Search (5 results, page 1 of 1)

  • × classification_ss:"ST 200"
  1. Spinning the Semantic Web : bringing the World Wide Web to its full potential (2003) 0.01
    0.014034534 = product of:
      0.07017267 = sum of:
        0.06560908 = weight(_text_:web in 1981) [ClassicSimilarity], result of:
          0.06560908 = score(doc=1981,freq=62.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.70264983 = fieldWeight in 1981, product of:
              7.8740077 = tf(freq=62.0), with freq of:
                62.0 = termFreq=62.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1981)
        0.004563587 = product of:
          0.013690759 = sum of:
            0.013690759 = weight(_text_:29 in 1981) [ClassicSimilarity], result of:
              0.013690759 = score(doc=1981,freq=2.0), product of:
                0.10064617 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.028611459 = queryNorm
                0.13602862 = fieldWeight in 1981, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1981)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    As the World Wide Web continues to expand, it becomes increasingly difficult for users to obtain information efficiently. Because most search engines read format languages such as HTML or SGML, search results reflect formatting tags more than actual page content, which is expressed in natural language. Spinning the Semantic Web describes an exciting new type of hierarchy and standardization that will replace the current "Web of links" with a "Web of meaning." Using a flexible set of languages and tools, the Semantic Web will make all available information - display elements, metadata, services, images, and especially content - accessible. The result will be an immense repository of information accessible for a wide range of new applications. This first handbook for the Semantic Web covers, among other topics, software agents that can negotiate and collect information, markup languages that can tag many more types of information in a document, and knowledge systems that enable machines to read Web pages and determine their reliability. The truly interdisciplinary Semantic Web combines aspects of artificial intelligence, markup languages, natural language processing, information retrieval, knowledge representation, intelligent agents, and databases.
    Content
    Inhalt: Tim Bemers-Lee: The Original Dream - Re-enter Machines - Where Are We Now? - The World Wide Web Consortium - Where Is the Web Going Next? / Dieter Fensel, James Hendler, Henry Lieberman, and Wolfgang Wahlster: Why Is There a Need for the Semantic Web and What Will It Provide? - How the Semantic Web Will Be Possible / Jeff Heflin, James Hendler, and Sean Luke: SHOE: A Blueprint for the Semantic Web / Deborah L. McGuinness, Richard Fikes, Lynn Andrea Stein, and James Hendler: DAML-ONT: An Ontology Language for the Semantic Web / Michel Klein, Jeen Broekstra, Dieter Fensel, Frank van Harmelen, and Ian Horrocks: Ontologies and Schema Languages on the Web / Borys Omelayenko, Monica Crubezy, Dieter Fensel, Richard Benjamins, Bob Wielinga, Enrico Motta, Mark Musen, and Ying Ding: UPML: The Language and Tool Support for Making the Semantic Web Alive / Deborah L. McGuinness: Ontologies Come of Age / Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen: Sesame: An Architecture for Storing and Querying RDF Data and Schema Information / Rob Jasper and Mike Uschold: Enabling Task-Centered Knowledge Support through Semantic Markup / Yolanda Gil: Knowledge Mobility: Semantics for the Web as a White Knight for Knowledge-Based Systems / Sanjeev Thacker, Amit Sheth, and Shuchi Patel: Complex Relationships for the Semantic Web / Alexander Maedche, Steffen Staab, Nenad Stojanovic, Rudi Studer, and York Sure: SEmantic portAL: The SEAL Approach / Ora Lassila and Mark Adler: Semantic Gadgets: Ubiquitous Computing Meets the Semantic Web / Christopher Frye, Mike Plusch, and Henry Lieberman: Static and Dynamic Semantics of the Web / Masahiro Hori: Semantic Annotation for Web Content Adaptation / Austin Tate, Jeff Dalton, John Levine, and Alex Nixon: Task-Achieving Agents on the World Wide Web
    Date
    29. 3.1996 18:16:49
    LCSH
    Semantic Web
    World Wide Web
    RSWK
    Semantic Web
    Subject
    Semantic Web
    Semantic Web
    World Wide Web
    Theme
    Semantic Web
  2. Bates, C.: Web programming : building Internet applications (2000) 0.01
    0.006022684 = product of:
      0.06022684 = sum of:
        0.06022684 = weight(_text_:web in 5) [ClassicSimilarity], result of:
          0.06022684 = score(doc=5,freq=10.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.6450079 = fieldWeight in 5, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=5)
      0.1 = coord(1/10)
    
    Abstract
    This book introduces the most important Web technologies and shows how they can be used on today's Websites. From client development using HTML and Javascript, through to full server-side applications written in ASP and Perl, the complete web system is shown. Concentrating on immediately useful code, rather than theory, this is a how-to book Im programmers who need quick answers
    LCSH
    Web site development
    Subject
    Web site development
  3. Learning XML : [creating self describing data] (2001) 0.00
    0.0013467129 = product of:
      0.013467129 = sum of:
        0.013467129 = weight(_text_:web in 1744) [ClassicSimilarity], result of:
          0.013467129 = score(doc=1744,freq=2.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.14422815 = fieldWeight in 1744, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=1744)
      0.1 = coord(1/10)
    
    Abstract
    Although Learning XML covers XML with a broad brush, it nevertheless presents the key elements of the technology with enough detail to familiarise the reader with the crucial markup language. This guide is brief enough to tackle in a weekend. Author Erik T Ray begins with an excellent summary of XML's history as an outgrowth of SGML and HTML. He outlines very clearly the elements of markup, demystifying concepts such as attributes, entities and namespaces with numerous clear examples. To illustrate a real-world XML application, he gives the reader a look at a document written in DocBook--a publicly available XML document type for publishing technical writings--and explains the sections of the document step by step. A simplified version of DocBook is used later in the book to illustrate transformation--a powerful benefit of XML. The all-important Document Type Definition (DTD) is covered in depth, but the still-unofficial alternative--XML Schema--is only briefly addressed. The author makes liberal use of graphical illustrations, tables and code to demonstrate concepts along the way, keeping the reader engaged and on track. Ray also gets into a deep discussion of programming XML utilities with Perl. Learning XML is a highly readable introduction to XML for readers with existing knowledge of markup and Web technologies, and it meets its goals very well--to deliver a broad perspective of XML and its potential.
  4. Hildebrand, J.: Internet: Ratgeber für Lehrer (1996) 0.00
    0.001303882 = product of:
      0.01303882 = sum of:
        0.01303882 = product of:
          0.039116457 = sum of:
            0.039116457 = weight(_text_:29 in 6119) [ClassicSimilarity], result of:
              0.039116457 = score(doc=6119,freq=2.0), product of:
                0.10064617 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.028611459 = queryNorm
                0.38865322 = fieldWeight in 6119, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.078125 = fieldNorm(doc=6119)
          0.33333334 = coord(1/3)
      0.1 = coord(1/10)
    
    Date
    22.10.2006 21:10:29
  5. Tennant, R.; Lipow, A.; Ober, J.: Crossing the Internet threshold : an instructional handbook (1993) 0.00
    0.0010431055 = product of:
      0.010431055 = sum of:
        0.010431055 = product of:
          0.031293165 = sum of:
            0.031293165 = weight(_text_:29 in 4930) [ClassicSimilarity], result of:
              0.031293165 = score(doc=4930,freq=2.0), product of:
                0.10064617 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.028611459 = queryNorm
                0.31092256 = fieldWeight in 4930, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4930)
          0.33333334 = coord(1/3)
      0.1 = coord(1/10)
    
    Footnote
    Rez. in: Journal of academic librarianship 19(1993) S.169-170 (S.L. Davidsen); Information processing and management 29(1993) no.4, S.531 (W.F. u. L.L. Wagoner): Library software review 1993, Fall, S.80 (A. Hamilton)