Search (300 results, page 1 of 15)

  • × theme_ss:"Wissensrepräsentation"
  1. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.34
    0.33729967 = product of:
      0.6071394 = sum of:
        0.046703033 = product of:
          0.14010909 = sum of:
            0.14010909 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
              0.14010909 = score(doc=400,freq=2.0), product of:
                0.24929643 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.02940506 = queryNorm
                0.56201804 = fieldWeight in 400, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=400)
          0.33333334 = coord(1/3)
        0.14010909 = weight(_text_:2f in 400) [ClassicSimilarity], result of:
          0.14010909 = score(doc=400,freq=2.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
        0.14010909 = weight(_text_:2f in 400) [ClassicSimilarity], result of:
          0.14010909 = score(doc=400,freq=2.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
        0.14010909 = weight(_text_:2f in 400) [ClassicSimilarity], result of:
          0.14010909 = score(doc=400,freq=2.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
        0.14010909 = weight(_text_:2f in 400) [ClassicSimilarity], result of:
          0.14010909 = score(doc=400,freq=2.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.56201804 = fieldWeight in 400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=400)
      0.5555556 = coord(5/9)
    
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
  2. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.31
    0.31084433 = product of:
      0.55951977 = sum of:
        0.031135354 = product of:
          0.09340606 = sum of:
            0.09340606 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.09340606 = score(doc=5820,freq=2.0), product of:
                0.24929643 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.02940506 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
        0.13209611 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.13209611 = score(doc=5820,freq=4.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.13209611 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.13209611 = score(doc=5820,freq=4.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.13209611 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.13209611 = score(doc=5820,freq=4.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
        0.13209611 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.13209611 = score(doc=5820,freq=4.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
      0.5555556 = coord(5/9)
    
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  3. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.28
    0.27636427 = product of:
      0.4145464 = sum of:
        0.031135354 = product of:
          0.09340606 = sum of:
            0.09340606 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.09340606 = score(doc=701,freq=2.0), product of:
                0.24929643 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.02940506 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.09340606 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.09340606 = score(doc=701,freq=2.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.009786831 = product of:
          0.019573662 = sum of:
            0.019573662 = weight(_text_:web in 701) [ClassicSimilarity], result of:
              0.019573662 = score(doc=701,freq=4.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.2039694 = fieldWeight in 701, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.5 = coord(1/2)
        0.09340606 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.09340606 = score(doc=701,freq=2.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.09340606 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.09340606 = score(doc=701,freq=2.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.09340606 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.09340606 = score(doc=701,freq=2.0), product of:
            0.24929643 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.02940506 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.6666667 = coord(6/9)
    
    Abstract
    By the explosion of possibilities for a ubiquitous content production, the information overload problem reaches the level of complexity which cannot be managed by traditional modelling approaches anymore. Due to their pure syntactical nature traditional information retrieval approaches did not succeed in treating content itself (i.e. its meaning, and not its representation). This leads to a very low usefulness of the results of a retrieval process for a user's task at hand. In the last ten years ontologies have been emerged from an interesting conceptualisation paradigm to a very promising (semantic) modelling technology, especially in the context of the Semantic Web. From the information retrieval point of view, ontologies enable a machine-understandable form of content description, such that the retrieval process can be driven by the meaning of the content. However, the very ambiguous nature of the retrieval process in which a user, due to the unfamiliarity with the underlying repository and/or query syntax, just approximates his information need in a query, implies a necessity to include the user in the retrieval process more actively in order to close the gap between the meaning of the content and the meaning of a user's query (i.e. his information need). This thesis lays foundation for such an ontology-based interactive retrieval process, in which the retrieval system interacts with a user in order to conceptually interpret the meaning of his query, whereas the underlying domain ontology drives the conceptualisation process. In that way the retrieval process evolves from a query evaluation process into a highly interactive cooperation between a user and the retrieval system, in which the system tries to anticipate the user's information need and to deliver the relevant content proactively. Moreover, the notion of content relevance for a user's query evolves from a content dependent artefact to the multidimensional context-dependent structure, strongly influenced by the user's preferences. This cooperation process is realized as the so-called Librarian Agent Query Refinement Process. In order to clarify the impact of an ontology on the retrieval process (regarding its complexity and quality), a set of methods and tools for different levels of content and query formalisation is developed, ranging from pure ontology-based inferencing to keyword-based querying in which semantics automatically emerges from the results. Our evaluation studies have shown that the possibilities to conceptualize a user's information need in the right manner and to interpret the retrieval results accordingly are key issues for realizing much more meaningful information retrieval systems.
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
    Theme
    Semantic Web
  4. Derntl, M.; Hampel, T.; Motschnig, R.; Pitner, T.: Social Tagging und Inclusive Universal Access (2008) 0.02
    0.018232105 = product of:
      0.082044475 = sum of:
        0.014680246 = product of:
          0.029360492 = sum of:
            0.029360492 = weight(_text_:web in 2864) [ClassicSimilarity], result of:
              0.029360492 = score(doc=2864,freq=4.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.3059541 = fieldWeight in 2864, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2864)
          0.5 = coord(1/2)
        0.06736423 = product of:
          0.13472846 = sum of:
            0.13472846 = weight(_text_:bewertung in 2864) [ClassicSimilarity], result of:
              0.13472846 = score(doc=2864,freq=6.0), product of:
                0.18575147 = queryWeight, product of:
                  6.31699 = idf(docFreq=216, maxDocs=44218)
                  0.02940506 = queryNorm
                0.72531575 = fieldWeight in 2864, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  6.31699 = idf(docFreq=216, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2864)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Der vorliegende Artikel beleuchtet und bewertet Social Tagging als aktuelles Phänomen des Web 2.0 im Kontext bekannter Techniken der semantischen Datenorganisation. Tagging wird in einen Raum verwandter Ordnungs- und Strukturierungsansätze eingeordnet, um die fundamentalen Grundlagen des Social Tagging zu identifizieren und zuzuweisen. Dabei wird Tagging anhand des Inclusive Universal Access Paradigmas bewertet, das technische als auch menschlich-soziale Kriterien für die inklusive und barrierefreie Bereitstellung und Nutzung von Diensten definiert. Anhand dieser Bewertung werden fundamentale Prinzipien des "Inclusive Social Tagging" hergeleitet, die der Charakterisierung und Bewertung gängiger Tagging-Funktionalitäten in verbreiteten Web-2.0-Diensten dienen. Aus der Bewertung werden insbesondere Entwicklungsmöglichkeiten von Social Tagging und unterstützenden Diensten erkennbar.
  5. OWL Web Ontology Language Test Cases (2004) 0.01
    0.0104188 = product of:
      0.046884596 = sum of:
        0.030948678 = product of:
          0.061897356 = sum of:
            0.061897356 = weight(_text_:web in 4685) [ClassicSimilarity], result of:
              0.061897356 = score(doc=4685,freq=10.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.6450079 = fieldWeight in 4685, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
        0.015935918 = product of:
          0.031871837 = sum of:
            0.031871837 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.031871837 = score(doc=4685,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    This document contains and presents test cases for the Web Ontology Language (OWL) approved by the Web Ontology Working Group. Many of the test cases illustrate the correct usage of the Web Ontology Language (OWL), and the formal meaning of its constructs. Other test cases illustrate the resolution of issues considered by the Working Group. Conformance for OWL documents and OWL document checkers is specified.
    Date
    14. 8.2011 13:33:22
    Theme
    Semantic Web
  6. Mayfield, J.; Finin, T.: Information retrieval on the Semantic Web : integrating inference and retrieval 0.01
    0.009690818 = product of:
      0.043608684 = sum of:
        0.029664757 = product of:
          0.059329513 = sum of:
            0.059329513 = weight(_text_:web in 4330) [ClassicSimilarity], result of:
              0.059329513 = score(doc=4330,freq=12.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.6182494 = fieldWeight in 4330, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4330)
          0.5 = coord(1/2)
        0.013943928 = product of:
          0.027887857 = sum of:
            0.027887857 = weight(_text_:22 in 4330) [ClassicSimilarity], result of:
              0.027887857 = score(doc=4330,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.2708308 = fieldWeight in 4330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4330)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    One vision of the Semantic Web is that it will be much like the Web we know today, except that documents will be enriched by annotations in machine understandable markup. These annotations will provide metadata about the documents as well as machine interpretable statements capturing some of the meaning of document content. We discuss how the information retrieval paradigm might be recast in such an environment. We suggest that retrieval can be tightly bound to inference. Doing so makes today's Web search engines useful to Semantic Web inference engines, and causes improvements in either retrieval or inference to lead directly to improvements in the other.
    Date
    12. 2.2011 17:35:22
    Theme
    Semantic Web
  7. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.01
    0.009576321 = product of:
      0.043093443 = sum of:
        0.031141505 = product of:
          0.06228301 = sum of:
            0.06228301 = weight(_text_:web in 4649) [ClassicSimilarity], result of:
              0.06228301 = score(doc=4649,freq=18.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.64902663 = fieldWeight in 4649, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
        0.011951938 = product of:
          0.023903877 = sum of:
            0.023903877 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.023903877 = score(doc=4649,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    More and more cultural heritage institutions publish their collections, vocabularies and metadata on the Web. The resulting Web of linked cultural data opens up exciting new possibilities for searching and browsing through these cultural heritage collections. We report on ongoing work in which we investigate the estimation of relevance in this Web of Culture. We study existing measures of semantic distance and how they apply to two use cases. The use cases relate to the structured, multilingual and multimodal nature of the Culture Web. We distinguish between measures using the Web, such as Google distance and PMI, and measures using the Linked Data Web, i.e. the semantic structure of metadata vocabularies. We perform a small study in which we compare these semantic distance measures to human judgements of relevance. Although it is too early to draw any definitive conclusions, the study provides new insights into the applicability of semantic distance measures to the Web of Culture, and clear starting points for further research.
    Date
    26.12.2011 13:40:22
    Theme
    Semantic Web
  8. Synak, M.; Dabrowski, M.; Kruk, S.R.: Semantic Web and ontologies (2009) 0.01
    0.008868592 = product of:
      0.039908662 = sum of:
        0.023972742 = product of:
          0.047945485 = sum of:
            0.047945485 = weight(_text_:web in 3376) [ClassicSimilarity], result of:
              0.047945485 = score(doc=3376,freq=6.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.49962097 = fieldWeight in 3376, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
        0.015935918 = product of:
          0.031871837 = sum of:
            0.031871837 = weight(_text_:22 in 3376) [ClassicSimilarity], result of:
              0.031871837 = score(doc=3376,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.30952093 = fieldWeight in 3376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3376)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    This chapter presents ontologies and their role in the creation of the Semantic Web. Ontologies hold special interest, because they are very closely related to the way we understand the world. They provide common understanding, the very first step to successful communication. In following sections, we will present ontologies, how they are created and used. We will describe available tools for specifying and working with ontologies.
    Date
    31. 7.2010 16:58:22
    Theme
    Semantic Web
  9. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.01
    0.0087591475 = product of:
      0.039416164 = sum of:
        0.027464228 = product of:
          0.054928456 = sum of:
            0.054928456 = weight(_text_:web in 987) [ClassicSimilarity], result of:
              0.054928456 = score(doc=987,freq=14.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.57238775 = fieldWeight in 987, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.5 = coord(1/2)
        0.011951938 = product of:
          0.023903877 = sum of:
            0.023903877 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.023903877 = score(doc=987,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    This book covers the basics of semantic web technologies and indexing languages, and describes their contribution to improve languages as a tool for subject queries and knowledge exploration. The book is relevant to information scientists, knowledge workers and indexers. It provides a suitable combination of theoretical foundations and practical applications.
    Date
    23. 7.2017 13:49:22
    LCSH
    Semantic Web
    World Wide Web / Subject access
    RSWK
    Semantic Web
    Subject
    Semantic Web
    World Wide Web / Subject access
    Semantic Web
  10. Gendt, M. van; Isaac, I.; Meij, L. van der; Schlobach, S.: Semantic Web techniques for multiple views on heterogeneous collections : a case study (2006) 0.01
    0.007269542 = product of:
      0.03271294 = sum of:
        0.020761002 = product of:
          0.041522004 = sum of:
            0.041522004 = weight(_text_:web in 2418) [ClassicSimilarity], result of:
              0.041522004 = score(doc=2418,freq=8.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.43268442 = fieldWeight in 2418, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2418)
          0.5 = coord(1/2)
        0.011951938 = product of:
          0.023903877 = sum of:
            0.023903877 = weight(_text_:22 in 2418) [ClassicSimilarity], result of:
              0.023903877 = score(doc=2418,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.23214069 = fieldWeight in 2418, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2418)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Integrated digital access to multiple collections is a prominent issue for many Cultural Heritage institutions. The metadata describing diverse collections must be interoperable, which requires aligning the controlled vocabularies that are used to annotate objects from these collections. In this paper, we present an experiment where we match the vocabularies of two collections by applying the Knowledge Representation techniques established in recent Semantic Web research. We discuss the steps that are required for such matching, namely formalising the initial resources using Semantic Web languages, and running ontology mapping tools on the resulting representations. In addition, we present a prototype that enables the user to browse the two collections using the obtained alignment while still providing her with the original vocabulary structures.
    Source
    Research and advanced technology for digital libraries : 10th European conference, proceedings / ECDL 2006, Alicante, Spain, September 17 - 22, 2006
    Theme
    Semantic Web
  11. Marcondes, C.H.; Costa, L.C da.: ¬A model to represent and process scientific knowledge in biomedical articles with semantic Web technologies (2016) 0.01
    0.0060579525 = product of:
      0.027260786 = sum of:
        0.017300837 = product of:
          0.034601673 = sum of:
            0.034601673 = weight(_text_:web in 2829) [ClassicSimilarity], result of:
              0.034601673 = score(doc=2829,freq=8.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.36057037 = fieldWeight in 2829, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2829)
          0.5 = coord(1/2)
        0.009959949 = product of:
          0.019919898 = sum of:
            0.019919898 = weight(_text_:22 in 2829) [ClassicSimilarity], result of:
              0.019919898 = score(doc=2829,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.19345059 = fieldWeight in 2829, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2829)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Knowledge organization faces the challenge of managing the amount of knowledge available on the Web. Published literature in biomedical sciences is a huge source of knowledge, which can only efficiently be managed through automatic methods. The conventional channel for reporting scientific results is Web electronic publishing. Despite its advances, scientific articles are still published in print formats such as portable document format (PDF). Semantic Web and Linked Data technologies provides new opportunities for communicating, sharing, and integrating scientific knowledge that can overcome the limitations of the current print format. Here is proposed a semantic model of scholarly electronic articles in biomedical sciences that can overcome the limitations of traditional flat records formats. Scientific knowledge consists of claims made throughout article texts, especially when semantic elements such as questions, hypotheses and conclusions are stated. These elements, although having different roles, express relationships between phenomena. Once such knowledge units are extracted and represented with technologies such as RDF (Resource Description Framework) and linked data, they may be integrated in reasoning chains. Thereby, the results of scientific research can be published and shared in structured formats, enabling crawling by software agents, semantic retrieval, knowledge reuse, validation of scientific results, and identification of traces of scientific discoveries.
    Date
    12. 3.2016 13:17:22
  12. Hohmann, G.: ¬Die Anwendung des CIDOC-CRM für die semantische Wissensrepräsentation in den Kulturwissenschaften (2010) 0.01
    0.005918263 = product of:
      0.026632184 = sum of:
        0.014680246 = product of:
          0.029360492 = sum of:
            0.029360492 = weight(_text_:web in 4011) [ClassicSimilarity], result of:
              0.029360492 = score(doc=4011,freq=4.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.3059541 = fieldWeight in 4011, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4011)
          0.5 = coord(1/2)
        0.011951938 = product of:
          0.023903877 = sum of:
            0.023903877 = weight(_text_:22 in 4011) [ClassicSimilarity], result of:
              0.023903877 = score(doc=4011,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.23214069 = fieldWeight in 4011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4011)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Das CIDOC Conceptual Reference Model (CRM) ist eine Ontologie für den Bereich des Kulturellen Erbes, die als ISO 21127 standardisiert ist. Inzwischen liegen auch OWL-DL-Implementationen des CRM vor, die ihren Einsatz auch im Semantic Web ermöglicht. OWL-DL ist eine entscheidbare Untermenge der Web Ontology Language, die vom W3C spezifiziert wurde. Lokale Anwendungsontologien, die ebenfalls in OWL-DL modelliert werden, können über Subklassenbeziehungen mit dem CRM als Referenzontologie verbunden werden. Dadurch wird es automatischen Prozessen ermöglicht, autonom heterogene Daten semantisch zu validieren, zueinander in Bezug zu setzen und Anfragen über verschiedene Datenbestände innerhalb der Wissensdomäne zu verarbeiten und zu beantworten.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  13. Kruk, S.R.; Kruk, E.; Stankiewicz, K.: Evaluation of semantic and social technologies for digital libraries (2009) 0.01
    0.005918263 = product of:
      0.026632184 = sum of:
        0.014680246 = product of:
          0.029360492 = sum of:
            0.029360492 = weight(_text_:web in 3387) [ClassicSimilarity], result of:
              0.029360492 = score(doc=3387,freq=4.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.3059541 = fieldWeight in 3387, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3387)
          0.5 = coord(1/2)
        0.011951938 = product of:
          0.023903877 = sum of:
            0.023903877 = weight(_text_:22 in 3387) [ClassicSimilarity], result of:
              0.023903877 = score(doc=3387,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.23214069 = fieldWeight in 3387, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3387)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Libraries are the tools we use to learn and to answer our questions. The quality of our work depends, among others, on the quality of the tools we use. Recent research in digital libraries is focused, on one hand on improving the infrastructure of the digital library management systems (DLMS), and on the other on improving the metadata models used to annotate collections of objects maintained by DLMS. The latter includes, among others, the semantic web and social networking technologies. Recently, the semantic web and social networking technologies are being introduced to the digital libraries domain. The expected outcome is that the overall quality of information discovery in digital libraries can be improved by employing social and semantic technologies. In this chapter we present the results of an evaluation of social and semantic end-user information discovery services for the digital libraries.
    Date
    1. 8.2010 12:35:22
  14. Deokattey, S.; Neelameghan, A.; Kumar, V.: ¬A method for developing a domain ontology : a case study for a multidisciplinary subject (2010) 0.01
    0.005789892 = product of:
      0.026054513 = sum of:
        0.012110585 = product of:
          0.02422117 = sum of:
            0.02422117 = weight(_text_:web in 3694) [ClassicSimilarity], result of:
              0.02422117 = score(doc=3694,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.25239927 = fieldWeight in 3694, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3694)
          0.5 = coord(1/2)
        0.013943928 = product of:
          0.027887857 = sum of:
            0.027887857 = weight(_text_:22 in 3694) [ClassicSimilarity], result of:
              0.027887857 = score(doc=3694,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.2708308 = fieldWeight in 3694, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3694)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    A method to develop a prototype domain ontology has been described. The domain selected for the study is Accelerator Driven Systems. This is a multidisciplinary and interdisciplinary subject comprising Nuclear Physics, Nuclear and Reactor Engineering, Reactor Fuels and Radioactive Waste Management. Since Accelerator Driven Systems is a vast topic, select areas in it were singled out for the study. Both qualitative and quantitative methods such as Content analysis, Facet analysis and Clustering were used, to develop the web-based model.
    Date
    22. 7.2010 19:41:16
  15. Madalli, D.P.; Balaji, B.P.; Sarangi, A.K.: Music domain analysis for building faceted ontological representation (2014) 0.01
    0.005789892 = product of:
      0.026054513 = sum of:
        0.012110585 = product of:
          0.02422117 = sum of:
            0.02422117 = weight(_text_:web in 1437) [ClassicSimilarity], result of:
              0.02422117 = score(doc=1437,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.25239927 = fieldWeight in 1437, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1437)
          0.5 = coord(1/2)
        0.013943928 = product of:
          0.027887857 = sum of:
            0.027887857 = weight(_text_:22 in 1437) [ClassicSimilarity], result of:
              0.027887857 = score(doc=1437,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.2708308 = fieldWeight in 1437, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1437)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    This paper describes to construct faceted ontologies for domain modeling. Building upon the faceted theory of S.R. Ranganathan (1967), the paper intends to address the faceted classification approach applied to build domain ontologies. As classificatory ontologies are employed to represent the relationships of entities and objects on the web, the faceted approach helps to analyze domain representation in an effective way for modeling. Based on this perspective, an ontology of the music domain has been analyzed that would serve as a case study.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  16. Andelfinger, U.; Wyssusek, B.; Kremberg, B.; Totzke, R.: Ontologies in knowledge management : panacea or mirage? 0.01
    0.0056686485 = product of:
      0.051017836 = sum of:
        0.051017836 = sum of:
          0.014982964 = weight(_text_:web in 4393) [ClassicSimilarity], result of:
            0.014982964 = score(doc=4393,freq=6.0), product of:
              0.09596372 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.02940506 = queryNorm
              0.15613155 = fieldWeight in 4393, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.01953125 = fieldNorm(doc=4393)
          0.03603487 = weight(_text_:seite in 4393) [ClassicSimilarity], result of:
            0.03603487 = score(doc=4393,freq=4.0), product of:
              0.16469958 = queryWeight, product of:
                5.601063 = idf(docFreq=443, maxDocs=44218)
                0.02940506 = queryNorm
              0.21879151 = fieldWeight in 4393, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                5.601063 = idf(docFreq=443, maxDocs=44218)
                0.01953125 = fieldNorm(doc=4393)
      0.11111111 = coord(1/9)
    
    Content
    Vgl. auch Mitgliederbrief Ernst-Schröder-Zentrum, Nr.41: "Die aktuelle Entwicklung insbesondere der Internettechnologien führte in den letzten Jahren zu einem Wieder-Erwachen des Interesses von Forschern und Anwendern an (technischen) Ontologien. Typische Visionen in diesem Zusammenhang sind das ,Semantic Web' und das ,Internet der Dinge' (Web 3.0). Technische Ontologien sind formale, zeichenvermittelte symbolische Repräsentationen von lebensweltlichen Zusammenhängen, die notwendigerweise zu einem großen Teil von ihrem Kontextbezug gelöst werden und über die ursprünglichen lebensweltlichen Zusammenhänge hinaus computerverarbeitbar verfügbar werden. Häufig werden dafür XML-basierte Beschreibungssprachen eingesetzt wie z.B. der OWL-Standard. Trotz des großen Interesses sind jedoch umfangreiche und erfolgreiche Beispiele von in größerem Umfang praktisch eingesetzten (technischen) Ontologien eher die Ausnahme. Die zentrale Fragestellung unseres Beitrags ist daher, ob es eventuell grundlegendere (möglicherweise auch außertechnische) Hürden gibt auf dem Weg zu einer Verwirklichung der oft visionären Vorstellungen, wie z.B. zukünftig E-Commerce und E-Business und ,Wissensmanagement' durch technische Ontologien unterstützt werden könnten: Oder ist alles vielleicht ,nur' eine Frage der Zeit, bis wir durch ausreichend leistungsfähige Technologien für solche technischen Ontologien die Versprechungen des ,Internet der Dinge' verwirklichen können?
    Als theoretischen Ausgangspunkt wählen wir in unserem Beitrag eine medienphilosophische Perspektive, die von der Fragestellung ausgeht, inwieweit menschliches Wissen, das von Subjekten explizit oder implizit gewusst wird und Sinn und Bedeutungsbezüge hat, bereits dadurch prinzipiell verändert und möglicherweise um Wesentliches reduziert wird, wenn es in technischen Ontologien - notwendigerweise symbolhaft - repräsentiert wird. Zunächst wird dazu in unserem Beitrag historisch die jahrhundertelange Tradition insbesondere der abendländischen Kulturen seit dem Mittelalter nachgezeichnet, derzufolge zunehmend die epistemische Seite von ,Wissen' in den Vordergrund gestellt wurde, die sich besonders gut symbolisch, d.h. zeichenvermittelt darstellen lässt. Demgegenüber sind wissenschaftshistorisch andere Aspekte menschlichen Wissens wie z.B. die soziale Einbettung symbolvermittelten Wissens und Anteile ,impliziten Wissens' zunehmend in den Hintergrund getreten. Auch Fragen nach Sinn und Bedeutung bzw. reflektionsorientiertem Orientierungswissen sind teilweise davon betroffen.
    Zweifelsohne hat die wissenschaftshistorisch begründete Bevorzugung epistemischen Wissens in Verbindung mit der symbolischen Repräsentation (z.B. in Büchern und zunehmend auch in digitaler, computerverarbeitbarer Form) wesentlich zur Herausbildung unseres aktuellen materiellen Wohlstands und technologischen Fortschritts in den Industrieländern beigetragen. Vielleicht hat jedoch gerade dieser Siegeszug der epistemischen, symbolhaft repräsentierten Seite menschlichen Wissens auch dazu beigetragen, dass die eher verdeckten Beiträge der begleitenden sozialen Prozesse und impliziten Anteile menschlichen Wissens erst in den allerletzten Jahren wieder zunehmend Aufmerksamkeit erhalten. Nur vor dieser wissenschaftshistorischen Kulisse kann schließlich auch erklärt werden, dass in vielen Organisationen das Schlagwort vom ,Wissens-management' oft verkürzend so verstanden wurde, von (technischen) Wissensrepräsentationssystemen zu erhoffen, dass sie als Technologie bereits unmittelbar zum gegenseitigen Wissensaustausch und Wissenstransfer für die Menschen beitragen würden, was in der Praxis dann jedoch oft nicht so wie erhofft eingetreten ist.
    In der Finanzwirtschaft mit ihren automatisierten Handelssystemen (auf Basis technischer Ontologien) wird beispielsweise inzwischen bei außergewöhnlichen Kursbewegungen der Börse der automatische Handel unterbrochen, so dass dann auf pragmatisch-natürlichsprachliche Weise nach den Gründen für die Ausschläge gesucht werden kann. Aus Sicht der technischen Ontologien wäre eine solche Unterbrechung des Computerhandels (zur Beruhigung der Märkte) nicht zwingend erforderlich, aber sie ist sehr sinnvoll aus einer außerhalb der technischen Ontologie stehenden Perspektive, die alleine nach Sinn und Bedeutung stabiler Kursverläufe zu fragen imstande ist. Der hier sich abzeichnende ,pragmatic turn' beim Einsatz technischer Ontologien ist auch in vielfältiger Weise in Trends wie z.B. Folksonomies, Sozialen Netzwerken und Open-SourceEntwicklergruppen zu erkennen. Diese Gemeinschaften zeichnen sich dadurch aus, dass sie zwar (technische) Ontologien einsetzen, diese jedoch in intensive soziale Austauschprozesse einbinden, in denen die formalen Wissensrepräsentationen mit situativer Bedeutung und Sinn versehen und angereichert werden. Dieser Trend zu ,weicheren' Formen der Nutzung von (technischen) Ontologien scheint nach aktuellem Wissensstand auf jeden Fall in der Praxis erfolgversprechender als die anfänglichen Hoffnungen des Semantic Web oder vollständiger (technischer) Ontologien - ganz abgesehen vom laufenden Pflegeaufwand 'vollständiger' technischer Ontologien.
  17. Rahmstorf, G.: Strukturierung von inhaltlichen Daten : Topic Maps und Concepto (2004) 0.01
    0.0056054243 = product of:
      0.05044882 = sum of:
        0.05044882 = product of:
          0.10089764 = sum of:
            0.10089764 = weight(_text_:seite in 3143) [ClassicSimilarity], result of:
              0.10089764 = score(doc=3143,freq=4.0), product of:
                0.16469958 = queryWeight, product of:
                  5.601063 = idf(docFreq=443, maxDocs=44218)
                  0.02940506 = queryNorm
                0.61261624 = fieldWeight in 3143, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.601063 = idf(docFreq=443, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3143)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Topic Maps auf der einen Seite und das Programm Concepto auf der anderen Seite werden beschrieben. Mt Topic Maps können Wortnetze und einfache Satzstrukturen dargestellt werden. Concepto dient zur Erfassung, Bearbeitung und Visualisierung von Wortschatz und Strukturen. Es unterstützt ein Wortmodell, bei dem die verschiedenen Lesarten eines Wortes erfasst und einfachen, formalsprachlichen Begriffen zugewiesen werden können. Die Funktionen beider Systeme werden verglichen. Es wird dargestellt, was an Topic Maps und an Concepto ergänzt werden müsste, wenn beide Systeme einen kompatiblen, wechselseitigen Datenaustausch zulassen sollen. Diese Erweiterungen würden die Anwendbarkeit der Systeme noch interessanter machen.
  18. Mahesh, K.: Highly expressive tagging for knowledge organization in the 21st century (2014) 0.01
    0.005542869 = product of:
      0.024942912 = sum of:
        0.014982964 = product of:
          0.029965928 = sum of:
            0.029965928 = weight(_text_:web in 1434) [ClassicSimilarity], result of:
              0.029965928 = score(doc=1434,freq=6.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.3122631 = fieldWeight in 1434, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1434)
          0.5 = coord(1/2)
        0.009959949 = product of:
          0.019919898 = sum of:
            0.019919898 = weight(_text_:22 in 1434) [ClassicSimilarity], result of:
              0.019919898 = score(doc=1434,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.19345059 = fieldWeight in 1434, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1434)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Knowledge organization of large-scale content on the Web requires substantial amounts of semantic metadata that is expensive to generate manually. Recent developments in Web technologies have enabled any user to tag documents and other forms of content thereby generating metadata that could help organize knowledge. However, merely adding one or more tags to a document is highly inadequate to capture the aboutness of the document and thereby to support powerful semantic functions such as automatic classification, question answering or true semantic search and retrieval. This is true even when the tags used are labels from a well-designed classification system such as a thesaurus or taxonomy. There is a strong need to develop a semantic tagging mechanism with sufficient expressive power to capture the aboutness of each part of a document or dataset or multimedia content in order to enable applications that can benefit from knowledge organization on the Web. This article proposes a highly expressive mechanism of using ontology snippets as semantic tags that map portions of a document or a part of a dataset or a segment of a multimedia content to concepts and relations in an ontology of the domain(s) of interest.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  19. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.01
    0.005542869 = product of:
      0.024942912 = sum of:
        0.014982964 = product of:
          0.029965928 = sum of:
            0.029965928 = weight(_text_:web in 4553) [ClassicSimilarity], result of:
              0.029965928 = score(doc=4553,freq=6.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.3122631 = fieldWeight in 4553, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
        0.009959949 = product of:
          0.019919898 = sum of:
            0.019919898 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.019919898 = score(doc=4553,freq=2.0), product of:
                0.10297151 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02940506 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
      0.22222222 = coord(2/9)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
    Theme
    Semantic Web
  20. Semantic Media Wiki : Autoren sollen Wiki-Inhalte erschließen (2006) 0.01
    0.005309254 = product of:
      0.047783285 = sum of:
        0.047783285 = sum of:
          0.012110585 = weight(_text_:web in 6027) [ClassicSimilarity], result of:
            0.012110585 = score(doc=6027,freq=2.0), product of:
              0.09596372 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.02940506 = queryNorm
              0.12619963 = fieldWeight in 6027, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.02734375 = fieldNorm(doc=6027)
          0.035672702 = weight(_text_:seite in 6027) [ClassicSimilarity], result of:
            0.035672702 = score(doc=6027,freq=2.0), product of:
              0.16469958 = queryWeight, product of:
                5.601063 = idf(docFreq=443, maxDocs=44218)
                0.02940506 = queryNorm
              0.21659255 = fieldWeight in 6027, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.601063 = idf(docFreq=443, maxDocs=44218)
                0.02734375 = fieldNorm(doc=6027)
      0.11111111 = coord(1/9)
    
    Content
    "Mit einer semantischen Erweiterung der Software MediaWiki ist es dem Forschungsteam Wissensmanagement des Instituts für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB) der Universität Karlsruhe (TH) gelungen, das Interesse der internationalen Fachwelt auf sich zu ziehen. Die jungen Forscher Denny Vrandecic und Markus Krötzsch aus dem Team von Professor Dr. Rudi Studer machen die Inhalte von Websites, die mit MediaWiki geschrieben sind, für Maschinen besser auswertbar. Ihr Konzept zur besseren Erschließung der Inhalte geht allerdings nur auf, wenn die Wiki-Autoren aktiv mitarbeiten. Die Karlsruher Forscher setzen auf eine Kombination aus sozialer und technischer Lösung: Sie hoffen, dass sich auf der Basis ihrer Wiki-PlugIn-Software "Semantic MediaWiki" eine Art kollektive Indexierung der Wiki-Artikel durch die Autoren entwickelt - und ernten für diese Idee viel Beifall. Semantic MediaWiki wird bereits auf mehreren Websites mit begrenztem Datenvolumen erfolgreich eingesetzt, unter anderen zur Erschließung der Bibel-Inhalte (URLs siehe Kasten). Nun testen die Karlsruher Forscher, ob ihr Programm auch den gigantischen Volumenanforderungen der freien Web-Enzyklopädie Wikipedia gewachsen ist. Die Wikimedia Foundation Inc., Betreiber von Wikipedia, stellt ihnen für den Test rund 50 Gigabyte Inhalt der englischen Wikipedia-Ausgabe zur Verfügung und hat Interesse an einer Zusammenarbeit signalisiert. Semantic MediaWiki steht als Open Source Software (PHP) auf der Website Sourceforge zur Verfügung. Semantic MediaWiki ist ein relativ einfach zu bedienendes Werkzeug, welches auf leistungsstarken semantischen Wissensmanagement-Technologien aufbaut. Die Autoren können mit dem Werkzeug die Querverweise (Links), die sie in ihrem Text als Weiterleitung zu Hintergrundinformationen angeben, bei der Eingabe als Link eines bestimmten Typs kennzeichnen (typed links) und Zahlenangaben und Fakten im Text als Attribute (attributes) markieren. Bei dem Eintrag zu "Ägypten" steht dann zum Bespiel der typisierte Link "[[ist Land von::Afrika]]" / "[[is country of::africa]]", ein Attribut könnte "[[Bevölkerung:=76,000,000]]" / "[[population:=76,000,000]]" sein. Die von den Autoren erzeugten, typisierten Links werden in einer Datenbank als Dreier-Bezugsgruppen (Triple) abgelegt; die gekennzeichneten Attribute als feststehende Werte gespeichert. Die Autoren können die Relationen zur Definition der Beziehungen zwischen den verlinkten Begriffen frei wählen, z.B. "ist ...von' / "is...of", "hat..." /"has ...". Eingeführte Relationen stehen als "bisher genutzte Relationen" den anderen Schreibern für deren Textindexierung zur Verfügung.
    Aus den so festgelegten Beziehungen zwischen den verlinkten Begriffen sollen Computer automatisch sinnvolle Antworten auf komplexere Anfragen generieren können; z.B. eine Liste erzeugen, in der alle Länder von Afrika aufgeführt sind. Die Ländernamen führen als Link zurück zu dem Eintrag, in dem sie stehen - dem Artikel zum Land, für das man sich interessiert. Aus informationswissenschaftlicher Sicht ist das Informationsergebnis, das die neue Technologie produziert, relativ simpel. Aus sozialwissenschaftlicher Sicht steckt darin aber ein riesiges Potential zur Verbesserung der Bereitstellung von enzyklopädischer Information und Wissen für Menschen auf der ganzen Welt. Spannend ist auch die durch Semantic MediaWiki gegebene Möglichkeit der automatischen Zusammenführung von Informationen, die in den verschiedenen Wiki-Einträgen verteilt sind, bei einer hohen Konsistenz der Ergebnisse. Durch die feststehenden Beziehungen zwischen den Links enthält die automatisch erzeugte Liste nach Angaben der Karlsruher Forscher immer die gleichen Daten, egal, von welcher Seite aus man sie abruft. Die Suchmaschine holt sich die Bevölkerungszahl von Ägypten immer vom festgelegten Ägypten-Eintrag, so dass keine unterschiedlichen Zahlen in der Wiki-Landschaft kursieren können. Ein mit Semantic MediaWiki erstellter Testeintrag zu Deutschland kann unter http://ontoworld.org/index.php/Germany eingesehen werden. Die Faktenbox im unteren Teil des Eintrags zeigt an, was der "Eintrag" der Suchmaschine an Wissen über Deutschland anbieten kann. Diese Ergebnisse werden auch in dem Datenbeschreibungsstandard RDF angeboten. Mehr als das, was in der Faktenbox steht, kann der Eintrag nicht an die Suchmaschine abgeben."

Years

Languages

  • e 237
  • d 58
  • f 1
  • pt 1
  • More… Less…

Types

  • a 193
  • el 98
  • x 21
  • m 20
  • n 12
  • s 10
  • r 4
  • p 2
  • A 1
  • EL 1
  • More… Less…

Subjects

Classifications