Search (2 results, page 1 of 1)

  • × type_ss:"el"
  • × author_ss:"Harmelen, F. van"
  1. Bechhofer, S.; Harmelen, F. van; Hendler, J.; Horrocks, I.; McGuinness, D.L.; Patel-Schneider, P.F.; Stein, L.A.: OWL Web Ontology Language Reference (2004) 0.00
    0.0030088993 = product of:
      0.027080093 = sum of:
        0.027080093 = product of:
          0.054160185 = sum of:
            0.054160185 = weight(_text_:web in 4684) [ClassicSimilarity], result of:
              0.054160185 = score(doc=4684,freq=10.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.5643819 = fieldWeight in 4684, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4684)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    The Web Ontology Language OWL is a semantic markup language for publishing and sharing ontologies on the World Wide Web. OWL is developed as a vocabulary extension of RDF (the Resource Description Framework) and is derived from the DAML+OIL Web Ontology Language. This document contains a structured informal description of the full set of OWL language constructs and is meant to serve as a reference for OWL users who want to construct OWL ontologies.
    Theme
    Semantic Web
  2. Waard, A. de; Fluit, C.; Harmelen, F. van: Drug Ontology Project for Elsevier (DOPE) (2007) 0.00
    7.6892605E-4 = product of:
      0.0069203344 = sum of:
        0.0069203344 = product of:
          0.013840669 = sum of:
            0.013840669 = weight(_text_:web in 758) [ClassicSimilarity], result of:
              0.013840669 = score(doc=758,freq=2.0), product of:
                0.09596372 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.02940506 = queryNorm
                0.14422815 = fieldWeight in 758, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=758)
          0.5 = coord(1/2)
      0.11111111 = coord(1/9)
    
    Abstract
    Innovative research institutes rely on the availability of complete and accurate information about new research and development, and it is the business of information providers such as Elsevier to provide the required information in a cost-effective way. It is very likely that the semantic web will make an important contribution to this effort, since it facilitates access to an unprecedented quantity of data. However, with the unremitting growth of scientific information, integrating access to all this information remains a significant problem, not least because of the heterogeneity of the information sources involved - sources which may use different syntactic standards (syntactic heterogeneity), organize information in very different ways (structural heterogeneity) and even use different terminologies to refer to the same information (semantic heterogeneity). The ability to address these different kinds of heterogeneity is the key to integrated access. Thesauri have already proven to be a core technology to effective information access as they provide controlled vocabularies for indexing information, and thereby help to overcome some of the problems of free-text search by relating and grouping relevant terms in a specific domain. However, currently there is no open architecture which supports the use of these thesauri for querying other data sources. For example, when we move from the centralized and controlled use of EMTREE within EMBASE.com to a distributed setting, it becomes crucial to improve access to the thesaurus by means of a standardized representation using open data standards that allow for semantic qualifications. In general, mental models and keywords for accessing data diverge between subject areas and communities, and so many different ontologies have been developed. An ideal architecture must therefore support the disclosure of distributed and heterogeneous data sources through different ontologies. The aim of the DOPE project (Drug Ontology Project for Elsevier) is to investigate the possibility of providing access to multiple information sources in the area of life science through a single interface.