Search (97 results, page 1 of 5)

  • × theme_ss:"Inhaltsanalyse"
  1. Raieli, R.: ¬The semantic hole : enthusiasm and caution around multimedia information retrieval (2012) 0.07
    0.06671287 = product of:
      0.13342574 = sum of:
        0.019837553 = weight(_text_:information in 4888) [ClassicSimilarity], result of:
          0.019837553 = score(doc=4888,freq=12.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.23754507 = fieldWeight in 4888, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4888)
        0.113588184 = sum of:
          0.06801318 = weight(_text_:retrieval in 4888) [ClassicSimilarity], result of:
            0.06801318 = score(doc=4888,freq=16.0), product of:
              0.1438997 = queryWeight, product of:
                3.024915 = idf(docFreq=5836, maxDocs=44218)
                0.047571484 = queryNorm
              0.47264296 = fieldWeight in 4888, product of:
                4.0 = tf(freq=16.0), with freq of:
                  16.0 = termFreq=16.0
                3.024915 = idf(docFreq=5836, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4888)
          0.045575008 = weight(_text_:22 in 4888) [ClassicSimilarity], result of:
            0.045575008 = score(doc=4888,freq=4.0), product of:
              0.16658723 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047571484 = queryNorm
              0.27358043 = fieldWeight in 4888, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4888)
      0.5 = coord(2/4)
    
    Abstract
    This paper centres on the tools for the management of new digital documents, which are not only textual, but also visual-video, audio or multimedia in the full sense. Among the aims is to demonstrate that operating within the terms of generic Information Retrieval through textual language only is limiting, and it is instead necessary to consider ampler criteria, such as those of MultiMedia Information Retrieval, according to which, every type of digital document can be analyzed and searched by the proper elements of language for its proper nature. MMIR is presented as the organic complex of the systems of Text Retrieval, Visual Retrieval, Video Retrieval, and Audio Retrieval, each of which has an approach to information management that handles the concrete textual, visual, audio, or video content of the documents directly, here defined as content-based. In conclusion, the limits of this content-based objective access to documents is underlined. The discrepancy known as the semantic gap is that which occurs between semantic-interpretive access and content-based access. Finally, the integration of these conceptions is explained, gathering and composing the merits and the advantages of each of the approaches and of the systems to access to information.
    Date
    22. 1.2012 13:02:10
    Footnote
    Bezugnahme auf: Enser, P.G.B.: Visual image retrieval. In: Annual review of information science and technology. 42(2008), S.3-42.
    Source
    Knowledge organization. 39(2012) no.1, S.13-22
  2. Beghtol, C.: Toward a theory of fiction analysis for information storage and retrieval (1992) 0.05
    0.05149707 = product of:
      0.10299414 = sum of:
        0.012957836 = weight(_text_:information in 5830) [ClassicSimilarity], result of:
          0.012957836 = score(doc=5830,freq=2.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.1551638 = fieldWeight in 5830, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=5830)
        0.0900363 = sum of:
          0.038474064 = weight(_text_:retrieval in 5830) [ClassicSimilarity], result of:
            0.038474064 = score(doc=5830,freq=2.0), product of:
              0.1438997 = queryWeight, product of:
                3.024915 = idf(docFreq=5836, maxDocs=44218)
                0.047571484 = queryNorm
              0.26736724 = fieldWeight in 5830, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.024915 = idf(docFreq=5836, maxDocs=44218)
                0.0625 = fieldNorm(doc=5830)
          0.051562235 = weight(_text_:22 in 5830) [ClassicSimilarity], result of:
            0.051562235 = score(doc=5830,freq=2.0), product of:
              0.16658723 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047571484 = queryNorm
              0.30952093 = fieldWeight in 5830, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=5830)
      0.5 = coord(2/4)
    
    Date
    5. 8.2006 13:22:08
  3. Belkin, N.J.: ¬The problem of 'matching' in information retrieval (1980) 0.03
    0.031260498 = product of:
      0.062520996 = sum of:
        0.033665445 = weight(_text_:information in 1329) [ClassicSimilarity], result of:
          0.033665445 = score(doc=1329,freq=6.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.40312737 = fieldWeight in 1329, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=1329)
        0.02885555 = product of:
          0.0577111 = sum of:
            0.0577111 = weight(_text_:retrieval in 1329) [ClassicSimilarity], result of:
              0.0577111 = score(doc=1329,freq=2.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.40105087 = fieldWeight in 1329, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1329)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Theory and application of information research. Proc. of the 2nd Int. Research Forum on Information Science, 3.-6.8.1977, Copenhagen. Ed.: O. Harbo u. L. Kajberg
  4. Krause, J.: Principles of content analysis for information retrieval systems : an overview (1996) 0.03
    0.028170511 = product of:
      0.056341022 = sum of:
        0.022676213 = weight(_text_:information in 5270) [ClassicSimilarity], result of:
          0.022676213 = score(doc=5270,freq=2.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.27153665 = fieldWeight in 5270, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=5270)
        0.033664808 = product of:
          0.067329615 = sum of:
            0.067329615 = weight(_text_:retrieval in 5270) [ClassicSimilarity], result of:
              0.067329615 = score(doc=5270,freq=2.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.46789268 = fieldWeight in 5270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.109375 = fieldNorm(doc=5270)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
  5. Pejtersen, A.M.: Design of a classification scheme for fiction based on an analysis of actual user-librarian communication, and use of the scheme for control of librarians' search strategies (1980) 0.03
    0.027566414 = product of:
      0.05513283 = sum of:
        0.022906432 = weight(_text_:information in 5835) [ClassicSimilarity], result of:
          0.022906432 = score(doc=5835,freq=4.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.27429342 = fieldWeight in 5835, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=5835)
        0.0322264 = product of:
          0.0644528 = sum of:
            0.0644528 = weight(_text_:22 in 5835) [ClassicSimilarity], result of:
              0.0644528 = score(doc=5835,freq=2.0), product of:
                0.16658723 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047571484 = queryNorm
                0.38690117 = fieldWeight in 5835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5835)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    5. 8.2006 13:22:44
    Source
    Theory and application of information research. Proc. of the 2nd Int. Research Forum on Information Science, 3.-6.8.1977, Copenhagen. Ed.: O. Harbo u, L. Kajberg
  6. Rorissa, A.; Iyer, H.: Theories of cognition and image categorization : what category labels reveal about basic level theory (2008) 0.03
    0.026330307 = product of:
      0.052660614 = sum of:
        0.023805063 = weight(_text_:information in 1958) [ClassicSimilarity], result of:
          0.023805063 = score(doc=1958,freq=12.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.2850541 = fieldWeight in 1958, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1958)
        0.02885555 = product of:
          0.0577111 = sum of:
            0.0577111 = weight(_text_:retrieval in 1958) [ClassicSimilarity], result of:
              0.0577111 = score(doc=1958,freq=8.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.40105087 = fieldWeight in 1958, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1958)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Information search and retrieval interactions usually involve information content in the form of document collections, information retrieval systems and interfaces, and the user. To fully understand information search and retrieval interactions between users' cognitive space and the information space, researchers need to turn to cognitive models and theories. In this article, the authors use one of these theories, the basic level theory. Use of the basic level theory to understand human categorization is both appropriate and essential to user-centered design of taxonomies, ontologies, browsing interfaces, and other indexing tools and systems. Analyses of data from two studies involving free sorting by 105 participants of 100 images were conducted. The types of categories formed and category labels were examined. Results of the analyses indicate that image category labels generally belong to superordinate to the basic level, and are generic and interpretive. Implications for research on theories of cognition and categorization, and design of image indexing, retrieval and browsing systems are discussed.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.9, S.1383-1392
  7. Morehead, D.R.; Pejtersen, A.M.; Rouse, W.B.: ¬The value of information and computer-aided information seeking : problem formulation and application to fiction retrieval (1984) 0.03
    0.025788594 = product of:
      0.051577188 = sum of:
        0.027772574 = weight(_text_:information in 5828) [ClassicSimilarity], result of:
          0.027772574 = score(doc=5828,freq=12.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.3325631 = fieldWeight in 5828, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5828)
        0.023804612 = product of:
          0.047609225 = sum of:
            0.047609225 = weight(_text_:retrieval in 5828) [ClassicSimilarity], result of:
              0.047609225 = score(doc=5828,freq=4.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.33085006 = fieldWeight in 5828, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5828)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Issues concerning the formulation and application of a model of how humans value information are examined. Formulation of a value function is based on research from modelling, value assessment, human information seeking behavior, and human decision making. The proposed function is incorporated into a computer-based fiction retrieval system and evaluated using data from nine searches. Evaluation is based on the ability of an individual's value function to discriminate among novels selected, rejected, and not considered. The results are discussed in terms of both formulation and utilization of a value function as well as the implications for extending the proposed formulation to other information seeking environments
    Source
    Information processing and management. 20(1984), S.583-601
  8. Pejtersen, A.M.: Implications of users' value perception for the design of knowledge based bibliographic retrieval systems (1985) 0.02
    0.02414615 = product of:
      0.0482923 = sum of:
        0.019436752 = weight(_text_:information in 2088) [ClassicSimilarity], result of:
          0.019436752 = score(doc=2088,freq=2.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.23274569 = fieldWeight in 2088, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=2088)
        0.02885555 = product of:
          0.0577111 = sum of:
            0.0577111 = weight(_text_:retrieval in 2088) [ClassicSimilarity], result of:
              0.0577111 = score(doc=2088,freq=2.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.40105087 = fieldWeight in 2088, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.09375 = fieldNorm(doc=2088)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    2nd Symposium on Empirical Foundations of Information and Software Science, 3.-5.10.84, Atlanta
  9. Bednarek, M.: Intellectual access to pictorial information (1993) 0.02
    0.022844136 = product of:
      0.04568827 = sum of:
        0.016832722 = weight(_text_:information in 5631) [ClassicSimilarity], result of:
          0.016832722 = score(doc=5631,freq=6.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.20156369 = fieldWeight in 5631, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5631)
        0.02885555 = product of:
          0.0577111 = sum of:
            0.0577111 = weight(_text_:retrieval in 5631) [ClassicSimilarity], result of:
              0.0577111 = score(doc=5631,freq=8.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.40105087 = fieldWeight in 5631, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5631)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Visual materials represent a significantly different type of communication to textual materials and therefore present distinct challenges for the process of retrieval, especially if by retireval we mean intellectual access to the content of images. This paper outlines the special characteristics of visual materials, focusing on their pontential complexity and subjectivity, and the methods used and explored for gaining access to visual materials as reported in the literature. It concludes that methods of access to visual materials are dominated by the relative mature systems developed for textual materials and that access methods based on visual communication are still largely in the developmental or prototype stage. Although reported research on user requirements in the retrieval of visual information is noticeably lacking, the results of at least one study indicate that the visually-based retrieval methods of structured and unstructered browsing seem to be preferred for visula materials and that effective retrieval methods are ultimately related to characteristics of the enquirer and the visual information sought
  10. Hidderley, R.; Rafferty, P.: Democratic indexing : an approach to the retrieval of fiction (1997) 0.02
    0.022594541 = product of:
      0.045189083 = sum of:
        0.016034503 = weight(_text_:information in 1783) [ClassicSimilarity], result of:
          0.016034503 = score(doc=1783,freq=4.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.1920054 = fieldWeight in 1783, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1783)
        0.029154578 = product of:
          0.058309156 = sum of:
            0.058309156 = weight(_text_:retrieval in 1783) [ClassicSimilarity], result of:
              0.058309156 = score(doc=1783,freq=6.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.40520695 = fieldWeight in 1783, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1783)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Examines how an analytical framework to describe the contents of images may be extended to deal with time based materials like film and music. A levels of meanings table was developed and used as an indexing template for image retrieval purposes. Develops a concept of democratic indexing which focused on user interpretation. Describes the approach to image or pictorial information retrieval. Extends the approach in relation to fiction
    Source
    Information services and use. 17(1997) nos.2/3, S.101-109
  11. Beghtol, C.: Stories : applications of narrative discourse analysis to issues in information storage and retrieval (1997) 0.02
    0.022594541 = product of:
      0.045189083 = sum of:
        0.016034503 = weight(_text_:information in 5844) [ClassicSimilarity], result of:
          0.016034503 = score(doc=5844,freq=4.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.1920054 = fieldWeight in 5844, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5844)
        0.029154578 = product of:
          0.058309156 = sum of:
            0.058309156 = weight(_text_:retrieval in 5844) [ClassicSimilarity], result of:
              0.058309156 = score(doc=5844,freq=6.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.40520695 = fieldWeight in 5844, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5844)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The arts, humanities, and social sciences commonly borrow concepts and methods from the sciences, but interdisciplinary borrowing seldom occurs in the opposite direction. Research on narrative discourse is relevant to problems of documentary storage and retrieval, for the arts and humanities in particular, but also for other broad areas of knowledge. This paper views the potential application of narrative discourse analysis to information storage and retrieval problems from 2 perspectives: 1) analysis and comparison of narrative documents in all disciplines may be simplified if fundamental categories that occur in narrative documents can be isolated; and 2) the possibility of subdividing the world of knowledge initially into narrative and non-narrative documents is explored with particular attention to Werlich's work on text types
  12. Caldera-Serrano, J.: Thematic description of audio-visual information on television (2010) 0.02
    0.020911181 = product of:
      0.041822363 = sum of:
        0.016832722 = weight(_text_:information in 3953) [ClassicSimilarity], result of:
          0.016832722 = score(doc=3953,freq=6.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.20156369 = fieldWeight in 3953, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3953)
        0.02498964 = product of:
          0.04997928 = sum of:
            0.04997928 = weight(_text_:retrieval in 3953) [ClassicSimilarity], result of:
              0.04997928 = score(doc=3953,freq=6.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.34732026 = fieldWeight in 3953, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3953)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - This paper endeavours to show the possibilities for thematic description of audio-visual documents for television with the aim of promoting and facilitating information retrieval. Design/methodology/approach - To achieve these goals different database fields are shown, as well as the way in which they are organised for indexing and thematic element description, analysed and used as an example. Some of the database fields are extracted from an analytical study of the documentary system of television in Spain. Others are being tested in university television on which indexing experiments are carried out. Findings - Not all thematic descriptions are used on television information systems; nevertheless, some television channels do use thematic descriptions of both image and sound, applying thesauri. Moreover, it is possible to access sequences using full text retrieval as well. Originality/value - The development of the documentary task, applying the described techniques, promotes thematic indexing and hence thematic retrieval. Given the fact that this is without doubt one of the aspects most demanded by television journalists (along with people's names). This conceptualisation translates into the adaptation of databases to new indexing methods.
  13. Hjoerland, B.: Towards a theory of aboutness, subject, topicality, theme, domain, field, content ... and relevance (2001) 0.02
    0.01975431 = product of:
      0.03950862 = sum of:
        0.022676213 = weight(_text_:information in 6032) [ClassicSimilarity], result of:
          0.022676213 = score(doc=6032,freq=8.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.27153665 = fieldWeight in 6032, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6032)
        0.016832404 = product of:
          0.033664808 = sum of:
            0.033664808 = weight(_text_:retrieval in 6032) [ClassicSimilarity], result of:
              0.033664808 = score(doc=6032,freq=2.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.23394634 = fieldWeight in 6032, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6032)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Theories of aboutness and theories of subject analysis and of related concepts such as topicality are often isolated from each other in the literature of information science (IS) and related disciplines. In IS it is important to consider the nature and meaning of these concepts, which is closely related to theoretical and metatheoretical issues in information retrieval (IR). A theory of IR must specify which concepts should be regarded as synonymous concepts and explain how the meaning of the nonsynonymous concepts should be defined
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.9, S.774-778
    Theme
    Information
  14. Tibbo, H.R.: Abstracting across the disciplines : a content analysis of abstracts for the natural sciences, the social sciences, and the humanities with implications for abstracting standards and online information retrieval (1992) 0.02
    0.018781088 = product of:
      0.037562177 = sum of:
        0.018325146 = weight(_text_:information in 2536) [ClassicSimilarity], result of:
          0.018325146 = score(doc=2536,freq=4.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.21943474 = fieldWeight in 2536, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=2536)
        0.019237032 = product of:
          0.038474064 = sum of:
            0.038474064 = weight(_text_:retrieval in 2536) [ClassicSimilarity], result of:
              0.038474064 = score(doc=2536,freq=2.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.26736724 = fieldWeight in 2536, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2536)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Source
    Library and information science research. 14(1992) no.1, S.31-56
  15. Hutchins, W.J.: ¬The concept of 'aboutness' in subject indexing (1978) 0.02
    0.016433453 = product of:
      0.032866906 = sum of:
        0.016034503 = weight(_text_:information in 1961) [ClassicSimilarity], result of:
          0.016034503 = score(doc=1961,freq=4.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.1920054 = fieldWeight in 1961, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1961)
        0.016832404 = product of:
          0.033664808 = sum of:
            0.033664808 = weight(_text_:retrieval in 1961) [ClassicSimilarity], result of:
              0.033664808 = score(doc=1961,freq=2.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.23394634 = fieldWeight in 1961, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1961)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The common view of the 'aboutness' of documents is that the index entries (or classifications) assigned to documents represent or indicate in some way the total contents of documents; indexing and classifying are seen as processes involving the 'summerization' of the texts of documents. In this paper an alternative concept of 'aboutness' is proposed based on an analysis of the linguistic organization of texts, which is felt to be more appropriate in many indexing environments (particularly in non-specialized libraries and information services) and which has implications for the evaluation of the effectiveness of indexing systems
    Footnote
    Wiederabgedruckt in: Readings in information retrieval. Ed.: K. Sparck Jones u. P. Willett. San Francisco: Morgan Kaufmann 1997. S.93-97.
  16. Rorissa, A.: User-generated descriptions of individual images versus labels of groups of images : a comparison using basic level theory (2008) 0.02
    0.016138958 = product of:
      0.032277916 = sum of:
        0.011453216 = weight(_text_:information in 2122) [ClassicSimilarity], result of:
          0.011453216 = score(doc=2122,freq=4.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.13714671 = fieldWeight in 2122, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2122)
        0.020824699 = product of:
          0.041649397 = sum of:
            0.041649397 = weight(_text_:retrieval in 2122) [ClassicSimilarity], result of:
              0.041649397 = score(doc=2122,freq=6.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.28943354 = fieldWeight in 2122, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2122)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Although images are visual information sources with little or no text associated with them, users still tend to use text to describe images and formulate queries. This is because digital libraries and search engines provide mostly text query options and rely on text annotations for representation and retrieval of the semantic content of images. While the main focus of image research is on indexing and retrieval of individual images, the general topic of image browsing and indexing, and retrieval of groups of images has not been adequately investigated. Comparisons of descriptions of individual images as well as labels of groups of images supplied by users using cognitive models are scarce. This work fills this gap. Using the basic level theory as a framework, a comparison of the descriptions of individual images and labels assigned to groups of images by 180 participants in three studies found a marked difference in their level of abstraction. Results confirm assertions by previous researchers in LIS and other fields that groups of images are labeled using more superordinate level terms while individual image descriptions are mainly at the basic level. Implications for design of image browsing interfaces, taxonomies, thesauri, and similar tools are discussed.
    Source
    Information processing and management. 44(2008) no.5, S.1741-1753
  17. Chen, S.-J.; Lee, H.-L.: Art images and mental associations : a preliminary exploration (2014) 0.01
    0.014527107 = product of:
      0.029054213 = sum of:
        0.009718376 = weight(_text_:information in 1416) [ClassicSimilarity], result of:
          0.009718376 = score(doc=1416,freq=2.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.116372846 = fieldWeight in 1416, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1416)
        0.019335838 = product of:
          0.038671676 = sum of:
            0.038671676 = weight(_text_:22 in 1416) [ClassicSimilarity], result of:
              0.038671676 = score(doc=1416,freq=2.0), product of:
                0.16658723 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047571484 = queryNorm
                0.23214069 = fieldWeight in 1416, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1416)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper reports on the preliminary findings of a study that explores mental associations made by novices viewing art images. In a controlled environment, 20 Taiwanese college students responded to the question "What does the painting remind you of?" after viewing each digitized image of 15 oil paintings by a famous Taiwanese artist. Rather than focusing on the representation or interpretation of art, the study attempted to solicit information about how non-experts are stimulated by art. This paper reports on the analysis of participant responses to three of the images, and describes a12-type taxonomy of association emerged from the analysis. While 9 of the types are derived and adapted from facets in the Art & Architecture Thesaurus, three new types - Artistic Influence Association, Reactive Association, and Prototype Association - are discovered. The conclusion briefly discusses both the significance of the findings and the implications for future research.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  18. White, M.D.; Marsh, E.E.: Content analysis : a flexible methodology (2006) 0.01
    0.014527107 = product of:
      0.029054213 = sum of:
        0.009718376 = weight(_text_:information in 5589) [ClassicSimilarity], result of:
          0.009718376 = score(doc=5589,freq=2.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.116372846 = fieldWeight in 5589, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5589)
        0.019335838 = product of:
          0.038671676 = sum of:
            0.038671676 = weight(_text_:22 in 5589) [ClassicSimilarity], result of:
              0.038671676 = score(doc=5589,freq=2.0), product of:
                0.16658723 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047571484 = queryNorm
                0.23214069 = fieldWeight in 5589, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5589)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Content analysis is a highly flexible research method that has been widely used in library and information science (LIS) studies with varying research goals and objectives. The research method is applied in qualitative, quantitative, and sometimes mixed modes of research frameworks and employs a wide range of analytical techniques to generate findings and put them into context. This article characterizes content analysis as a systematic, rigorous approach to analyzing documents obtained or generated in the course of research. It briefly describes the steps involved in content analysis, differentiates between quantitative and qualitative content analysis, and shows that content analysis serves the purposes of both quantitative research and qualitative research. The authors draw on selected LIS studies that have used content analysis to illustrate the concepts addressed in the article. The article also serves as a gateway to methodological books and articles that provide more detail about aspects of content analysis discussed only briefly in the article.
    Source
    Library trends. 55(2006) no.1, S.22-45
  19. Yoon, J.W.: Utilizing quantitative users' reactions to represent affective meanings of an image (2010) 0.01
    0.014461673 = product of:
      0.028923346 = sum of:
        0.008098647 = weight(_text_:information in 3584) [ClassicSimilarity], result of:
          0.008098647 = score(doc=3584,freq=2.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.09697737 = fieldWeight in 3584, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3584)
        0.020824699 = product of:
          0.041649397 = sum of:
            0.041649397 = weight(_text_:retrieval in 3584) [ClassicSimilarity], result of:
              0.041649397 = score(doc=3584,freq=6.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.28943354 = fieldWeight in 3584, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3584)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Emotional meaning is critical for users to retrieve relevant images. However, because emotional meanings are subject to the individual viewer's interpretation, they are considered difficult to implement when designing image retrieval systems. With the intent of making an image's emotional messages more readily accessible, this study aims to test a new approach designed to enhance the accessibility of emotional meanings during the image search process. This approach utilizes image searchers' emotional reactions, which are quantitatively measured. Broadly used quantitative measurements for emotional reactions, Semantic Differential (SD) and Self-Assessment Manikin (SAM), were selected as tools for gathering users' reactions. Emotional representations obtained from these two tools were compared with three image perception tasks: searching, describing, and sorting. A survey questionnaire with a set of 12 images was administered to 58 participants, which were tagged with basic emotions. Results demonstrated that the SAM represents basic emotions on 2-dimensional plots (pleasure and arousal dimensions), and this representation consistently corresponded to the three image perception tasks. This study provided experimental evidence that quantitative users' reactions can be a useful complementary element of current image retrieval/indexing systems. Integrating users' reactions obtained from the SAM into image browsing systems would reduce the efforts of human indexers as well as improve the effectiveness of image retrieval systems.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.7, S.1345-1359
  20. Inskip, C.; MacFarlane, A.; Rafferty, P.: Meaning, communication, music : towards a revised communication model (2008) 0.01
    0.014228255 = product of:
      0.02845651 = sum of:
        0.011453216 = weight(_text_:information in 2347) [ClassicSimilarity], result of:
          0.011453216 = score(doc=2347,freq=4.0), product of:
            0.08351069 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.047571484 = queryNorm
            0.13714671 = fieldWeight in 2347, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2347)
        0.017003294 = product of:
          0.03400659 = sum of:
            0.03400659 = weight(_text_:retrieval in 2347) [ClassicSimilarity], result of:
              0.03400659 = score(doc=2347,freq=4.0), product of:
                0.1438997 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.047571484 = queryNorm
                0.23632148 = fieldWeight in 2347, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2347)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - If an information retrieval system is going to be of value to the user then it must give meaning to the information which matches the meaning given to it by the user. The meaning given to music varies according to who is interpreting it - the author/composer, the performer, cataloguer or the listener - and this affects how music is organized and retrieved. This paper aims to examine the meaning of music, how meaning is communicated and suggests this may affect music retrieval. Design/methodology/approach - Musicology is used to define music and examine its functions leading to a discussion of how music has been organised and described. Various ways of establishing the meaning of music are reviewed, focussing on established musical analysis techniques. It is suggested that traditional methods are of limited use with digitised popular music. A discussion of semiotics and a review of semiotic analysis in western art music leads to a discussion of semiotics of popular music and examines ideas of Middleton, Stefani and Tagg. Findings - Agreeing that music exists when communication takes place, a discussion of selected communication models leads to the proposal of a revised version of Tagg's model, adjusting it to include listener feedback. Originality/value - The outcome of the analysis is a revised version of Tagg's communication model, adapted to reflect user feedback. It is suggested that this revised communication model reflects the way in which meaning is given to music.

Languages

  • e 87
  • d 10

Types

  • a 88
  • m 3
  • x 3
  • d 2
  • el 2
  • s 1
  • More… Less…