Search (478 results, page 2 of 24)

  • × theme_ss:"Informetrie"
  1. Vaughan, L.; Ninkov, A.: ¬A new approach to web co-link analysis (2018) 0.03
    0.02698893 = product of:
      0.08996309 = sum of:
        0.0175421 = product of:
          0.0350842 = sum of:
            0.0350842 = weight(_text_:web in 4256) [ClassicSimilarity], result of:
              0.0350842 = score(doc=4256,freq=6.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.3122631 = fieldWeight in 4256, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4256)
          0.5 = coord(1/2)
        0.037336797 = weight(_text_:wide in 4256) [ClassicSimilarity], result of:
          0.037336797 = score(doc=4256,freq=2.0), product of:
            0.15254007 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03442753 = queryNorm
            0.24476713 = fieldWeight in 4256, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4256)
        0.0350842 = weight(_text_:web in 4256) [ClassicSimilarity], result of:
          0.0350842 = score(doc=4256,freq=6.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.3122631 = fieldWeight in 4256, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4256)
      0.3 = coord(3/10)
    
    Abstract
    Numerous web co-link studies have analyzed a wide variety of websites ranging from those in the academic and business arena to those dealing with politics and governments. Such studies uncover rich information about these organizations. In recent years, however, there has been a dearth of co-link analysis, mainly due to the lack of sources from which co-link data can be collected directly. Although several commercial services such as Alexa provide inlink data, none provide co-link data. We propose a new approach to web co-link analysis that can alleviate this problem so that researchers can continue to mine the valuable information contained in co-link data. The proposed approach has two components: (a) generating co-link data from inlink data using a computer program; (b) analyzing co-link data at the site level in addition to the page level that previous co-link analyses have used. The site-level analysis has the potential of expanding co-link data sources. We tested this proposed approach by analyzing a group of websites focused on vaccination using Moz inlink data. We found that the approach is feasible, as we were able to generate co-link data from inlink data and analyze the co-link data with multidimensional scaling.
  2. Meho, L.I.; Rogers, Y.: Citation counting, citation ranking, and h-index of human-computer interaction researchers : a comparison of Scopus and Web of Science (2008) 0.03
    0.02644863 = product of:
      0.088162094 = sum of:
        0.026796 = product of:
          0.053592 = sum of:
            0.053592 = weight(_text_:web in 2352) [ClassicSimilarity], result of:
              0.053592 = score(doc=2352,freq=14.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.47698978 = fieldWeight in 2352, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2352)
          0.5 = coord(1/2)
        0.053592 = weight(_text_:web in 2352) [ClassicSimilarity], result of:
          0.053592 = score(doc=2352,freq=14.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.47698978 = fieldWeight in 2352, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2352)
        0.0077740923 = product of:
          0.023322277 = sum of:
            0.023322277 = weight(_text_:22 in 2352) [ClassicSimilarity], result of:
              0.023322277 = score(doc=2352,freq=2.0), product of:
                0.12055935 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03442753 = queryNorm
                0.19345059 = fieldWeight in 2352, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2352)
          0.33333334 = coord(1/3)
      0.3 = coord(3/10)
    
    Abstract
    This study examines the differences between Scopus and Web of Science in the citation counting, citation ranking, and h-index of 22 top human-computer interaction (HCI) researchers from EQUATOR - a large British Interdisciplinary Research Collaboration project. Results indicate that Scopus provides significantly more coverage of HCI literature than Web of Science, primarily due to coverage of relevant ACM and IEEE peer-reviewed conference proceedings. No significant differences exist between the two databases if citations in journals only are compared. Although broader coverage of the literature does not significantly alter the relative citation ranking of individual researchers, Scopus helps distinguish between the researchers in a more nuanced fashion than Web of Science in both citation counting and h-index. Scopus also generates significantly different maps of citation networks of individual scholars than those generated by Web of Science. The study also presents a comparison of h-index scores based on Google Scholar with those based on the union of Scopus and Web of Science. The study concludes that Scopus can be used as a sole data source for citation-based research and evaluation in HCI, especially when citations in conference proceedings are sought, and that researchers should manually calculate h scores instead of relying on system calculations.
    Object
    Web of Science
  3. Neth, M.: Citation analysis and the Web (1998) 0.03
    0.025880953 = product of:
      0.08626984 = sum of:
        0.0141791105 = product of:
          0.028358221 = sum of:
            0.028358221 = weight(_text_:web in 108) [ClassicSimilarity], result of:
              0.028358221 = score(doc=108,freq=2.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.25239927 = fieldWeight in 108, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=108)
          0.5 = coord(1/2)
        0.028358221 = weight(_text_:web in 108) [ClassicSimilarity], result of:
          0.028358221 = score(doc=108,freq=2.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.25239927 = fieldWeight in 108, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=108)
        0.043732505 = product of:
          0.065598756 = sum of:
            0.03294757 = weight(_text_:29 in 108) [ClassicSimilarity], result of:
              0.03294757 = score(doc=108,freq=2.0), product of:
                0.12110529 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03442753 = queryNorm
                0.27205724 = fieldWeight in 108, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=108)
            0.032651186 = weight(_text_:22 in 108) [ClassicSimilarity], result of:
              0.032651186 = score(doc=108,freq=2.0), product of:
                0.12055935 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03442753 = queryNorm
                0.2708308 = fieldWeight in 108, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=108)
          0.6666667 = coord(2/3)
      0.3 = coord(3/10)
    
    Date
    10. 1.1999 16:22:37
    Source
    Art documentation. 17(1998) no.1, S.29-33
  4. Leydesdorff, L.; Bornmann, L.: ¬The operationalization of "fields" as WoS subject categories (WCs) in evaluative bibliometrics : the cases of "library and information science" and "science & technology studies" (2016) 0.03
    0.02558414 = product of:
      0.08528046 = sum of:
        0.017187675 = product of:
          0.03437535 = sum of:
            0.03437535 = weight(_text_:web in 2779) [ClassicSimilarity], result of:
              0.03437535 = score(doc=2779,freq=4.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.3059541 = fieldWeight in 2779, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2779)
          0.5 = coord(1/2)
        0.033717435 = weight(_text_:world in 2779) [ClassicSimilarity], result of:
          0.033717435 = score(doc=2779,freq=2.0), product of:
            0.1323281 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.03442753 = queryNorm
            0.25480178 = fieldWeight in 2779, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.046875 = fieldNorm(doc=2779)
        0.03437535 = weight(_text_:web in 2779) [ClassicSimilarity], result of:
          0.03437535 = score(doc=2779,freq=4.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.3059541 = fieldWeight in 2779, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2779)
      0.3 = coord(3/10)
    
    Abstract
    Normalization of citation scores using reference sets based on Web of Science subject categories (WCs) has become an established ("best") practice in evaluative bibliometrics. For example, the Times Higher Education World University Rankings are, among other things, based on this operationalization. However, WCs were developed decades ago for the purpose of information retrieval and evolved incrementally with the database; the classification is machine-based and partially manually corrected. Using the WC "information science & library science" and the WCs attributed to journals in the field of "science and technology studies," we show that WCs do not provide sufficient analytical clarity to carry bibliometric normalization in evaluation practices because of "indexer effects." Can the compliance with "best practices" be replaced with an ambition to develop "best possible practices"? New research questions can then be envisaged.
    Aid
    Web of Science
  5. Ingwersen, P.: ¬The calculation of Web impact factors (1998) 0.03
    0.025522396 = product of:
      0.12761198 = sum of:
        0.042537328 = product of:
          0.085074656 = sum of:
            0.085074656 = weight(_text_:web in 1071) [ClassicSimilarity], result of:
              0.085074656 = score(doc=1071,freq=18.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.75719774 = fieldWeight in 1071, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1071)
          0.5 = coord(1/2)
        0.085074656 = weight(_text_:web in 1071) [ClassicSimilarity], result of:
          0.085074656 = score(doc=1071,freq=18.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.75719774 = fieldWeight in 1071, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1071)
      0.2 = coord(2/10)
    
    Abstract
    Reports investigations into the feasibility and reliability of calculating impact factors for web sites, called Web Impact Factors (Web-IF). analyzes a selection of 7 small and medium scale national and 4 large web domains as well as 6 institutional web sites over a series of snapshots taken of the web during a month. Describes the data isolation and calculation methods and discusses the tests. The results thus far demonstrate that Web-IFs are calculable with high confidence for national and sector domains whilst institutional Web-IFs should be approached with caution
  6. Mayr, P.; Tosques, F.: Webometrische Analysen mit Hilfe der Google Web APIs (2005) 0.03
    0.025397802 = product of:
      0.08465934 = sum of:
        0.024558939 = product of:
          0.049117878 = sum of:
            0.049117878 = weight(_text_:web in 3189) [ClassicSimilarity], result of:
              0.049117878 = score(doc=3189,freq=6.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.43716836 = fieldWeight in 3189, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3189)
          0.5 = coord(1/2)
        0.049117878 = weight(_text_:web in 3189) [ClassicSimilarity], result of:
          0.049117878 = score(doc=3189,freq=6.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.43716836 = fieldWeight in 3189, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3189)
        0.010982524 = product of:
          0.03294757 = sum of:
            0.03294757 = weight(_text_:29 in 3189) [ClassicSimilarity], result of:
              0.03294757 = score(doc=3189,freq=2.0), product of:
                0.12110529 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03442753 = queryNorm
                0.27205724 = fieldWeight in 3189, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3189)
          0.33333334 = coord(1/3)
      0.3 = coord(3/10)
    
    Abstract
    Der Report stellt die Möglichkeiten und Einschränkungen der Google Web APIs (Google API) dar. Die Implementierung der Google API anhand einzelner informationswissenschaftlicher Untersuchungen aus der Webometrie ergibt, dass die Google API mit Einschränkungen für internetbezogene Untersuchungen eingesetzt werden können. Vergleiche der Trefferergebnisse über die beiden Google-Schnittstellen Google API und die Standard Weboberfläche Google.com (Google Web) zeigen Unterschiede bezüglich der Reichweite, der Zusammensetzung und Verfügbarkeit. Die Untersuchung basiert auf einfachen und erweiterten Suchanfragen in den Sprachen Deutsch und Englisch. Die analysierten Treffermengen der Google API bestätigen tendenziell frühere Internet-Studien.
    Date
    12. 2.2005 18:29:36
  7. Yang, S.; Han, R.; Ding, J.; Song, Y.: ¬The distribution of Web citations (2012) 0.03
    0.025260625 = product of:
      0.12630312 = sum of:
        0.04210104 = product of:
          0.08420208 = sum of:
            0.08420208 = weight(_text_:web in 2735) [ClassicSimilarity], result of:
              0.08420208 = score(doc=2735,freq=24.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.7494315 = fieldWeight in 2735, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2735)
          0.5 = coord(1/2)
        0.08420208 = weight(_text_:web in 2735) [ClassicSimilarity], result of:
          0.08420208 = score(doc=2735,freq=24.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.7494315 = fieldWeight in 2735, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2735)
      0.2 = coord(2/10)
    
    Abstract
    A substantial amount of research has focused on the persistence or availability of Web citations. The present study analyzes Web citation distributions. Web citations are defined as the mentions of the URLs of Web pages (Web resources) as references in academic papers. The present paper primarily focuses on the analysis of the URLs of Web citations and uses three sets of data, namely, Set 1 from the Humanities and Social Science Index in China (CSSCI, 1998-2009), Set 2 from the publications of two international computer science societies, Communications of the ACM and IEEE Computer (1995-1999), and Set 3 from the medical science database, MEDLINE, of the National Library of Medicine (1994-2006). Web citation distributions are investigated based on Web site types, Web page types, URL frequencies, URL depths, URL lengths, and year of article publication. Results show significant differences in the Web citation distributions among the three data sets. However, when the URLs of Web citations with the same hostnames are aggregated, the distributions in the three data sets are consistent with the power law (the Lotka function).
  8. Gazni, A.; Sugimoto, C.R.; Didegah, F.: Mapping world scientific collaboration : authors, institutions, and countries (2012) 0.03
    0.025243267 = product of:
      0.08414422 = sum of:
        0.012153522 = product of:
          0.024307044 = sum of:
            0.024307044 = weight(_text_:web in 1141) [ClassicSimilarity], result of:
              0.024307044 = score(doc=1141,freq=2.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.21634221 = fieldWeight in 1141, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1141)
          0.5 = coord(1/2)
        0.047683652 = weight(_text_:world in 1141) [ClassicSimilarity], result of:
          0.047683652 = score(doc=1141,freq=4.0), product of:
            0.1323281 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.03442753 = queryNorm
            0.36034414 = fieldWeight in 1141, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.046875 = fieldNorm(doc=1141)
        0.024307044 = weight(_text_:web in 1141) [ClassicSimilarity], result of:
          0.024307044 = score(doc=1141,freq=2.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.21634221 = fieldWeight in 1141, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1141)
      0.3 = coord(3/10)
    
    Abstract
    International collaboration is being heralded as the hallmark of contemporary scientific production. Yet little quantitative evidence has portrayed the landscape and trends of such collaboration. To this end, 14,000,000 documents indexed in Thomson Reuters's Web of Science (WoS) were studied to provide a state-of-the-art description of scientific collaborations across the world. The results indicate that the number of authors in the largest research teams have not significantly grown during the past decade; however, the number of smaller research teams has seen significant increases in growth. In terms of composition, the largest teams have become more diverse than the latter teams and tend more toward interinstitutional and international collaboration. Investigating the size of teams showed large variation between fields. Mapping scientific cooperation at the country level reveals that Western countries situated at the core of the map are extensively cooperating with each other. High-impact institutions are significantly more collaborative than others. This work should inform policy makers, administrators, and those interested in the progression of scientific collaboration.
  9. Haustein, S.; Sugimoto, C.; Larivière, V.: Social media in scholarly communication : Guest editorial (2015) 0.02
    0.024914932 = product of:
      0.062287327 = sum of:
        0.013588052 = product of:
          0.027176104 = sum of:
            0.027176104 = weight(_text_:web in 3809) [ClassicSimilarity], result of:
              0.027176104 = score(doc=3809,freq=10.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.24187797 = fieldWeight in 3809, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3809)
          0.5 = coord(1/2)
        0.016858717 = weight(_text_:world in 3809) [ClassicSimilarity], result of:
          0.016858717 = score(doc=3809,freq=2.0), product of:
            0.1323281 = queryWeight, product of:
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.03442753 = queryNorm
            0.12740089 = fieldWeight in 3809, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.8436708 = idf(docFreq=2573, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3809)
        0.027176104 = weight(_text_:web in 3809) [ClassicSimilarity], result of:
          0.027176104 = score(doc=3809,freq=10.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.24187797 = fieldWeight in 3809, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3809)
        0.0046644555 = product of:
          0.013993366 = sum of:
            0.013993366 = weight(_text_:22 in 3809) [ClassicSimilarity], result of:
              0.013993366 = score(doc=3809,freq=2.0), product of:
                0.12055935 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03442753 = queryNorm
                0.116070345 = fieldWeight in 3809, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3809)
          0.33333334 = coord(1/3)
      0.4 = coord(4/10)
    
    Abstract
    One of the solutions to help scientists filter the most relevant publications and, thus, to stay current on developments in their fields during the transition from "little science" to "big science", was the introduction of citation indexing as a Wellsian "World Brain" (Garfield, 1964) of scientific information: It is too much to expect a research worker to spend an inordinate amount of time searching for the bibliographic descendants of antecedent papers. It would not be excessive to demand that the thorough scholar check all papers that have cited or criticized such papers, if they could be located quickly. The citation index makes this check practicable (Garfield, 1955, p. 108). In retrospective, citation indexing can be perceived as a pre-social web version of crowdsourcing, as it is based on the concept that the community of citing authors outperforms indexers in highlighting cognitive links between papers, particularly on the level of specific ideas and concepts (Garfield, 1983). Over the last 50 years, citation analysis and more generally, bibliometric methods, have developed from information retrieval tools to research evaluation metrics, where they are presumed to make scientific funding more efficient and effective (Moed, 2006). However, the dominance of bibliometric indicators in research evaluation has also led to significant goal displacement (Merton, 1957) and the oversimplification of notions of "research productivity" and "scientific quality", creating adverse effects such as salami publishing, honorary authorships, citation cartels, and misuse of indicators (Binswanger, 2015; Cronin and Sugimoto, 2014; Frey and Osterloh, 2006; Haustein and Larivière, 2015; Weingart, 2005).
    Furthermore, the rise of the web, and subsequently, the social web, has challenged the quasi-monopolistic status of the journal as the main form of scholarly communication and citation indices as the primary assessment mechanisms. Scientific communication is becoming more open, transparent, and diverse: publications are increasingly open access; manuscripts, presentations, code, and data are shared online; research ideas and results are discussed and criticized openly on blogs; and new peer review experiments, with open post publication assessment by anonymous or non-anonymous referees, are underway. The diversification of scholarly production and assessment, paired with the increasing speed of the communication process, leads to an increased information overload (Bawden and Robinson, 2008), demanding new filters. The concept of altmetrics, short for alternative (to citation) metrics, was created out of an attempt to provide a filter (Priem et al., 2010) and to steer against the oversimplification of the measurement of scientific success solely on the basis of number of journal articles published and citations received, by considering a wider range of research outputs and metrics (Piwowar, 2013). Although the term altmetrics was introduced in a tweet in 2010 (Priem, 2010), the idea of capturing traces - "polymorphous mentioning" (Cronin et al., 1998, p. 1320) - of scholars and their documents on the web to measure "impact" of science in a broader manner than citations was introduced years before, largely in the context of webometrics (Almind and Ingwersen, 1997; Thelwall et al., 2005):
    There will soon be a critical mass of web-based digital objects and usage statistics on which to model scholars' communication behaviors - publishing, posting, blogging, scanning, reading, downloading, glossing, linking, citing, recommending, acknowledging - and with which to track their scholarly influence and impact, broadly conceived and broadly felt (Cronin, 2005, p. 196). A decade after Cronin's prediction and five years after the coining of altmetrics, the time seems ripe to reflect upon the role of social media in scholarly communication. This Special Issue does so by providing an overview of current research on the indicators and metrics grouped under the umbrella term of altmetrics, on their relationships with traditional indicators of scientific activity, and on the uses that are made of the various social media platforms - on which these indicators are based - by scientists of various disciplines.
    Date
    20. 1.2015 18:30:22
  10. Davis, P.M.; Cohen, S.A.: ¬The effect of the Web on undergraduate citation behavior 1996-1999 (2001) 0.02
    0.02470042 = product of:
      0.08233473 = sum of:
        0.024307044 = product of:
          0.04861409 = sum of:
            0.04861409 = weight(_text_:web in 5768) [ClassicSimilarity], result of:
              0.04861409 = score(doc=5768,freq=8.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.43268442 = fieldWeight in 5768, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5768)
          0.5 = coord(1/2)
        0.04861409 = weight(_text_:web in 5768) [ClassicSimilarity], result of:
          0.04861409 = score(doc=5768,freq=8.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.43268442 = fieldWeight in 5768, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=5768)
        0.0094135925 = product of:
          0.028240776 = sum of:
            0.028240776 = weight(_text_:29 in 5768) [ClassicSimilarity], result of:
              0.028240776 = score(doc=5768,freq=2.0), product of:
                0.12110529 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03442753 = queryNorm
                0.23319192 = fieldWeight in 5768, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5768)
          0.33333334 = coord(1/3)
      0.3 = coord(3/10)
    
    Abstract
    A citation analysis of undergraduate term papers in microeconomics revealed a significant decrease in the frequency of scholarly resources cited between 1996 and 1999. Book citations decreased from 30% to 19%, newspaper citations increased from 7% to 19%, and Web citations increased from 9% to 21%. Web citations checked in 2000 revealed that only 18% of URLs cited in 1996 led to the correct Internet document. For 1999 bibliographies, only 55% of URLs led to the correct document. The authors recommend (1) setting stricter guidelines for acceptable citations in course assignments; (2) creating and maintaining scholarly portals for authoritative Web sites with a commitment to long-term access; and (3) continuing to instruct students how to critically evaluate resources
    Date
    29. 9.2001 14:01:09
  11. Asubiaro, T.V.; Onaolapo, S.: ¬A comparative study of the coverage of African journals in Web of Science, Scopus, and CrossRef (2023) 0.02
    0.024659675 = product of:
      0.08219891 = sum of:
        0.024808273 = product of:
          0.049616545 = sum of:
            0.049616545 = weight(_text_:web in 992) [ClassicSimilarity], result of:
              0.049616545 = score(doc=992,freq=12.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.4416067 = fieldWeight in 992, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=992)
          0.5 = coord(1/2)
        0.049616545 = weight(_text_:web in 992) [ClassicSimilarity], result of:
          0.049616545 = score(doc=992,freq=12.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.4416067 = fieldWeight in 992, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=992)
        0.0077740923 = product of:
          0.023322277 = sum of:
            0.023322277 = weight(_text_:22 in 992) [ClassicSimilarity], result of:
              0.023322277 = score(doc=992,freq=2.0), product of:
                0.12055935 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03442753 = queryNorm
                0.19345059 = fieldWeight in 992, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=992)
          0.33333334 = coord(1/3)
      0.3 = coord(3/10)
    
    Abstract
    This is the first study that evaluated the coverage of journals from Africa in Web of Science, Scopus, and CrossRef. A list of active journals published in each of the 55 African countries was compiled from Ulrich's periodicals directory and African Journals Online (AJOL) website. Journal master lists for Web of Science, Scopus, and CrossRef were searched for the African journals. A total of 2,229 unique active African journals were identified from Ulrich (N = 2,117, 95.0%) and AJOL (N = 243, 10.9%) after removing duplicates. The volume of African journals in Web of Science and Scopus databases is 7.4% (N = 166) and 7.8% (N = 174), respectively, compared to the 45.6% (N = 1,017) covered in CrossRef. While making up only 17.% of all the African journals, South African journals had the best coverage in the two most authoritative databases, accounting for 73.5% and 62.1% of all the African journals in Web of Science and Scopus, respectively. In contrast, Nigeria published 44.5% of all the African journals. The distribution of the African journals is biased in favor of Medical, Life and Health Sciences and Humanities and the Arts in the three databases. The low representation of African journals in CrossRef, a free indexing infrastructure that could be harnessed for building an African-centric research indexing database, is concerning.
    Date
    22. 6.2023 14:09:06
    Object
    Web of Science
  12. Pernik, V.; Schlögl, C.: Möglichkeiten und Grenzen von Web Structure Mining am Beispiel von informationswissenschaftlichen Hochschulinstituten im deutschsprachigen Raum (2006) 0.02
    0.02439065 = product of:
      0.081302166 = sum of:
        0.022916902 = product of:
          0.045833804 = sum of:
            0.045833804 = weight(_text_:web in 78) [ClassicSimilarity], result of:
              0.045833804 = score(doc=78,freq=4.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.4079388 = fieldWeight in 78, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0625 = fieldNorm(doc=78)
          0.5 = coord(1/2)
        0.045833804 = weight(_text_:web in 78) [ClassicSimilarity], result of:
          0.045833804 = score(doc=78,freq=4.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.4079388 = fieldWeight in 78, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=78)
        0.012551456 = product of:
          0.037654366 = sum of:
            0.037654366 = weight(_text_:29 in 78) [ClassicSimilarity], result of:
              0.037654366 = score(doc=78,freq=2.0), product of:
                0.12110529 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03442753 = queryNorm
                0.31092256 = fieldWeight in 78, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=78)
          0.33333334 = coord(1/3)
      0.3 = coord(3/10)
    
    Abstract
    In diesem Beitrag wird eine webometrische Untersuchung vorgestellt, die informationswissenschaftliche Hochschulinstitute in den deutschsprachigen Ländern zum Gegenstand hatte. Ziel dieser Studie war es, einerseits die Linkbeziehungen zwischen den Hochschulinstituten zu analysieren. Andererseits sollten Ähnlichkeiten (zum Beispiel aufgrund von fachlichen, örtlichen oder institutionellen Gegebenheiten) identifiziert werden. Es werden nicht nur die Vorgehensweise bei derartigen Analysen und die daraus resultierenden Ergebnisse dargestellt. Insbesondere sollen Problembereiche und Einschränkungen, die mit der Analyse von Linkstrukturen im Web verbunden sind, thematisiert werden.
    Date
    4.12.2006 12:14:29
  13. Thelwall, M.; Klitkou, A.; Verbeek, A.; Stuart, D.; Vincent, C.: Policy-relevant Webometrics for individual scientific fields (2010) 0.02
    0.024379417 = product of:
      0.08126472 = sum of:
        0.012153522 = product of:
          0.024307044 = sum of:
            0.024307044 = weight(_text_:web in 3574) [ClassicSimilarity], result of:
              0.024307044 = score(doc=3574,freq=2.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.21634221 = fieldWeight in 3574, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3574)
          0.5 = coord(1/2)
        0.044804152 = weight(_text_:wide in 3574) [ClassicSimilarity], result of:
          0.044804152 = score(doc=3574,freq=2.0), product of:
            0.15254007 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03442753 = queryNorm
            0.29372054 = fieldWeight in 3574, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=3574)
        0.024307044 = weight(_text_:web in 3574) [ClassicSimilarity], result of:
          0.024307044 = score(doc=3574,freq=2.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.21634221 = fieldWeight in 3574, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3574)
      0.3 = coord(3/10)
    
    Abstract
    Despite over 10 years of research there is no agreement on the most suitable roles for Webometric indicators in support of research policy and almost no field-based Webometrics. This article partly fills these gaps by analyzing the potential of policy-relevant Webometrics for individual scientific fields with the help of 4 case studies. Although Webometrics cannot provide robust indicators of knowledge flows or research impact, it can provide some evidence of networking and mutual awareness. The scope of Webometrics is also relatively wide, including not only research organizations and firms but also intermediary groups like professional associations, Web portals, and government agencies. Webometrics can, therefore, provide evidence about the research process to compliment peer review, bibliometric, and patent indicators: tracking the early, mainly prepublication development of new fields and research funding initiatives, assessing the role and impact of intermediary organizations and the need for new ones, and monitoring the extent of mutual awareness in particular research areas.
  14. Koehler, W.: Web page change and persistence : a four-year longitudinal study (2002) 0.02
    0.024185207 = product of:
      0.12092603 = sum of:
        0.040308677 = product of:
          0.08061735 = sum of:
            0.08061735 = weight(_text_:web in 203) [ClassicSimilarity], result of:
              0.08061735 = score(doc=203,freq=22.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.717526 = fieldWeight in 203, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=203)
          0.5 = coord(1/2)
        0.08061735 = weight(_text_:web in 203) [ClassicSimilarity], result of:
          0.08061735 = score(doc=203,freq=22.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.717526 = fieldWeight in 203, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=203)
      0.2 = coord(2/10)
    
    Abstract
    Changes in the topography of the Web can be expressed in at least four ways: (1) more sites on more servers in more places, (2) more pages and objects added to existing sites and pages, (3) changes in traffic, and (4) modifications to existing text, graphic, and other Web objects. This article does not address the first three factors (more sites, more pages, more traffic) in the growth of the Web. It focuses instead on changes to an existing set of Web documents. The article documents changes to an aging set of Web pages, first identified and "collected" in December 1996 and followed weekly thereafter. Results are reported through February 2001. The article addresses two related phenomena: (1) the life cycle of Web objects, and (2) changes to Web objects. These data reaffirm that the half-life of a Web page is approximately 2 years. There is variation among Web pages by top-level domain and by page type (navigation, content). Web page content appears to stabilize over time; aging pages change less often than once they did
  15. Park, H.W.; Barnett, G.A.; Nam, I.-Y.: Hyperlink - affiliation network structure of top Web sites : examining affiliates with hyperlink in Korea (2002) 0.02
    0.024062747 = product of:
      0.120313734 = sum of:
        0.04010458 = product of:
          0.08020916 = sum of:
            0.08020916 = weight(_text_:web in 584) [ClassicSimilarity], result of:
              0.08020916 = score(doc=584,freq=16.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.71389294 = fieldWeight in 584, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=584)
          0.5 = coord(1/2)
        0.08020916 = weight(_text_:web in 584) [ClassicSimilarity], result of:
          0.08020916 = score(doc=584,freq=16.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.71389294 = fieldWeight in 584, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=584)
      0.2 = coord(2/10)
    
    Abstract
    This article argues that individual Web sites form hyperlink-affiliations with others for the purpose of strengthening their individual trust, expertness, and safety. It describes the hyperlink-affiliation network structure of Korea's top 152 Web sites. The data were obtained from their Web sites for October 2000. The results indicate that financial Web sites, such as credit card and stock Web sites, occupy the most central position in the network. A cluster analysis reveals that the structure of the hyperlink-affiliation network is influenced by the financial Web sites with which others are affiliated. These findings are discussed from the perspective of Web site credibility.
  16. Impe, S. van; Rousseau, R.: Web-to-print citations and the humanities (2006) 0.02
    0.023059689 = product of:
      0.11529844 = sum of:
        0.038432814 = product of:
          0.07686563 = sum of:
            0.07686563 = weight(_text_:web in 82) [ClassicSimilarity], result of:
              0.07686563 = score(doc=82,freq=20.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.6841342 = fieldWeight in 82, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=82)
          0.5 = coord(1/2)
        0.07686563 = weight(_text_:web in 82) [ClassicSimilarity], result of:
          0.07686563 = score(doc=82,freq=20.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.6841342 = fieldWeight in 82, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=82)
      0.2 = coord(2/10)
    
    Abstract
    References to printed documents made on the web are called web-to-print references. These printed documents then in turn receive web-to-print citations. Webto-print citations and web-to-print references are the topic of this article, in which we study the online impact of printed sources. Web-to-print citations are discussed from a structural point of view and a small-scale experiment related to web-to-print citations for local history journals is performed. The main research question in setting up this experiment concerns the possibility of using web-to-print citations as a substitute for classical citation indexes by gauging the importance, visibility and impact of journals in the humanities. Results show the importance of web bibliographies in the field, but, at least for what concerns the journals and the period studied here, the amount of received web-to-print citations is too small to draw general conclusions.
  17. Vaughan, L.; Shaw , D.: Bibliographic and Web citations : what Is the difference? (2003) 0.02
    0.021910075 = product of:
      0.10955037 = sum of:
        0.03651679 = product of:
          0.07303358 = sum of:
            0.07303358 = weight(_text_:web in 5176) [ClassicSimilarity], result of:
              0.07303358 = score(doc=5176,freq=26.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.65002745 = fieldWeight in 5176, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5176)
          0.5 = coord(1/2)
        0.07303358 = weight(_text_:web in 5176) [ClassicSimilarity], result of:
          0.07303358 = score(doc=5176,freq=26.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.65002745 = fieldWeight in 5176, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5176)
      0.2 = coord(2/10)
    
    Abstract
    Vaughn, and Shaw look at the relationship between traditional citation and Web citation (not hyperlinks but rather textual mentions of published papers). Using English language research journals in ISI's 2000 Journal Citation Report - Information and Library Science category - 1209 full length papers published in 1997 in 46 journals were identified. Each was searched in Social Science Citation Index and on the Web using Google phrase search by entering the title in quotation marks, and followed for distinction where necessary with sub-titles, author's names, and journal title words. After removing obvious false drops, the number of web sites was recorded for comparison with the SSCI counts. A second sample from 1992 was also collected for examination. There were a total of 16,371 web citations to the selected papers. The top and bottom ranked four journals were then examined and every third citation to every third paper was selected and classified as to source type, domain, and country of origin. Web counts are much higher than ISI citation counts. Of the 46 journals from 1997, 26 demonstrated a significant correlation between Web and traditional citation counts, and 11 of the 15 in the 1992 sample also showed significant correlation. Journal impact factor in 1998 and 1999 correlated significantly with average Web citations per journal in the 1997 data, but at a low level. Thirty percent of web citations come from other papers posted on the web, and 30percent from listings of web based bibliographic services, while twelve percent come from class reading lists. High web citation journals often have web accessible tables of content.
  18. Maharana, B.; Nayak, K.; Sahu, N.K.: Scholarly use of web resources in LIS research : a citation analysis (2006) 0.02
    0.021910075 = product of:
      0.10955037 = sum of:
        0.03651679 = product of:
          0.07303358 = sum of:
            0.07303358 = weight(_text_:web in 53) [ClassicSimilarity], result of:
              0.07303358 = score(doc=53,freq=26.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.65002745 = fieldWeight in 53, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=53)
          0.5 = coord(1/2)
        0.07303358 = weight(_text_:web in 53) [ClassicSimilarity], result of:
          0.07303358 = score(doc=53,freq=26.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.65002745 = fieldWeight in 53, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=53)
      0.2 = coord(2/10)
    
    Abstract
    Purpose - The essential purpose of this paper is to measure the amount of web resources used for scholarly contributions in the area of library and information science (LIS) in India. It further aims to make an analysis of the nature and type of web resources and studies the various standards for web citations. Design/methodology/approach - In this study, the result of analysis of 292 web citations spread over 95 scholarly papers published in the proceedings of the National Conference of the Society for Information Science, India (SIS-2005) has been reported. All the 292 web citations were scanned and data relating to types of web domains, file formats, styles of citations, etc., were collected through a structured check list. The data thus obtained were systematically analyzed, figurative representations were made and appropriate interpretations were drawn. Findings - The study revealed that 292 (34.88 per cent) out of 837 were web citations, proving a significant correlation between the use of Internet resources and research productivity of LIS professionals in India. The highest number of web citations (35.6 per cent) was from .edu/.ac type domains. Most of the web resources (46.9 per cent) cited in the study were hypertext markup language (HTML) files. Originality/value - The paper is the result of an original analysis of web citations undertaken in order to study the dependence of LIS professionals in India on web sources for their scholarly contributions. This carries research value for web content providers, authors and researchers in LIS.
  19. Hong, T.: ¬The influence of structural and message features an Web site credibility (2006) 0.02
    0.02187634 = product of:
      0.109381706 = sum of:
        0.036460567 = product of:
          0.072921135 = sum of:
            0.072921135 = weight(_text_:web in 5787) [ClassicSimilarity], result of:
              0.072921135 = score(doc=5787,freq=18.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.64902663 = fieldWeight in 5787, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5787)
          0.5 = coord(1/2)
        0.072921135 = weight(_text_:web in 5787) [ClassicSimilarity], result of:
          0.072921135 = score(doc=5787,freq=18.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.64902663 = fieldWeight in 5787, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=5787)
      0.2 = coord(2/10)
    
    Abstract
    This article explores the associations that message features and Web structural features have with perceptions of Web site credibility. In a within-subjects experiment, 84 participants actively located health-related Web sites an the basis of two tasks that differed in task specificity and complexity. Web sites that were deemed most credible were content analyzed for message features and structural features that have been found to be associated with perceptions of source credibility. Regression analyses indicated that message features predicted perceived Web site credibility for both searches when controlling for Internet experience and issue involvement. Advertisements and structural features had no significant effects an perceived Web site credibility. Institutionaffiliated domain names (.gov, org, edu) predicted Web site credibility, but only in the general search, which was more difficult. Implications of results are discussed in terms of online credibility research and Web site design.
  20. H-Index auch im Web of Science (2008) 0.02
    0.021744141 = product of:
      0.07248047 = sum of:
        0.02105052 = product of:
          0.04210104 = sum of:
            0.04210104 = weight(_text_:web in 590) [ClassicSimilarity], result of:
              0.04210104 = score(doc=590,freq=6.0), product of:
                0.11235461 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03442753 = queryNorm
                0.37471575 = fieldWeight in 590, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=590)
          0.5 = coord(1/2)
        0.04210104 = weight(_text_:web in 590) [ClassicSimilarity], result of:
          0.04210104 = score(doc=590,freq=6.0), product of:
            0.11235461 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03442753 = queryNorm
            0.37471575 = fieldWeight in 590, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=590)
        0.009328911 = product of:
          0.027986731 = sum of:
            0.027986731 = weight(_text_:22 in 590) [ClassicSimilarity], result of:
              0.027986731 = score(doc=590,freq=2.0), product of:
                0.12055935 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03442753 = queryNorm
                0.23214069 = fieldWeight in 590, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=590)
          0.33333334 = coord(1/3)
      0.3 = coord(3/10)
    
    Content
    "Zur Kurzmitteilung "Latest enhancements in Scopus: ... h-Index incorporated in Scopus" in den letzten Online-Mitteilungen (Online-Mitteilungen 92, S.31) ist zu korrigieren, dass der h-Index sehr wohl bereits im Web of Science enthalten ist. Allerdings findet man/frau diese Information nicht in der "cited ref search", sondern neben der Trefferliste einer Quick Search, General Search oder einer Suche über den Author Finder in der rechten Navigationsleiste unter dem Titel "Citation Report". Der "Citation Report" bietet für die in der jeweiligen Trefferliste angezeigten Arbeiten: - Die Gesamtzahl der Zitierungen aller Arbeiten in der Trefferliste - Die mittlere Zitationshäufigkeit dieser Arbeiten - Die Anzahl der Zitierungen der einzelnen Arbeiten, aufgeschlüsselt nach Publikationsjahr der zitierenden Arbeiten - Die mittlere Zitationshäufigkeit dieser Arbeiten pro Jahr - Den h-Index (ein h-Index von x sagt aus, dass x Arbeiten der Trefferliste mehr als x-mal zitiert wurden; er ist gegenüber sehr hohen Zitierungen einzelner Arbeiten unempfindlicher als die mittlere Zitationshäufigkeit)."
    Date
    6. 4.2008 19:04:22
    Object
    Web of Science

Years

Languages

  • e 446
  • d 28
  • ro 1
  • sp 1
  • More… Less…

Types

  • a 463
  • el 10
  • m 9
  • s 3
  • r 2
  • b 1
  • x 1
  • More… Less…