Search (324 results, page 2 of 17)

  • × theme_ss:"Wissensrepräsentation"
  1. Assem, M. van; Malaisé, V.; Miles, A.; Schreiber, G.: ¬A method to convert thesauri to SKOS (2006) 0.01
    0.008562385 = product of:
      0.042811923 = sum of:
        0.03498863 = weight(_text_:web in 4642) [ClassicSimilarity], result of:
          0.03498863 = score(doc=4642,freq=6.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.37471575 = fieldWeight in 4642, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4642)
        0.007823291 = product of:
          0.023469873 = sum of:
            0.023469873 = weight(_text_:29 in 4642) [ClassicSimilarity], result of:
              0.023469873 = score(doc=4642,freq=2.0), product of:
                0.10064617 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.028611459 = queryNorm
                0.23319192 = fieldWeight in 4642, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4642)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    Thesauri can be useful resources for indexing and retrieval on the Semantic Web, but often they are not published in RDF/OWL. To convert thesauri to RDF for use in Semantic Web applications and to ensure the quality and utility of the conversion a structured method is required. Moreover, if different thesauri are to be interoperable without complicated mappings, a standard schema for thesauri is required. This paper presents a method for conversion of thesauri to the SKOS RDF/OWL schema, which is a proposal for such a standard under development by W3Cs Semantic Web Best Practices Working Group. We apply the method to three thesauri: IPSV, GTAA and MeSH. With these case studies we evaluate our method and the applicability of SKOS for representing thesauri.
    Date
    29. 7.2011 14:44:56
  2. Marcondes, C.H.; Costa, L.C da.: ¬A model to represent and process scientific knowledge in biomedical articles with semantic Web technologies (2016) 0.01
    0.008025718 = product of:
      0.04012859 = sum of:
        0.033667825 = weight(_text_:web in 2829) [ClassicSimilarity], result of:
          0.033667825 = score(doc=2829,freq=8.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.36057037 = fieldWeight in 2829, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2829)
        0.006460763 = product of:
          0.019382289 = sum of:
            0.019382289 = weight(_text_:22 in 2829) [ClassicSimilarity], result of:
              0.019382289 = score(doc=2829,freq=2.0), product of:
                0.10019246 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028611459 = queryNorm
                0.19345059 = fieldWeight in 2829, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2829)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    Knowledge organization faces the challenge of managing the amount of knowledge available on the Web. Published literature in biomedical sciences is a huge source of knowledge, which can only efficiently be managed through automatic methods. The conventional channel for reporting scientific results is Web electronic publishing. Despite its advances, scientific articles are still published in print formats such as portable document format (PDF). Semantic Web and Linked Data technologies provides new opportunities for communicating, sharing, and integrating scientific knowledge that can overcome the limitations of the current print format. Here is proposed a semantic model of scholarly electronic articles in biomedical sciences that can overcome the limitations of traditional flat records formats. Scientific knowledge consists of claims made throughout article texts, especially when semantic elements such as questions, hypotheses and conclusions are stated. These elements, although having different roles, express relationships between phenomena. Once such knowledge units are extracted and represented with technologies such as RDF (Resource Description Framework) and linked data, they may be integrated in reasoning chains. Thereby, the results of scientific research can be published and shared in structured formats, enabling crawling by software agents, semantic retrieval, knowledge reuse, validation of scientific results, and identification of traces of scientific discoveries.
    Date
    12. 3.2016 13:17:22
  3. Clark, M.; Kim, Y.; Kruschwitz, U.; Song, D.; Albakour, D.; Dignum, S.; Beresi, U.C.; Fasli, M.; Roeck, A De: Automatically structuring domain knowledge from text : an overview of current research (2012) 0.01
    0.007926381 = product of:
      0.039631903 = sum of:
        0.028568096 = weight(_text_:web in 2738) [ClassicSimilarity], result of:
          0.028568096 = score(doc=2738,freq=4.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.3059541 = fieldWeight in 2738, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2738)
        0.011063806 = product of:
          0.033191416 = sum of:
            0.033191416 = weight(_text_:29 in 2738) [ClassicSimilarity], result of:
              0.033191416 = score(doc=2738,freq=4.0), product of:
                0.10064617 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.028611459 = queryNorm
                0.3297832 = fieldWeight in 2738, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2738)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    This paper presents an overview of automatic methods for building domain knowledge structures (domain models) from text collections. Applications of domain models have a long history within knowledge engineering and artificial intelligence. In the last couple of decades they have surfaced noticeably as a useful tool within natural language processing, information retrieval and semantic web technology. Inspired by the ubiquitous propagation of domain model structures that are emerging in several research disciplines, we give an overview of the current research landscape and some techniques and approaches. We will also discuss trade-offs between different approaches and point to some recent trends.
    Content
    Beitrag in einem Themenheft "Soft Approaches to IA on the Web". Vgl.: doi:10.1016/j.ipm.2011.07.002.
    Date
    29. 1.2016 18:29:51
  4. Assem, M. van: Converting and integrating vocabularies for the Semantic Web (2010) 0.01
    0.007640626 = product of:
      0.038203128 = sum of:
        0.0329876 = weight(_text_:web in 4639) [ClassicSimilarity], result of:
          0.0329876 = score(doc=4639,freq=12.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.35328537 = fieldWeight in 4639, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4639)
        0.0052155275 = product of:
          0.015646582 = sum of:
            0.015646582 = weight(_text_:29 in 4639) [ClassicSimilarity], result of:
              0.015646582 = score(doc=4639,freq=2.0), product of:
                0.10064617 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.028611459 = queryNorm
                0.15546128 = fieldWeight in 4639, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4639)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    This thesis focuses on conversion of vocabularies for representation and integration of collections on the Semantic Web. A secondary focus is how to represent metadata schemas (RDF Schemas representing metadata element sets) such that they interoperate with vocabularies. The primary domain in which we operate is that of cultural heritage collections. The background worldview in which a solution is sought is that of the Semantic Web research paradigmwith its associated theories, methods, tools and use cases. In other words, we assume the SemanticWeb is in principle able to provide the context to realize interoperable collections. Interoperability is dependent on the interplay between representations and the applications that use them. We mean applications in the widest sense, such as "search" and "annotation". These applications or tasks are often present in software applications, such as the E-Culture application. It is therefore necessary that applications requirements on the vocabulary representation are met. This leads us to formulate the following problem statement: HOW CAN EXISTING VOCABULARIES BE MADE AVAILABLE TO SEMANTIC WEB APPLICATIONS?
    We refine the problem statement into three research questions. The first two focus on the problem of conversion of a vocabulary to a Semantic Web representation from its original format. Conversion of a vocabulary to a representation in a Semantic Web language is necessary to make the vocabulary available to SemanticWeb applications. In the last question we focus on integration of collection metadata schemas in a way that allows for vocabulary representations as produced by our methods. Academisch proefschrift ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, Dutch Research School for Information and Knowledge Systems.
    Date
    29. 7.2011 14:44:56
  5. Schmitz-Esser, W.; Sigel, A.: Introducing terminology-based ontologies : Papers and Materials presented by the authors at the workshop "Introducing Terminology-based Ontologies" (Poli/Schmitz-Esser/Sigel) at the 9th International Conference of the International Society for Knowledge Organization (ISKO), Vienna, Austria, July 6th, 2006 (2006) 0.01
    0.007278278 = product of:
      0.03639139 = sum of:
        0.028568096 = weight(_text_:web in 1285) [ClassicSimilarity], result of:
          0.028568096 = score(doc=1285,freq=4.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.3059541 = fieldWeight in 1285, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1285)
        0.007823291 = product of:
          0.023469873 = sum of:
            0.023469873 = weight(_text_:29 in 1285) [ClassicSimilarity], result of:
              0.023469873 = score(doc=1285,freq=2.0), product of:
                0.10064617 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.028611459 = queryNorm
                0.23319192 = fieldWeight in 1285, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1285)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Content
    Inhalt: 1. From traditional Knowledge Organization Systems (authority files, classifications, thesauri) towards ontologies on the web (Alexander Sigel) (Tutorial. Paper with Slides interspersed) pp. 3-53 2. Introduction to Integrative Cross-Language Ontology (ICLO): Formalizing and interrelating textual knowledge to enable intelligent action and knowledge sharing (Winfried Schmitz-Esser) pp. 54-113 3. First Idea Sketch on Modelling ICLO with Topic Maps (Alexander Sigel) (Work in progress paper. Topic maps available from the author) pp. 114-130
    Date
    17. 7.2006 12:29:55
    Theme
    Semantic Web
  6. Schreiber, G.; Amin, A.; Assem, M. van; Boer, V. de; Hardman, L.; Hildebrand, M.; Hollink, L.; Huang, Z.; Kersen, J. van; Niet, M. de; Omelayenko, B.; Ossenbruggen, J. van; Siebes, R.; Taekema, J.; Wielemaker, J.; Wielinga, B.: MultimediaN E-Culture demonstrator (2006) 0.01
    0.007278278 = product of:
      0.03639139 = sum of:
        0.028568096 = weight(_text_:web in 4648) [ClassicSimilarity], result of:
          0.028568096 = score(doc=4648,freq=4.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.3059541 = fieldWeight in 4648, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4648)
        0.007823291 = product of:
          0.023469873 = sum of:
            0.023469873 = weight(_text_:29 in 4648) [ClassicSimilarity], result of:
              0.023469873 = score(doc=4648,freq=2.0), product of:
                0.10064617 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.028611459 = queryNorm
                0.23319192 = fieldWeight in 4648, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4648)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    The main objective of the MultimediaN E-Culture project is to demonstrate how novel semantic-web and presentation technologies can be deployed to provide better indexing and search support within large virtual collections of culturalheritage resources. The architecture is fully based on open web standards in particular XML, SVG, RDF/OWL and SPARQL. One basic hypothesis underlying this work is that the use of explicit background knowledge in the form of ontologies/vocabularies/thesauri is in particular useful in information retrieval in knowledge-rich domains. This paper gives some details about the internals of the demonstrator.
    Date
    29. 7.2011 14:44:56
  7. Vallet, D.; Fernández, M.; Castells, P.: ¬An ontology-based information retrieval model (2005) 0.01
    0.007278278 = product of:
      0.03639139 = sum of:
        0.028568096 = weight(_text_:web in 4708) [ClassicSimilarity], result of:
          0.028568096 = score(doc=4708,freq=4.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.3059541 = fieldWeight in 4708, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4708)
        0.007823291 = product of:
          0.023469873 = sum of:
            0.023469873 = weight(_text_:29 in 4708) [ClassicSimilarity], result of:
              0.023469873 = score(doc=4708,freq=2.0), product of:
                0.10064617 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.028611459 = queryNorm
                0.23319192 = fieldWeight in 4708, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4708)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    Semantic search has been one of the motivations of the Semantic Web since it was envisioned. We propose a model for the exploitation of ontologybased KBs to improve search over large document repositories. Our approach includes an ontology-based scheme for the semi-automatic annotation of documents, and a retrieval system. The retrieval model is based on an adaptation of the classic vector-space model, including an annotation weighting algorithm, and a ranking algorithm. Semantic search is combined with keyword-based search to achieve tolerance to KB incompleteness. Our proposal is illustrated with sample experiments showing improvements with respect to keyword-based search, and providing ground for further research and discussion.
    Source
    The Semantic Web: research and applications ; second European Semantic WebConference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005 ; proceedings. Eds.: A. Gómez-Pérez u. J. Euzenat
  8. Hohmann, G.: ¬Die Anwendung des CIDOC-CRM für die semantische Wissensrepräsentation in den Kulturwissenschaften (2010) 0.01
    0.007264202 = product of:
      0.03632101 = sum of:
        0.028568096 = weight(_text_:web in 4011) [ClassicSimilarity], result of:
          0.028568096 = score(doc=4011,freq=4.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.3059541 = fieldWeight in 4011, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4011)
        0.0077529154 = product of:
          0.023258746 = sum of:
            0.023258746 = weight(_text_:22 in 4011) [ClassicSimilarity], result of:
              0.023258746 = score(doc=4011,freq=2.0), product of:
                0.10019246 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028611459 = queryNorm
                0.23214069 = fieldWeight in 4011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4011)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    Das CIDOC Conceptual Reference Model (CRM) ist eine Ontologie für den Bereich des Kulturellen Erbes, die als ISO 21127 standardisiert ist. Inzwischen liegen auch OWL-DL-Implementationen des CRM vor, die ihren Einsatz auch im Semantic Web ermöglicht. OWL-DL ist eine entscheidbare Untermenge der Web Ontology Language, die vom W3C spezifiziert wurde. Lokale Anwendungsontologien, die ebenfalls in OWL-DL modelliert werden, können über Subklassenbeziehungen mit dem CRM als Referenzontologie verbunden werden. Dadurch wird es automatischen Prozessen ermöglicht, autonom heterogene Daten semantisch zu validieren, zueinander in Bezug zu setzen und Anfragen über verschiedene Datenbestände innerhalb der Wissensdomäne zu verarbeiten und zu beantworten.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  9. Kruk, S.R.; Kruk, E.; Stankiewicz, K.: Evaluation of semantic and social technologies for digital libraries (2009) 0.01
    0.007264202 = product of:
      0.03632101 = sum of:
        0.028568096 = weight(_text_:web in 3387) [ClassicSimilarity], result of:
          0.028568096 = score(doc=3387,freq=4.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.3059541 = fieldWeight in 3387, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3387)
        0.0077529154 = product of:
          0.023258746 = sum of:
            0.023258746 = weight(_text_:22 in 3387) [ClassicSimilarity], result of:
              0.023258746 = score(doc=3387,freq=2.0), product of:
                0.10019246 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028611459 = queryNorm
                0.23214069 = fieldWeight in 3387, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3387)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    Libraries are the tools we use to learn and to answer our questions. The quality of our work depends, among others, on the quality of the tools we use. Recent research in digital libraries is focused, on one hand on improving the infrastructure of the digital library management systems (DLMS), and on the other on improving the metadata models used to annotate collections of objects maintained by DLMS. The latter includes, among others, the semantic web and social networking technologies. Recently, the semantic web and social networking technologies are being introduced to the digital libraries domain. The expected outcome is that the overall quality of information discovery in digital libraries can be improved by employing social and semantic technologies. In this chapter we present the results of an evaluation of social and semantic end-user information discovery services for the digital libraries.
    Date
    1. 8.2010 12:35:22
  10. Mahesh, K.: Highly expressive tagging for knowledge organization in the 21st century (2014) 0.01
    0.007123591 = product of:
      0.035617955 = sum of:
        0.029157192 = weight(_text_:web in 1434) [ClassicSimilarity], result of:
          0.029157192 = score(doc=1434,freq=6.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.3122631 = fieldWeight in 1434, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1434)
        0.006460763 = product of:
          0.019382289 = sum of:
            0.019382289 = weight(_text_:22 in 1434) [ClassicSimilarity], result of:
              0.019382289 = score(doc=1434,freq=2.0), product of:
                0.10019246 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028611459 = queryNorm
                0.19345059 = fieldWeight in 1434, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1434)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    Knowledge organization of large-scale content on the Web requires substantial amounts of semantic metadata that is expensive to generate manually. Recent developments in Web technologies have enabled any user to tag documents and other forms of content thereby generating metadata that could help organize knowledge. However, merely adding one or more tags to a document is highly inadequate to capture the aboutness of the document and thereby to support powerful semantic functions such as automatic classification, question answering or true semantic search and retrieval. This is true even when the tags used are labels from a well-designed classification system such as a thesaurus or taxonomy. There is a strong need to develop a semantic tagging mechanism with sufficient expressive power to capture the aboutness of each part of a document or dataset or multimedia content in order to enable applications that can benefit from knowledge organization on the Web. This article proposes a highly expressive mechanism of using ontology snippets as semantic tags that map portions of a document or a part of a dataset or a segment of a multimedia content to concepts and relations in an ontology of the domain(s) of interest.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  11. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.01
    0.007123591 = product of:
      0.035617955 = sum of:
        0.029157192 = weight(_text_:web in 4553) [ClassicSimilarity], result of:
          0.029157192 = score(doc=4553,freq=6.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.3122631 = fieldWeight in 4553, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4553)
        0.006460763 = product of:
          0.019382289 = sum of:
            0.019382289 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.019382289 = score(doc=4553,freq=2.0), product of:
                0.10019246 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028611459 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
    Theme
    Semantic Web
  12. Weller, K.: Anforderungen an die Wissensrepräsentation im Social Semantic Web (2010) 0.01
    0.007070243 = product of:
      0.070702426 = sum of:
        0.070702426 = weight(_text_:web in 4061) [ClassicSimilarity], result of:
          0.070702426 = score(doc=4061,freq=18.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.75719774 = fieldWeight in 4061, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4061)
      0.1 = coord(1/10)
    
    Abstract
    Dieser Artikel gibt einen Einblick in die aktuelle Verschmelzung von Web 2.0-und Semantic Web-Ansätzen, die als Social Semantic Web beschrieben werden kann. Die Grundidee des Social Semantic Web wird beschrieben und einzelne erste Anwendungsbeispiele vorgestellt. Ein wesentlicher Schwerpunkt dieser Entwicklung besteht in der Umsetzung neuer Methoden und Herangehensweisen im Bereich der Wissensrepräsentation. Dieser Artikel stellt vier Schwerpunkte vor, in denen sich die Wissensrepräsentationsmethoden im Social Semantic Web weiterentwickeln müssen und geht dabei jeweils auf den aktuellen Stand ein.
    Object
    Web 2.0
    Source
    Semantic web & linked data: Elemente zukünftiger Informationsinfrastrukturen ; 1. DGI-Konferenz ; 62. Jahrestagung der DGI ; Frankfurt am Main, 7. - 9. Oktober 2010 ; Proceedings / Deutsche Gesellschaft für Informationswissenschaft und Informationspraxis. Hrsg.: M. Ockenfeld
    Theme
    Semantic Web
  13. Lukasiewicz, T.: Uncertainty reasoning for the Semantic Web (2017) 0.01
    0.007070243 = product of:
      0.070702426 = sum of:
        0.070702426 = weight(_text_:web in 3939) [ClassicSimilarity], result of:
          0.070702426 = score(doc=3939,freq=18.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.75719774 = fieldWeight in 3939, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3939)
      0.1 = coord(1/10)
    
    Abstract
    The Semantic Web has attracted much attention, both from academia and industry. An important role in research towards the Semantic Web is played by formalisms and technologies for handling uncertainty and/or vagueness. In this paper, I first provide some motivating examples for handling uncertainty and/or vagueness in the Semantic Web. I then give an overview of some own formalisms for handling uncertainty and/or vagueness in the Semantic Web.
    Series
    Lecture Notes in Computer Scienc;10370) (Information Systems and Applications, incl. Internet/Web, and HCI
    Source
    Reasoning Web: Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures. Eds.: Ianni, G. et al
    Theme
    Semantic Web
  14. Panzer, M.: Dewey Web services : overview (2009) 0.01
    0.006733565 = product of:
      0.06733565 = sum of:
        0.06733565 = weight(_text_:web in 7190) [ClassicSimilarity], result of:
          0.06733565 = score(doc=7190,freq=2.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.72114074 = fieldWeight in 7190, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.15625 = fieldNorm(doc=7190)
      0.1 = coord(1/10)
    
  15. Assem, M. van; Menken, M.R.; Schreiber, G.; Wielemaker, J.; Wielinga, B.: ¬A method for converting thesauri to RDF/OWL (2004) 0.01
    0.006538931 = product of:
      0.032694653 = sum of:
        0.023567477 = weight(_text_:web in 4644) [ClassicSimilarity], result of:
          0.023567477 = score(doc=4644,freq=2.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.25239927 = fieldWeight in 4644, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4644)
        0.009127174 = product of:
          0.027381519 = sum of:
            0.027381519 = weight(_text_:29 in 4644) [ClassicSimilarity], result of:
              0.027381519 = score(doc=4644,freq=2.0), product of:
                0.10064617 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.028611459 = queryNorm
                0.27205724 = fieldWeight in 4644, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4644)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Date
    29. 7.2011 14:44:56
    Source
    Proceedings of the 3rd International Semantic Web Conference (ISWC'04). Eds. D. Plexousakis and F. van Harmelen
  16. Gödert, W.: Facets and typed relations as tools for reasoning processes in information retrieval (2014) 0.01
    0.006538931 = product of:
      0.032694653 = sum of:
        0.023567477 = weight(_text_:web in 1565) [ClassicSimilarity], result of:
          0.023567477 = score(doc=1565,freq=2.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.25239927 = fieldWeight in 1565, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1565)
        0.009127174 = product of:
          0.027381519 = sum of:
            0.027381519 = weight(_text_:29 in 1565) [ClassicSimilarity], result of:
              0.027381519 = score(doc=1565,freq=2.0), product of:
                0.10064617 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.028611459 = queryNorm
                0.27205724 = fieldWeight in 1565, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1565)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    Faceted arrangement of entities and typed relations for representing different associations between the entities are established tools in knowledge representation. In this paper, a proposal is being discussed combining both tools to draw inferences along relational paths. This approach may yield new benefit for information retrieval processes, especially when modeled for heterogeneous environments in the Semantic Web. Faceted arrangement can be used as a selection tool for the semantic knowledge modeled within the knowledge representation. Typed relations between the entities of different facets can be used as restrictions for selecting them across the facets.
    Source
    Metadata and semantics research: 8th Research Conference, MTSR 2014, Karlsruhe, Germany, November 27-29, 2014, Proceedings. Eds.: S. Closs et al
  17. Atanassova, I.; Bertin, M.: Semantic facets for scientific information retrieval (2014) 0.01
    0.006538931 = product of:
      0.032694653 = sum of:
        0.023567477 = weight(_text_:web in 4471) [ClassicSimilarity], result of:
          0.023567477 = score(doc=4471,freq=2.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.25239927 = fieldWeight in 4471, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4471)
        0.009127174 = product of:
          0.027381519 = sum of:
            0.027381519 = weight(_text_:29 in 4471) [ClassicSimilarity], result of:
              0.027381519 = score(doc=4471,freq=2.0), product of:
                0.10064617 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.028611459 = queryNorm
                0.27205724 = fieldWeight in 4471, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4471)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Source
    Semantic Web Evaluation Challenge. SemWebEval 2014 at ESWC 2014, Anissaras, Crete, Greece, May 25-29, 2014, Revised Selected Papers. Eds.: V. Presutti et al
  18. Deokattey, S.; Neelameghan, A.; Kumar, V.: ¬A method for developing a domain ontology : a case study for a multidisciplinary subject (2010) 0.01
    0.0065225097 = product of:
      0.032612547 = sum of:
        0.023567477 = weight(_text_:web in 3694) [ClassicSimilarity], result of:
          0.023567477 = score(doc=3694,freq=2.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.25239927 = fieldWeight in 3694, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3694)
        0.009045068 = product of:
          0.027135205 = sum of:
            0.027135205 = weight(_text_:22 in 3694) [ClassicSimilarity], result of:
              0.027135205 = score(doc=3694,freq=2.0), product of:
                0.10019246 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028611459 = queryNorm
                0.2708308 = fieldWeight in 3694, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3694)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    A method to develop a prototype domain ontology has been described. The domain selected for the study is Accelerator Driven Systems. This is a multidisciplinary and interdisciplinary subject comprising Nuclear Physics, Nuclear and Reactor Engineering, Reactor Fuels and Radioactive Waste Management. Since Accelerator Driven Systems is a vast topic, select areas in it were singled out for the study. Both qualitative and quantitative methods such as Content analysis, Facet analysis and Clustering were used, to develop the web-based model.
    Date
    22. 7.2010 19:41:16
  19. Madalli, D.P.; Balaji, B.P.; Sarangi, A.K.: Music domain analysis for building faceted ontological representation (2014) 0.01
    0.0065225097 = product of:
      0.032612547 = sum of:
        0.023567477 = weight(_text_:web in 1437) [ClassicSimilarity], result of:
          0.023567477 = score(doc=1437,freq=2.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.25239927 = fieldWeight in 1437, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1437)
        0.009045068 = product of:
          0.027135205 = sum of:
            0.027135205 = weight(_text_:22 in 1437) [ClassicSimilarity], result of:
              0.027135205 = score(doc=1437,freq=2.0), product of:
                0.10019246 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028611459 = queryNorm
                0.2708308 = fieldWeight in 1437, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1437)
          0.33333334 = coord(1/3)
      0.2 = coord(2/10)
    
    Abstract
    This paper describes to construct faceted ontologies for domain modeling. Building upon the faceted theory of S.R. Ranganathan (1967), the paper intends to address the faceted classification approach applied to build domain ontologies. As classificatory ontologies are employed to represent the relationships of entities and objects on the web, the faceted approach helps to analyze domain representation in an effective way for modeling. Based on this perspective, an ontology of the music domain has been analyzed that would serve as a case study.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  20. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.01
    0.0063457377 = product of:
      0.06345738 = sum of:
        0.06345738 = weight(_text_:web in 4515) [ClassicSimilarity], result of:
          0.06345738 = score(doc=4515,freq=58.0), product of:
            0.0933738 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.028611459 = queryNorm
            0.67960584 = fieldWeight in 4515, product of:
              7.615773 = tf(freq=58.0), with freq of:
                58.0 = termFreq=58.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
      0.1 = coord(1/10)
    
    Abstract
    The main purpose of this book is to sum up the vital and highly topical research issue of knowledge representation on the Web and to discuss novel solutions by combining benefits of folksonomies and Web 2.0 approaches with ontologies and semantic technologies. This book contains an overview of knowledge representation approaches in past, present and future, introduction to ontologies, Web indexing and in first case the novel approaches of developing ontologies. This title combines aspects of knowledge representation for both the Semantic Web (ontologies) and the Web 2.0 (folksonomies). Currently there is no monographic book which provides a combined overview over these topics. focus on the topic of using knowledge representation methods for document indexing purposes. For this purpose, considerations from classical librarian interests in knowledge representation (thesauri, classification schemes etc.) are included, which are not part of most other books which have a stronger background in computer science.
    Footnote
    Rez. in: iwp 62(2011) H.4, S.205-206 (C. Carstens): "Welche Arten der Wissensrepräsentation existieren im Web, wie ausgeprägt sind semantische Strukturen in diesem Kontext, und wie können soziale Aktivitäten im Sinne des Web 2.0 zur Strukturierung von Wissen im Web beitragen? Diesen Fragen widmet sich Wellers Buch mit dem Titel Knowledge Representation in the Social Semantic Web. Der Begriff Social Semantic Web spielt einerseits auf die semantische Strukturierung von Daten im Sinne des Semantic Web an und deutet andererseits auf die zunehmend kollaborative Inhaltserstellung im Social Web hin. Weller greift die Entwicklungen in diesen beiden Bereichen auf und beleuchtet die Möglichkeiten und Herausforderungen, die aus der Kombination der Aktivitäten im Semantic Web und im Social Web entstehen. Der Fokus des Buches liegt dabei primär auf den konzeptuellen Herausforderungen, die sich in diesem Kontext ergeben. So strebt die originäre Vision des Semantic Web die Annotation aller Webinhalte mit ausdrucksstarken, hochformalisierten Ontologien an. Im Social Web hingegen werden große Mengen an Daten von Nutzern erstellt, die häufig mithilfe von unkontrollierten Tags in Folksonomies annotiert werden. Weller sieht in derartigen kollaborativ erstellten Inhalten und Annotationen großes Potenzial für die semantische Indexierung, eine wichtige Voraussetzung für das Retrieval im Web. Das Hauptinteresse des Buches besteht daher darin, eine Brücke zwischen den Wissensrepräsentations-Methoden im Social Web und im Semantic Web zu schlagen. Um dieser Fragestellung nachzugehen, gliedert sich das Buch in drei Teile. . . .
    Insgesamt besticht das Buch insbesondere durch seine breite Sichtweise, die Aktualität und die Fülle an Referenzen. Es ist somit sowohl als Überblickswerk geeignet, das umfassend über aktuelle Entwicklungen und Trends der Wissensrepräsentation im Semantic und Social Web informiert, als auch als Lektüre für Experten, für die es vor allem als kontextualisierte und sehr aktuelle Sammlung von Referenzen eine wertvolle Ressource darstellt." Weitere Rez. in: Journal of Documentation. 67(2011), no.5, S.896-899 (P. Rafferty)
    LCSH
    Semantic Web
    Object
    Web 2.0
    RSWK
    Semantic Web
    World Wide Web 2.0
    Subject
    Semantic Web
    World Wide Web 2.0
    Semantic Web
    Theme
    Semantic Web

Years

Languages

  • e 257
  • d 61
  • f 1
  • pt 1
  • sp 1
  • More… Less…

Types

  • a 211
  • el 106
  • x 22
  • m 20
  • n 12
  • s 10
  • r 4
  • p 2
  • A 1
  • EL 1
  • More… Less…

Subjects

Classifications