Search (4 results, page 1 of 1)

  • × theme_ss:"Semantische Interoperabilität"
  • × author_ss:"Panzer, M."
  1. Panzer, M.; Zeng, M.L.: Modeling classification systems in SKOS : Some challenges and best-practice (2009) 0.00
    0.0013456206 = product of:
      0.012110585 = sum of:
        0.012110585 = product of:
          0.02422117 = sum of:
            0.02422117 = weight(_text_:web in 3717) [ClassicSimilarity], result of:
              0.02422117 = score(doc=3717,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.25239927 = fieldWeight in 3717, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3717)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Representing classification systems on the web for publication and exchange continues to be a challenge within the SKOS framework. This paper focuses on the differences between classification schemes and other families of KOS (knowledge organization systems) that make it difficult to express classifications without sacrificing a large amount of their semantic richness. Issues resulting from the specific set of relationships between classes and topics that defines the basic nature of any classification system are discussed. Where possible, different solutions within the frameworks of SKOS and OWL are proposed and examined.
  2. Panzer, M.: Relationships, spaces, and the two faces of Dewey (2008) 0.00
    0.0012895283 = product of:
      0.0116057545 = sum of:
        0.0116057545 = product of:
          0.023211509 = sum of:
            0.023211509 = weight(_text_:web in 2127) [ClassicSimilarity], result of:
              0.023211509 = score(doc=2127,freq=10.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.24187797 = fieldWeight in 2127, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=2127)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Content
    Expressed in such manner, the Dewey number provides a language-independent representation of a Dewey concept, accompanied by language-dependent assertions about the concept. This information, identified by a URI, can be easily consumed by semantic web agents and used in various metadata scenarios. Fourthly, as we have seen, it is important to play well with others, i.e., establishing and maintaining relationships to other KOS and making the scheme available in different formats. As noted in the Dewey blog post "Tags and Dewey," since no single scheme is ever going to be the be-all, end-all solution for knowledge discovery, DDC concepts have been extensively mapped to other vocabularies and taxonomies, sometimes bridging them and acting as a backbone, sometimes using them as additional access vocabulary to be able to do more work "behind the scenes." To enable other applications and schemes to make use of those relationships, the full Dewey database is available in XML format; RDF-based formats and a web service are forthcoming. Pulling those relationships together under a common surface will be the next challenge going forward. In the semantic web community the concept of Linked Data (http://en.wikipedia.org/wiki/Linked_Data) currently receives some attention, with its emphasis on exposing and connecting data using technologies like URIs, HTTP and RDF to improve information discovery on the web. With its focus on relationships and discovery, it seems that Dewey will be well prepared to become part of this big linked data set. Now it is about putting the classification back into the world!"
    Theme
    Semantic Web
  3. Panzer, M.: Two tales of a concept : aligning FRSAD with SKOS (2011) 0.00
    0.001153389 = product of:
      0.010380501 = sum of:
        0.010380501 = product of:
          0.020761002 = sum of:
            0.020761002 = weight(_text_:web in 4789) [ClassicSimilarity], result of:
              0.020761002 = score(doc=4789,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.21634221 = fieldWeight in 4789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4789)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    The FRSAD model provides an abstract analysis of subject authority data. The article tries to assess the compatibility of this conceptual framework with formalisms and practices that have emerged from the Semantic Web community. Through applying SKOS, it becomes apparent that some interpretive decisions necessary to accommodate the rigor of formal knowledge representation languages are not supported by FRSAD itself. Difficulties in clearly aligning the thema entity with either a SKOS or OWL counterpart reveal ambiguities in the FRSAD model regarding the ontological status of thema, which seems to reflect a general uncertainty regarding the aboutness of subject authority data in the library domain.
  4. Mitchell, J.S.; Panzer, M.: Dewey linked data : Making connections with old friends and new acquaintances (2012) 0.00
    9.611576E-4 = product of:
      0.008650418 = sum of:
        0.008650418 = product of:
          0.017300837 = sum of:
            0.017300837 = weight(_text_:web in 305) [ClassicSimilarity], result of:
              0.017300837 = score(doc=305,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.18028519 = fieldWeight in 305, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=305)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    This paper explores the history, uses cases, and future plans associated with availability of the Dewey Decimal Classification (DDC) system as linked data. Parts of the Dewey Decimal Classification (DDC) system have been available as linked data since 2009. Initial efforts included the DDC Summaries (the top three levels of the DDC) in eleven languages exposed as linked data in dewey.info. In 2010, the content of dewey.info was further extended by the addition of assignable numbers and captions from the Abridged Edition 14 data files in English, Italian, and Vietnamese. During 2012, we will add assignable numbers and captions from the latest full edition database, DDC 23. In addition to the "old friends" of different Dewey language versions, institutions such as the British Library and Deutsche Nationalbibliothek have made use of Dewey linked data in bibliographic records and authority files, and AGROVOC has linked to our data at a general level. We expect to extend our linked data network shortly to "new acquaintances" such as GeoNames, ISO 639-3 language codes, and Mathematics Subject Classification. In particular, we will examine the linking process to GeoNames as an example of cross-domain vocabulary alignment. In addition to linking plans, we report on use cases that facilitate machine-assisted categorization and support discovery in the Semantic Web environment.