Search (4 results, page 1 of 1)

  • × author_ss:"Wilkinson, D."
  • × author_ss:"Thelwall, M."
  1. Thelwall, M.; Wilkinson, D.: Finding similar academic Web sites with links, bibliometric couplings and colinks (2004) 0.00
    0.0025790567 = product of:
      0.023211509 = sum of:
        0.023211509 = product of:
          0.046423018 = sum of:
            0.046423018 = weight(_text_:web in 2571) [ClassicSimilarity], result of:
              0.046423018 = score(doc=2571,freq=10.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.48375595 = fieldWeight in 2571, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2571)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    A common task in both Webmetrics and Web information retrieval is to identify a set of Web pages or sites that are similar in content. In this paper we assess the extent to which links, colinks and couplings can be used to identify similar Web sites. As an experiment, a random sample of 500 pairs of domains from the UK academic Web were taken and human assessments of site similarity, based upon content type, were compared against ratings for the three concepts. The results show that using a combination of all three gives the highest probability of identifying similar sites, but surprisingly this was only a marginal improvement over using links alone. Another unexpected result was that high values for either colink counts or couplings were associated with only a small increased likelihood of similarity. The principal advantage of using couplings and colinks was found to be greater coverage in terms of a much larger number of pairs of sites being connected by these measures, instead of increased probability of similarity. In information retrieval terminology, this is improved recall rather than improved precision.
  2. Thelwall, M.; Wilkinson, D.: Graph structure in three national academic Webs : power laws with anomalies (2003) 0.00
    0.002306778 = product of:
      0.020761002 = sum of:
        0.020761002 = product of:
          0.041522004 = sum of:
            0.041522004 = weight(_text_:web in 1681) [ClassicSimilarity], result of:
              0.041522004 = score(doc=1681,freq=8.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.43268442 = fieldWeight in 1681, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1681)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    The graph structures of three national university publicly indexable Webs from Australia, New Zealand, and the UK were analyzed. Strong scale-free regularities for page indegrees, outdegrees, and connected component sizes were in evidence, resulting in power laws similar to those previously identified for individual university Web sites and for the AItaVista-indexed Web. Anomalies were also discovered in most distributions and were tracked down to root causes. As a result, resource driven Web sites and automatically generated pages were identified as representing a significant break from the assumptions of previous power law models. It follows that attempts to track average Web linking behavior would benefit from using techniques to minimize or eliminate the impact of such anomalies.
  3. Thelwall, M.; Sud, P.; Wilkinson, D.: Link and co-inlink network diagrams with URL citations or title mentions (2012) 0.00
    0.001106661 = product of:
      0.009959949 = sum of:
        0.009959949 = product of:
          0.019919898 = sum of:
            0.019919898 = weight(_text_:22 in 57) [ClassicSimilarity], result of:
              0.019919898 = score(doc=57,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.19345059 = fieldWeight in 57, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=57)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Date
    6. 4.2012 18:16:22
  4. Thelwall, M.; Binns, R.; Harries, G.; Page-Kennedy, T.; Price, L.; Wilkinson, D.: Custom interfaces for advanced queries in search engines (2001) 0.00
    9.611576E-4 = product of:
      0.008650418 = sum of:
        0.008650418 = product of:
          0.017300837 = sum of:
            0.017300837 = weight(_text_:web in 697) [ClassicSimilarity], result of:
              0.017300837 = score(doc=697,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.18028519 = fieldWeight in 697, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=697)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Those seeking information from the Internet often start from a search engine, using either its organised directory structure or its text query facility. In response to the difficulty in identifying the most relevant pages for some information needs, many search engines offer Boolean text matching and some, including Google, AltaVista and HotBot, offer the facility to integrate additional information into a more advanced request. Amongst web users, however, it is known that the employment of complex enquiries is far from universal, with very short queries being the norm. It is demonstrated that the gap between the provision of advanced search facilities and their use can be bridged, for specific information needs, by the construction of a simple interface in the form of a website that automatically formulates the necessary requests. It is argued that this kind of resource, perhaps employing additional knowledge domain specific information, is one that could be useful for websites or portals of common interest groups. The approach is illustrated by a website that enables a user to search the individual websites of university level institutions in European Union associated countries.