Search (5 results, page 1 of 1)

  • × author_ss:"Li, J."
  • × year_i:[2000 TO 2010}
  1. Li, J.; Zhang, P.; Cao, J.: External concept support for group support systems through Web mining (2009) 0.00
    0.002306778 = product of:
      0.020761002 = sum of:
        0.020761002 = product of:
          0.041522004 = sum of:
            0.041522004 = weight(_text_:web in 2806) [ClassicSimilarity], result of:
              0.041522004 = score(doc=2806,freq=8.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.43268442 = fieldWeight in 2806, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2806)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    External information plays an important role in group decision-making processes, yet research about external information support for Group Support Systems (GSS) has been lacking. In this study, we propose an approach to build a concept space to provide external concept support for GSS users. Built on a Web mining algorithm, the approach can mine a concept space from the Web and retrieve related concepts from the concept space based on users' comments in a real-time manner. We conduct two experiments to evaluate the quality of the proposed approach and the effectiveness of the external concept support provided by this approach. The experiment results indicate that the concept space mined from the Web contained qualified concepts to stimulate divergent thinking. The results also demonstrate that external concept support in GSS greatly enhanced group productivity for idea generation tasks.
  2. Lin, X.; Li, J.; Zhou, X.: Theme creation for digital collections (2008) 0.00
    0.0015493254 = product of:
      0.013943928 = sum of:
        0.013943928 = product of:
          0.027887857 = sum of:
            0.027887857 = weight(_text_:22 in 2635) [ClassicSimilarity], result of:
              0.027887857 = score(doc=2635,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.2708308 = fieldWeight in 2635, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2635)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  3. Zhang, C.; Zeng, D.; Li, J.; Wang, F.-Y.; Zuo, W.: Sentiment analysis of Chinese documents : from sentence to document level (2009) 0.00
    0.001153389 = product of:
      0.010380501 = sum of:
        0.010380501 = product of:
          0.020761002 = sum of:
            0.020761002 = weight(_text_:web in 3296) [ClassicSimilarity], result of:
              0.020761002 = score(doc=3296,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.21634221 = fieldWeight in 3296, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3296)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    User-generated content on the Web has become an extremely valuable source for mining and analyzing user opinions on any topic. Recent years have seen an increasing body of work investigating methods to recognize favorable and unfavorable sentiments toward specific subjects from online text. However, most of these efforts focus on English and there have been very few studies on sentiment analysis of Chinese content. This paper aims to address the unique challenges posed by Chinese sentiment analysis. We propose a rule-based approach including two phases: (1) determining each sentence's sentiment based on word dependency, and (2) aggregating sentences to predict the document sentiment. We report the results of an experimental study comparing our approach with three machine learning-based approaches using two sets of Chinese articles. These results illustrate the effectiveness of our proposed method and its advantages against learning-based approaches.
  4. Zheng, R.; Li, J.; Chen, H.; Huang, Z.: ¬A framework for authorship identification of online messages : writing-style features and classification techniques (2006) 0.00
    0.001106661 = product of:
      0.009959949 = sum of:
        0.009959949 = product of:
          0.019919898 = sum of:
            0.019919898 = weight(_text_:22 in 5276) [ClassicSimilarity], result of:
              0.019919898 = score(doc=5276,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.19345059 = fieldWeight in 5276, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5276)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    22. 7.2006 16:14:37
  5. Li, J.; Willett, P.: ArticleRank : a PageRank-based alternative to numbers of citations for analysing citation networks (2009) 0.00
    9.611576E-4 = product of:
      0.008650418 = sum of:
        0.008650418 = product of:
          0.017300837 = sum of:
            0.017300837 = weight(_text_:web in 751) [ClassicSimilarity], result of:
              0.017300837 = score(doc=751,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.18028519 = fieldWeight in 751, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=751)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Purpose - The purpose of this paper is to suggest an alternative to the widely used Times Cited criterion for analysing citation networks. The approach involves taking account of the natures of the papers that cite a given paper, so as to differentiate between papers that attract the same number of citations. Design/methodology/approach - ArticleRank is an algorithm that has been derived from Google's PageRank algorithm to measure the influence of journal articles. ArticleRank is applied to two datasets - a citation network based on an early paper on webometrics, and a self-citation network based on the 19 most cited papers in the Journal of Documentation - using citation data taken from the Web of Knowledge database. Findings - ArticleRank values provide a different ranking of a set of papers from that provided by the corresponding Times Cited values, and overcomes the inability of the latter to differentiate between papers with the same numbers of citations. The difference in rankings between Times Cited and ArticleRank is greatest for the most heavily cited articles in a dataset. Originality/value - This is a novel application of the PageRank algorithm.