Search (64 results, page 1 of 4)

  • × theme_ss:"Begriffstheorie"
  1. Axelos, C.; Flasch, K.; Schepers, H.; Kuhlen, R.; Romberg, R.; Zimmermann, R.: Allgemeines/Besonderes (1971-2007) 0.09
    0.093495935 = product of:
      0.37398374 = sum of:
        0.37398374 = weight(_text_:2f in 4031) [ClassicSimilarity], result of:
          0.37398374 = score(doc=4031,freq=4.0), product of:
            0.40331158 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.047571484 = queryNorm
            0.92728245 = fieldWeight in 4031, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4031)
      0.25 = coord(1/4)
    
    Footnote
    DOI: 10.24894/HWPh.5033. Vgl. unter: https://www.schwabeonline.ch/schwabe-xaveropp/elibrary/start.xav#__elibrary__%2F%2F*%5B%40attr_id%3D%27verw.allgemeinesbesonderes%27%5D__1515856414979.
  2. Wilbert, R.: Assoziative Begriffsrepräsentation in neuronalen Netzwerken : Zur Problematik eines assoziativen Zugriffs in Information Retrieval Systemen (1991) 0.03
    0.032194868 = product of:
      0.064389735 = sum of:
        0.025915671 = weight(_text_:information in 479) [ClassicSimilarity], result of:
          0.025915671 = score(doc=479,freq=2.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.3103276 = fieldWeight in 479, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.125 = fieldNorm(doc=479)
        0.038474064 = product of:
          0.07694813 = sum of:
            0.07694813 = weight(_text_:retrieval in 479) [ClassicSimilarity], result of:
              0.07694813 = score(doc=479,freq=2.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.5347345 = fieldWeight in 479, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.125 = fieldNorm(doc=479)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
  3. Evens, M.: Thesaural relations in information retrieval (2002) 0.03
    0.026996218 = product of:
      0.053992435 = sum of:
        0.021730952 = weight(_text_:information in 1201) [ClassicSimilarity], result of:
          0.021730952 = score(doc=1201,freq=10.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.2602176 = fieldWeight in 1201, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1201)
        0.032261483 = product of:
          0.06452297 = sum of:
            0.06452297 = weight(_text_:retrieval in 1201) [ClassicSimilarity], result of:
              0.06452297 = score(doc=1201,freq=10.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.44838852 = fieldWeight in 1201, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1201)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Thesaural relations have long been used in information retrieval to enrich queries; they have sometimes been used to cluster documents as well. Sometimes the first query to an information retrieval system yields no results at all, or, what can be even more disconcerting, many thousands of hits. One solution is to rephrase the query, improving the choice of query terms by using related terms of different types. A collection of related terms is often called a thesaurus. This chapter describes the lexical-semantic relations that have been used in building thesauri and summarizes some of the effects of using these relational thesauri in information retrieval experiments
    Series
    Information science and knowledge management; vol.3
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  4. Khoo, C.; Myaeng, S.H.: Identifying semantic relations in text for information retrieval and information extraction (2002) 0.03
    0.02623868 = product of:
      0.05247736 = sum of:
        0.02748772 = weight(_text_:information in 1197) [ClassicSimilarity], result of:
          0.02748772 = score(doc=1197,freq=16.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.3291521 = fieldWeight in 1197, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1197)
        0.02498964 = product of:
          0.04997928 = sum of:
            0.04997928 = weight(_text_:retrieval in 1197) [ClassicSimilarity], result of:
              0.04997928 = score(doc=1197,freq=6.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.34732026 = fieldWeight in 1197, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1197)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Automatic identification of semantic relations in text is a difficult problem, but is important for many applications. It has been used for relation matching in information retrieval to retrieve documents that contain not only the concepts but also the relations between concepts specified in the user's query. It is an integral part of information extraction-extracting from natural language text, facts or pieces of information related to a particular event or topic. Other potential applications are in the construction of relational thesauri (semantic networks of related concepts) and other kinds of knowledge bases, and in natural language processing applications such as machine translation and computer comprehension of text. This chapter examines the main methods used for identifying semantic relations automatically and their application in information retrieval and information extraction.
    Series
    Information science and knowledge management; vol.3
  5. Hetzler, B.: Visual analysis and exploration of relationships (2002) 0.03
    0.025788594 = product of:
      0.051577188 = sum of:
        0.027772574 = weight(_text_:information in 1189) [ClassicSimilarity], result of:
          0.027772574 = score(doc=1189,freq=12.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.3325631 = fieldWeight in 1189, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1189)
        0.023804612 = product of:
          0.047609225 = sum of:
            0.047609225 = weight(_text_:retrieval in 1189) [ClassicSimilarity], result of:
              0.047609225 = score(doc=1189,freq=4.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.33085006 = fieldWeight in 1189, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1189)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Relationships can provide a rich and powerful set of information and can be used to accomplish application goals, such as information retrieval and natural language processing. A growing trend in the information science community is the use of information visualization-taking advantage of people's natural visual capabilities to perceive and understand complex information. This chapter explores how visualization and visual exploration can help users gain insight from known relationships and discover evidence of new relationships not previously anticipated.
    Series
    Information science and knowledge management; vol.3
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  6. Casagrande, J.B.; Hale, K.L.: Semantic relations in Papago folk definitions (1967) 0.02
    0.020121792 = product of:
      0.040243585 = sum of:
        0.016197294 = weight(_text_:information in 1194) [ClassicSimilarity], result of:
          0.016197294 = score(doc=1194,freq=2.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.19395474 = fieldWeight in 1194, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=1194)
        0.02404629 = product of:
          0.04809258 = sum of:
            0.04809258 = weight(_text_:retrieval in 1194) [ClassicSimilarity], result of:
              0.04809258 = score(doc=1194,freq=2.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.33420905 = fieldWeight in 1194, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1194)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Footnote
    Zitiert in: Evens, M.: Thesaural relations in information retrieval. In: The semantics of relationships: an interdisciplinary perspective. Eds: R. Green u.a. Dordrecht: Kluwer 2002. S.143-160.
  7. ¬The semantics of relationships : an interdisciplinary perspective (2002) 0.02
    0.01946691 = product of:
      0.03893382 = sum of:
        0.018109124 = weight(_text_:information in 1430) [ClassicSimilarity], result of:
          0.018109124 = score(doc=1430,freq=10.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.21684799 = fieldWeight in 1430, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1430)
        0.020824699 = product of:
          0.041649397 = sum of:
            0.041649397 = weight(_text_:retrieval in 1430) [ClassicSimilarity], result of:
              0.041649397 = score(doc=1430,freq=6.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.28943354 = fieldWeight in 1430, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1430)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Work on relationships takes place in many communities, including, among others, data modeling, knowledge representation, natural language processing, linguistics, and information retrieval. Unfortunately, continued disciplinary splintering and specialization keeps any one person from being familiar with the full expanse of that work. By including contributions form experts in a variety of disciplines and backgrounds, this volume demonstrates both the parallels that inform work on relationships across a number of fields and the singular emphases that have yet to be fully embraced, The volume is organized into 3 parts: (1) Types of relationships (2) Relationships in knowledge representation and reasoning (3) Applications of relationships
    Content
    Enthält die Beiträge: Pt.1: Types of relationships: CRUDE, D.A.: Hyponymy and its varieties; FELLBAUM, C.: On the semantics of troponymy; PRIBBENOW, S.: Meronymic relationships: from classical mereology to complex part-whole relations; KHOO, C. u.a.: The many facets of cause-effect relation - Pt.2: Relationships in knowledge representation and reasoning: GREEN, R.: Internally-structured conceptual models in cognitive semantics; HOVY, E.: Comparing sets of semantic relations in ontologies; GUARINO, N., C. WELTY: Identity and subsumption; JOUIS; C.: Logic of relationships - Pt.3: Applications of relationships: EVENS, M.: Thesaural relations in information retrieval; KHOO, C., S.H. MYAENG: Identifying semantic relations in text for information retrieval and information extraction; McCRAY, A.T., O. BODENREICHER: A conceptual framework for the biiomedical domain; HETZLER, B.: Visual analysis and exploration of relationships
    Series
    Information science and knowledge management; vol.3
  8. Stock, W.: Begriffe und semantische Relationen in der Wissensrepräsentation (2009) 0.02
    0.018618338 = product of:
      0.037236676 = sum of:
        0.016832722 = weight(_text_:information in 3218) [ClassicSimilarity], result of:
          0.016832722 = score(doc=3218,freq=6.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.20156369 = fieldWeight in 3218, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3218)
        0.020403953 = product of:
          0.040807907 = sum of:
            0.040807907 = weight(_text_:retrieval in 3218) [ClassicSimilarity], result of:
              0.040807907 = score(doc=3218,freq=4.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.2835858 = fieldWeight in 3218, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3218)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Begriffsorientiertes Information Retrieval bedarf einer informationswissenschaftlichen Theorie der Begriffe sowie der semantischen Relationen. Ein Begriff wird durch seine Intension und Extension sowie durch Definitionen bestimmt. Dem Problem der Vagheit begegnen wir durch die Einführung von Prototypen. Wichtige Definitionsarten sind die Begriffserklärung (nach Aristoteles) und die Definition über Familienähnlichkeiten (im Sinne Wittgensteins). Wir modellieren Begriffe als Frames (in der Version von Barsalou). Die zentrale paradigmatische Relation in Wissensordnungen ist die Hierarchie, die in verschiedene Arten zu gliedern ist: Hyponymie zerfällt in die Taxonomie und die einfache Hyponymie, Meronymie in eine ganze Reihe unterschiedlicher Teil-Ganzes-Beziehungen. Wichtig für praktische Anwendungen ist die Transitivität der jeweiligen Relation. Eine unspezifische Assoziationsrelation ist bei den angepeilten Anwendungen wenig hilfreich und wird durch ein Bündel von generalisierbaren und fachspezifischen Relationen ersetzt. Unser Ansatz fundiert neue Optionen der Anwendung von Wissensordnungen in der Informationspraxis neben ihrem "klassischen" Einsatz beim Information Retrieval: Erweiterung von Suchanfragen (Anwendung der semantischen Nähe), automatisches Schlussfolgern (Anwendung der terminologischen Logik in Vorbereitung eines semantischen Web) und automatische Berechnungen (bei Funktionalbegriffen mit numerischen Wertangaben).
    Source
    Information - Wissenschaft und Praxis. 60(2009) H.8, S.403-420
  9. Hjoerland, B.: Concept theory (2009) 0.02
    0.016725074 = product of:
      0.03345015 = sum of:
        0.021427006 = weight(_text_:information in 3461) [ClassicSimilarity], result of:
          0.021427006 = score(doc=3461,freq=14.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.256578 = fieldWeight in 3461, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3461)
        0.012023145 = product of:
          0.02404629 = sum of:
            0.02404629 = weight(_text_:retrieval in 3461) [ClassicSimilarity], result of:
              0.02404629 = score(doc=3461,freq=2.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.16710453 = fieldWeight in 3461, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3461)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge organizing systems (e.g., classification systems, thesauri, and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe, evaluate, and use such systems. Based on a post-Kuhnian view of paradigms, this article put forward arguments that the best understanding and classification of theories of concepts is to view and classify them in accordance with epistemological theories (empiricism, rationalism, historicism, and pragmatism). It is also argued that the historicist and pragmatist understandings of concepts are the most fruitful views and that this understanding may be part of a broader paradigm shift that is also beginning to take place in information science. The importance of historicist and pragmatic theories of concepts for information science is outlined.
    Footnote
    Vgl.: Szostak, R.: Comment on Hjørland's concept theory in: Journal of the American Society for Information Science and Technology. 61(2010) no.5, S. 1076-1077 und die Erwiderung darauf von B. Hjoerland (S.1078-1080)
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.8, S.1519-1536
    Theme
    Information
  10. Campos, L.M.: Princípios teóricos usados na elaboracao de ontologias e sua influência na recuperacao da informacao com uso de de inferências [Theoretical principles used in ontology building and their influence on information retrieval using inferences] (2021) 0.02
    0.015515282 = product of:
      0.031030564 = sum of:
        0.01402727 = weight(_text_:information in 826) [ClassicSimilarity], result of:
          0.01402727 = score(doc=826,freq=6.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.16796975 = fieldWeight in 826, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=826)
        0.017003294 = product of:
          0.03400659 = sum of:
            0.03400659 = weight(_text_:retrieval in 826) [ClassicSimilarity], result of:
              0.03400659 = score(doc=826,freq=4.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.23632148 = fieldWeight in 826, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=826)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Several instruments of knowledge organization will reflect different possibilities for information retrieval. In this context, ontologies have a different potential because they allow knowledge discovery, which can be used to retrieve information in a more flexible way. However, this potential can be affected by the theoretical principles adopted in ontology building. The aim of this paper is to discuss, in an introductory way, how a (not exhaustive) set of theoretical principles can influence an aspect of ontologies: their use to obtain inferences. In this context, the role of Ingetraut Dahlberg's Theory of Concept is discussed. The methodology is exploratory, qualitative, and from the technical point of view it uses bibliographic research supported by the content analysis method. It also presents a small example of application as a proof of concept. As results, a discussion about the influence of conceptual definition on subsumption inferences is presented, theoretical contributions are suggested that should be used to guide the formation of hierarchical structures on which such inferences are supported, and examples are provided of how the absence of such contributions can lead to erroneous inferences
  11. Olson, H.A.: How we construct subjects : a feminist analysis (2007) 0.02
    0.015070234 = product of:
      0.030140469 = sum of:
        0.01402727 = weight(_text_:information in 5588) [ClassicSimilarity], result of:
          0.01402727 = score(doc=5588,freq=6.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.16796975 = fieldWeight in 5588, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5588)
        0.0161132 = product of:
          0.0322264 = sum of:
            0.0322264 = weight(_text_:22 in 5588) [ClassicSimilarity], result of:
              0.0322264 = score(doc=5588,freq=2.0), product of:
                0.16658723 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047571484 = queryNorm
                0.19345059 = fieldWeight in 5588, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5588)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    To organize information, librarians create structures. These structures grow from a logic that goes back at least as far as Aristotle. It is the basis of classification as we practice it, and thesauri and subject headings have developed from it. Feminist critiques of logic suggest that logic is gendered in nature. This article will explore how these critiques play out in contemporary standards for the organization of information. Our widely used classification schemes embody principles such as hierarchical force that conform to traditional/Aristotelian logic. Our subject heading strings follow a linear path of subdivision. Our thesauri break down subjects into discrete concepts. In thesauri and subject heading lists we privilege hierarchical relationships, reflected in the syndetic structure of broader and narrower terms, over all other relationships. Are our classificatory and syndetic structures gendered? Are there other options? Carol Gilligan's In a Different Voice (1982), Women's Ways of Knowing (Belenky, Clinchy, Goldberger, & Tarule, 1986), and more recent related research suggest a different type of structure for women's knowledge grounded in "connected knowing." This article explores current and potential elements of connected knowing in subject access with a focus on the relationships, both paradigmatic and syntagmatic, between concepts.
    Content
    Beitrag in einem Themenheft 'Gender Issues in Information Needs and Services'.
    Date
    11.12.2019 19:00:22
  12. Nakamura, Y.: Subdivisions vs. conjunctions : a discussion on concept theory (1998) 0.01
    0.014085256 = product of:
      0.028170511 = sum of:
        0.011338106 = weight(_text_:information in 69) [ClassicSimilarity], result of:
          0.011338106 = score(doc=69,freq=2.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.13576832 = fieldWeight in 69, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=69)
        0.016832404 = product of:
          0.033664808 = sum of:
            0.033664808 = weight(_text_:retrieval in 69) [ClassicSimilarity], result of:
              0.033664808 = score(doc=69,freq=2.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.23394634 = fieldWeight in 69, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=69)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    After studying the relations between two words(nouns) that constitute a compound term, the relation between corresponding concepts discussed. The impossibility of having a conjunction between two concepts that have no common feature causes inconvenience in the application of concept theory to information retrieval problems. Another kind of conjunctions, different from that by co-occurrence, is proposed and characteristics of this conjunction is studied. It revealed that one of new ones has the same character with colon combination in UDC. The possibility of having three kinds of conjunction including Wsterian concept conjunction is presented. It is also discussed that subdivisions can be replaced by new conjunctions
  13. Jouis, C.: Logic of relationships (2002) 0.01
    0.012105923 = product of:
      0.024211846 = sum of:
        0.008098647 = weight(_text_:information in 1204) [ClassicSimilarity], result of:
          0.008098647 = score(doc=1204,freq=2.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.09697737 = fieldWeight in 1204, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1204)
        0.0161132 = product of:
          0.0322264 = sum of:
            0.0322264 = weight(_text_:22 in 1204) [ClassicSimilarity], result of:
              0.0322264 = score(doc=1204,freq=2.0), product of:
                0.16658723 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047571484 = queryNorm
                0.19345059 = fieldWeight in 1204, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1204)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    1.12.2002 11:12:22
    Series
    Information science and knowledge management; vol.3
  14. Hovy, E.: Comparing sets of semantic relations in ontologies (2002) 0.01
    0.012073075 = product of:
      0.02414615 = sum of:
        0.009718376 = weight(_text_:information in 2178) [ClassicSimilarity], result of:
          0.009718376 = score(doc=2178,freq=2.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.116372846 = fieldWeight in 2178, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2178)
        0.014427775 = product of:
          0.02885555 = sum of:
            0.02885555 = weight(_text_:retrieval in 2178) [ClassicSimilarity], result of:
              0.02885555 = score(doc=2178,freq=2.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.20052543 = fieldWeight in 2178, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2178)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Series
    Information science and knowledge management; vol.3
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  15. O'Neill, E.T.; Kammerer, K.A.; Bennett, R.: ¬The aboutness of words (2017) 0.01
    0.012073075 = product of:
      0.02414615 = sum of:
        0.009718376 = weight(_text_:information in 3835) [ClassicSimilarity], result of:
          0.009718376 = score(doc=3835,freq=2.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.116372846 = fieldWeight in 3835, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3835)
        0.014427775 = product of:
          0.02885555 = sum of:
            0.02885555 = weight(_text_:retrieval in 3835) [ClassicSimilarity], result of:
              0.02885555 = score(doc=3835,freq=2.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.20052543 = fieldWeight in 3835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3835)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Word aboutness is defined as the relationship between words and subjects associated with them. An aboutness coefficient is developed to estimate the strength of the aboutness relationship. Words that are randomly distributed across subjects are assumed to lack aboutness and the degree to which their usage deviates from a random pattern indicates the strength of the aboutness. To estimate aboutness, title words and their associated subjects are extracted from the titles of non-fiction English language books in the OCLC WorldCat database. The usage patterns of the title words are analyzed and used to compute aboutness coefficients for each of the common title words. Words with low aboutness coefficients (An and In) are commonly found in stop word lists, whereas words with high aboutness coefficients (Carbonate, Autism) are unambiguous and have a strong subject association. The aboutness coefficient potentially can enhance indexing, advance authority control, and improve retrieval.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.10, S.2471-2483
  16. Dahlberg, I.: ¬Die gegenstandsbezogene, analytische Begriffstheorie und ihre Definitionsarten (1987) 0.01
    0.011279238 = product of:
      0.045116954 = sum of:
        0.045116954 = product of:
          0.09023391 = sum of:
            0.09023391 = weight(_text_:22 in 880) [ClassicSimilarity], result of:
              0.09023391 = score(doc=880,freq=2.0), product of:
                0.16658723 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047571484 = queryNorm
                0.5416616 = fieldWeight in 880, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=880)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Pages
    S.9-22
  17. Wüster, E.: Begriffs- und Themaklassifikation : Unterschiede in ihrem Wesen und in ihrer Anwendung (1971) 0.01
    0.009667919 = product of:
      0.038671676 = sum of:
        0.038671676 = product of:
          0.07734335 = sum of:
            0.07734335 = weight(_text_:22 in 3904) [ClassicSimilarity], result of:
              0.07734335 = score(doc=3904,freq=2.0), product of:
                0.16658723 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047571484 = queryNorm
                0.46428138 = fieldWeight in 3904, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3904)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Nachrichten für Dokumentation. 22(1971) H.3, S.98-104 (T.1); H.4, S.143-150 (T.2)
  18. Bivins, K.T.: Concept formation : the evidence from experimental psychology and linguistics and its relationship to information science (1980) 0.01
    0.008416361 = product of:
      0.033665445 = sum of:
        0.033665445 = weight(_text_:information in 1319) [ClassicSimilarity], result of:
          0.033665445 = score(doc=1319,freq=6.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.40312737 = fieldWeight in 1319, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=1319)
      0.25 = coord(1/4)
    
    Source
    Theory and application of information research. Proc. of the 2nd Int. Research Forum on Information Science, 3.-6.8.1977, Copenhagen. Ed.: O. Harbo u. L. Kajberg
  19. Thellefsen, M.M.; Thellefsen, T.; Sørensen, B.: Information as signs : a semiotic analysis of the information concept, determining its ontological and epistemological foundations (2018) 0.01
    0.008347894 = product of:
      0.033391576 = sum of:
        0.033391576 = weight(_text_:information in 4241) [ClassicSimilarity], result of:
          0.033391576 = score(doc=4241,freq=34.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.39984792 = fieldWeight in 4241, product of:
              5.8309517 = tf(freq=34.0), with freq of:
                34.0 = termFreq=34.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4241)
      0.25 = coord(1/4)
    
    Abstract
    The purpose of this paper is to formulate an analytical framework for the information concept based on the semiotic theory. Design/methodology/approach The paper is motivated by the apparent controversy that still surrounds the information concept. Information, being a key concept within LIS, suffers from being anchored in various incompatible theories. The paper suggests that information is signs, and it demonstrates how the concept of information can be understood within C.S. Peirce's phenomenologically rooted semiotic. Hence, from there, certain ontological conditions as well epistemological consequences of the information concept can be deduced. Findings The paper argues that an understanding of information, as either objective or subjective/discursive, leads to either objective reductionism and signal processing, that fails to explain how information becomes meaningful at all, or conversely, information is understood only relative to subjective/discursive intentions, agendas, etc. To overcome the limitations of defining information as either objective or subjective/discursive, a semiotic analysis shows that information understood as signs is consistently sensitive to both objective and subjective/discursive features of information. It is consequently argued that information as concept should be defined in relation to ontological conditions having certain epistemological consequences. Originality/value The paper presents an analytical framework, derived from semiotics, that adds to the developments of the philosophical dimensions of information within LIS.
    Theme
    Information
  20. Bonnevie, E.: Dretske's semantic information theory and meta-theories in library and information science (2001) 0.01
    0.0073000216 = product of:
      0.029200086 = sum of:
        0.029200086 = weight(_text_:information in 4484) [ClassicSimilarity], result of:
          0.029200086 = score(doc=4484,freq=26.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.34965688 = fieldWeight in 4484, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4484)
      0.25 = coord(1/4)
    
    Abstract
    This article presents the semantic information theory, formulated by the philosopher Fred I. Dretske, as a contribution to the discussion of metatheories and their practical implications in the field of library and information science. Dretske's theory is described in Knowledge and the flow of information. It is founded on mathematical communication theory but developed and elaborated into a cognitive, functionalistic theory, is individually oriented, and deals with the content of information. The topics are: the information process from perception to cognition, and how concept formation takes place in terms of digitisation. Other important issues are the concepts of information and knowledge, truth and meaning. Semantic information theory can be used as a frame of reference in order to explain, clarify and refute concepts currently used in library and information science, and as the basis for critical reviews of elements of the cognitive viewpoint in IR, primarily the notion of "potential information". The main contribution of the theory lies in a clarification of concepts, but there are still problems regarding the practical applications. More research is needed to combine philosophical discussions with the practice of information and library science.
    Theme
    Information

Languages

  • e 43
  • d 19
  • nl 1
  • pt 1
  • More… Less…

Types

  • a 51
  • m 8
  • s 5
  • el 2
  • n 1
  • p 1
  • More… Less…