taxonomy projects, and adapt taxonomies to various user interfaces. The result is a practical and essential guide for information professionals who need to effectively create or manage taxonomies, controlled vocabularies, and thesauri. "A wealth of descriptive reference content is balanced with expert guidance. . Open The Accidental Taxonomist to begin the learning process or to refresh your understanding of the depth and breadth of this demanding discipline." - Lynda Moulton, Principal Consultant, LWM Technology Services "From the novice taxonomist to the experienced professional, all will find helpful, practical advice in The Accidental Taxonomist." - Trish Yancey, TCOO, Synaptica, LLC "This book squarely addresses the growing demand for and interest in taxonomy. ...Hedden brings a variety of background experience, including not only taxonomy construction but also abstracting and content categorization and creating back-of-the-book indexes. These experiences serve her well by building a broad perspective on the similarities as well as real differences between often overlapping types of work." - Marjorie M. K. Hlava, President and Chairman, Access Innovations, Inc., and Chair, SLA Taxonomy Division