Search (4 results, page 1 of 1)

  • × classification_ss:"BCA (FH K)"
  1. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.02
    0.021995839 = product of:
      0.087983355 = sum of:
        0.087983355 = sum of:
          0.05013916 = weight(_text_:access in 987) [ClassicSimilarity], result of:
            0.05013916 = score(doc=987,freq=4.0), product of:
              0.15778996 = queryWeight, product of:
                3.389428 = idf(docFreq=4053, maxDocs=44218)
                0.046553567 = queryNorm
              0.31775886 = fieldWeight in 987, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.389428 = idf(docFreq=4053, maxDocs=44218)
                0.046875 = fieldNorm(doc=987)
          0.037844196 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
            0.037844196 = score(doc=987,freq=2.0), product of:
              0.16302267 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046553567 = queryNorm
              0.23214069 = fieldWeight in 987, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=987)
      0.25 = coord(1/4)
    
    Date
    23. 7.2017 13:49:22
    LCSH
    World Wide Web / Subject access
    Subject
    World Wide Web / Subject access
  2. White, R.W.; Roth, R.A.: Exploratory search : beyond the query-response paradigm (2009) 0.01
    0.013037993 = product of:
      0.05215197 = sum of:
        0.05215197 = weight(_text_:open in 0) [ClassicSimilarity], result of:
          0.05215197 = score(doc=0,freq=2.0), product of:
            0.20964009 = queryWeight, product of:
              4.5032015 = idf(docFreq=1330, maxDocs=44218)
              0.046553567 = queryNorm
            0.24876907 = fieldWeight in 0, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.5032015 = idf(docFreq=1330, maxDocs=44218)
              0.0390625 = fieldNorm(doc=0)
      0.25 = coord(1/4)
    
    Abstract
    As information becomes more ubiquitous and the demands that searchers have on search systems grow, there is a need to support search behaviors beyond simple lookup. Information seeking is the process or activity of attempting to obtain information in both human and technological contexts. Exploratory search describes an information-seeking problem context that is open-ended, persistent, and multifaceted, and information-seeking processes that are opportunistic, iterative, and multitactical. Exploratory searchers aim to solve complex problems and develop enhanced mental capacities. Exploratory search systems support this through symbiotic human-machine relationships that provide guidance in exploring unfamiliar information landscapes. Exploratory search has gained prominence in recent years. There is an increased interest from the information retrieval, information science, and human-computer interaction communities in moving beyond the traditional turn-taking interaction model supported by major Web search engines, and toward support for human intelligence amplification and information use. In this lecture, we introduce exploratory search, relate it to relevant extant research, outline the features of exploratory search systems, discuss the evaluation of these systems, and suggest some future directions for supporting exploratory search. Exploratory search is a new frontier in the search domain and is becoming increasingly important in shaping our future world.
  3. Lalmas, M.: XML retrieval (2009) 0.01
    0.006396633 = product of:
      0.025586532 = sum of:
        0.025586532 = product of:
          0.051173065 = sum of:
            0.051173065 = weight(_text_:access in 4998) [ClassicSimilarity], result of:
              0.051173065 = score(doc=4998,freq=6.0), product of:
                0.15778996 = queryWeight, product of:
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.046553567 = queryNorm
                0.3243113 = fieldWeight in 4998, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4998)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Documents usually have a content and a structure. The content refers to the text of the document, whereas the structure refers to how a document is logically organized. An increasingly common way to encode the structure is through the use of a mark-up language. Nowadays, the most widely used mark-up language for representing structure is the eXtensible Mark-up Language (XML). XML can be used to provide a focused access to documents, i.e. returning XML elements, such as sections and paragraphs, instead of whole documents in response to a query. Such focused strategies are of particular benefit for information repositories containing long documents, or documents covering a wide variety of topics, where users are directed to the most relevant content within a document. The increased adoption of XML to represent a document structure requires the development of tools to effectively access documents marked-up in XML. This book provides a detailed description of query languages, indexing strategies, ranking algorithms, presentation scenarios developed to access XML documents. Major advances in XML retrieval were seen from 2002 as a result of INEX, the Initiative for Evaluation of XML Retrieval. INEX, also described in this book, provided test sets for evaluating XML retrieval effectiveness. Many of the developments and results described in this book were investigated within INEX.
  4. Tunkelang, D.: Faceted search (2009) 0.00
    0.0041782632 = product of:
      0.016713053 = sum of:
        0.016713053 = product of:
          0.033426106 = sum of:
            0.033426106 = weight(_text_:access in 26) [ClassicSimilarity], result of:
              0.033426106 = score(doc=26,freq=4.0), product of:
                0.15778996 = queryWeight, product of:
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.046553567 = queryNorm
                0.21183924 = fieldWeight in 26, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.389428 = idf(docFreq=4053, maxDocs=44218)
                  0.03125 = fieldNorm(doc=26)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    We live in an information age that requires us, more than ever, to represent, access, and use information. Over the last several decades, we have developed a modern science and technology for information retrieval, relentlessly pursuing the vision of a "memex" that Vannevar Bush proposed in his seminal article, "As We May Think." Faceted search plays a key role in this program. Faceted search addresses weaknesses of conventional search approaches and has emerged as a foundation for interactive information retrieval. User studies demonstrate that faceted search provides more effective information-seeking support to users than best-first search. Indeed, faceted search has become increasingly prevalent in online information access systems, particularly for e-commerce and site search. In this lecture, we explore the history, theory, and practice of faceted search. Although we cannot hope to be exhaustive, our aim is to provide sufficient depth and breadth to offer a useful resource to both researchers and practitioners. Because faceted search is an area of interest to computer scientists, information scientists, interface designers, and usability researchers, we do not assume that the reader is a specialist in any of these fields. Rather, we offer a self-contained treatment of the topic, with an extensive bibliography for those who would like to pursue particular aspects in more depth.