Search (26 results, page 1 of 2)

  • × author_ss:"Gnoli, C."
  1. Gnoli, C.; Merli, G.; Pavan, G.; Bernuzzi, E.; Priano, M.: Freely faceted classification for a Web-based bibliographic archive : the BioAcoustic Reference Database (2010) 0.02
    0.019580245 = product of:
      0.06853086 = sum of:
        0.032137483 = weight(_text_:wide in 3739) [ClassicSimilarity], result of:
          0.032137483 = score(doc=3739,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.24476713 = fieldWeight in 3739, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3739)
        0.02465703 = weight(_text_:web in 3739) [ClassicSimilarity], result of:
          0.02465703 = score(doc=3739,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.25496176 = fieldWeight in 3739, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3739)
        0.0050448296 = weight(_text_:information in 3739) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=3739,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 3739, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3739)
        0.0066915164 = product of:
          0.020074548 = sum of:
            0.020074548 = weight(_text_:22 in 3739) [ClassicSimilarity], result of:
              0.020074548 = score(doc=3739,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.19345059 = fieldWeight in 3739, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3739)
          0.33333334 = coord(1/3)
      0.2857143 = coord(4/14)
    
    Abstract
    The Integrative Level Classification (ILC) research project is experimenting with a knowledge organization system based on phenomena rather than disciplines. Each phenomenon has a constant notation, which can be combined with that of any other phenomenon in a freely faceted structure. Citation order can express differential focality of the facets. Very specific subjects can have long classmarks, although their complexity is reduced by various devices. Freely faceted classification is being tested by indexing a corpus of about 3300 papers in the interdisciplinary domain of bioacoustics. The subjects of these papers often include phenomena from a wide variety of integrative levels (mechanical waves, animals, behaviour, vessels, fishing, law, ...) as well as information about the methods of study, as predicted in the León Manifesto. The archive is recorded in a MySQL database, and can be fed and searched through PHP Web interfaces. Indexer's work is made easier by mechanisms that suggest possible classes on the basis of matching title words with terms in the ILC schedules, and synthesize automatically the verbal caption corresponding to the classmark being edited. Users can search the archive by selecting and combining values in each facet. Search refinement should be improved, especially for the cases where no record, or too many records, match the faceted query. However, experience is being gained progressively, showing that freely faceted classification by phenomena, theories, and methods is feasible and successfully working.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  2. Gnoli, C.; Mei, H.: Freely faceted classification for Web-based information retrieval (2006) 0.01
    0.0143090235 = product of:
      0.06677544 = sum of:
        0.029588435 = weight(_text_:web in 534) [ClassicSimilarity], result of:
          0.029588435 = score(doc=534,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.3059541 = fieldWeight in 534, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=534)
        0.0060537956 = weight(_text_:information in 534) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=534,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 534, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=534)
        0.031133216 = weight(_text_:retrieval in 534) [ClassicSimilarity], result of:
          0.031133216 = score(doc=534,freq=6.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.34732026 = fieldWeight in 534, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=534)
      0.21428572 = coord(3/14)
    
    Abstract
    In free classification, each concept is expressed by a constant notation, and classmarks are formed by free combinations of them, allowing the retrieval of records from a database by searching any of the component concepts. A refinement of free classification is freely faceted classification, where notation can include facets, expressing the kind of relations held between the concepts. The Integrative Level Classification project aims at testing free and freely faceted classification by applying them to small bibliographical samples in various domains. A sample, called the Dandelion Bibliography of Facet Analysis, is described here. Experience was gained using this system to classify 300 specialized papers dealing with facet analysis itself recorded on a MySQL database and building a Web interface exploiting freely faceted notation. The interface is written in PHP and uses string functions to process the queries and to yield relevant results selected and ordered according to the principles of integrative levels.
    Theme
    Klassifikationssysteme im Online-Retrieval
  3. Gnoli, C.: Classification transcends library business : the case of BiblioPhil (2010) 0.01
    0.009849315 = product of:
      0.045963466 = sum of:
        0.032137483 = weight(_text_:wide in 3698) [ClassicSimilarity], result of:
          0.032137483 = score(doc=3698,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.24476713 = fieldWeight in 3698, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3698)
        0.0071344664 = weight(_text_:information in 3698) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=3698,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 3698, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3698)
        0.0066915164 = product of:
          0.020074548 = sum of:
            0.020074548 = weight(_text_:22 in 3698) [ClassicSimilarity], result of:
              0.020074548 = score(doc=3698,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.19345059 = fieldWeight in 3698, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3698)
          0.33333334 = coord(1/3)
      0.21428572 = coord(3/14)
    
    Abstract
    Although bibliographic classifications usually adopt a perspective different from that of object classifications, the two have obvious relationships. These become especially relevant when users are looking for knowledge scattered in a wide variety of forms and media. This is an increasingly common situation, as library catalogues now coexist in the global digital environment with catalogues of archives, of museums, of commercial products, and many other information resources. In order to make the subject content of all these resources searchable, a broader conception of classification is needed, that can be applied to an knowledge item, rather than only bibliographic materials. To illustrate this we take an example of the research on bagpipes in Northern Italian folklore. For this kind of research, the most effective search strategy is a cross-media one, looking for many different knowledge sources such as published documents, police archives, painting details, museum specimens, organizations devoted to related subjects. To provide satisfying results for this kind of search, the traditional disciplinary approach to classification is not sufficient. Tools are needed in which knowledge items dealing with a phenomenon of interest can be retrieved independently from the other topics with which it is combined, the disciplinary context, and the medium where it occurs. This can be made possible if the basic units of classification are taken to be the phenomena treated, as recommended in the León Manifesto, rather than disciplines or other aspect features. The concept of bagpipes should be retrievable and browsable in any combination with other phenomena, disciplines, media etc. Examples are given of information sources that could be managed by this freely-faceted technique of classification.
    Date
    22. 7.2010 20:40:08
  4. Gnoli, C.; Pusterla, L.; Bendiscioli, A.; Recinella, C.: Classification for collections mapping and query expansion (2016) 0.01
    0.006620335 = product of:
      0.046342343 = sum of:
        0.020922182 = weight(_text_:web in 3102) [ClassicSimilarity], result of:
          0.020922182 = score(doc=3102,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.21634221 = fieldWeight in 3102, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3102)
        0.025420163 = weight(_text_:retrieval in 3102) [ClassicSimilarity], result of:
          0.025420163 = score(doc=3102,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.2835858 = fieldWeight in 3102, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=3102)
      0.14285715 = coord(2/14)
    
    Abstract
    Dewey Decimal Classification has been used to organize materials owned by the three scientific libraries at the University of Pavia, and to allow integrated browsing in their union catalogue through SciGator, a home built web-based user interface. Classification acts as a bridge between collections located in different places and shelved according to different local schemes. Furthermore, cross-discipline relationships recorded in the system allow for expanded queries that increase recall. Advantages and possible improvements of such a system are discussed.
    Theme
    Klassifikationssysteme im Online-Retrieval
    Semantisches Umfeld in Indexierung u. Retrieval
  5. Gnoli, C.: Naturalism vs pragmatism in knowledge organization (2004) 0.00
    0.003790876 = product of:
      0.02653613 = sum of:
        0.00856136 = weight(_text_:information in 2663) [ClassicSimilarity], result of:
          0.00856136 = score(doc=2663,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16457605 = fieldWeight in 2663, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2663)
        0.01797477 = weight(_text_:retrieval in 2663) [ClassicSimilarity], result of:
          0.01797477 = score(doc=2663,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.20052543 = fieldWeight in 2663, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2663)
      0.14285715 = coord(2/14)
    
    Abstract
    Several authors remark that categories used in languages, including indexing ones, are affected by cultural biases, and do not reflect reality in an objective way. Hence knowledge organization would essentially be determined by pragmatic factors. However, human categories are connected with the structure of reality through biological bonds, and this allows for a naturalistic approach too. Naturalism has been adopted by Farradane in proposing relational categories, and by Dahlberg and the CRG in applying the theory of integrative levels to general classification schemes. The latter is especially relevant for possible developments in making the structure of schemes independent from disciplines, and in applying it to digital information retrieval.
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  6. Lardera, M.; Gnoli, C.; Rolandi, C.; Trzmielewski, M.: Developing SciGator, a DDC-based library browsing tool (2017) 0.00
    0.0037149414 = product of:
      0.026004588 = sum of:
        0.01797477 = weight(_text_:retrieval in 4144) [ClassicSimilarity], result of:
          0.01797477 = score(doc=4144,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.20052543 = fieldWeight in 4144, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4144)
        0.008029819 = product of:
          0.024089456 = sum of:
            0.024089456 = weight(_text_:22 in 4144) [ClassicSimilarity], result of:
              0.024089456 = score(doc=4144,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.23214069 = fieldWeight in 4144, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4144)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Content
    Beitrag eines Special Issue: ISKO-Italy: 8' Incontro ISKO Italia, Università di Bologna, 22 maggio 2017, Bologna, Italia.
    Theme
    Klassifikationssysteme im Online-Retrieval
  7. Szostak, R.; Gnoli, C.; López-Huertas, M.: Interdisciplinary knowledge organization 0.00
    0.0036333138 = product of:
      0.025433196 = sum of:
        0.019725623 = weight(_text_:web in 3804) [ClassicSimilarity], result of:
          0.019725623 = score(doc=3804,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.2039694 = fieldWeight in 3804, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=3804)
        0.005707573 = weight(_text_:information in 3804) [ClassicSimilarity], result of:
          0.005707573 = score(doc=3804,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.10971737 = fieldWeight in 3804, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=3804)
      0.14285715 = coord(2/14)
    
    Abstract
    -Existing classification systems serve interdisciplinary research and teaching poorly. -A novel approach to classification, grounded in the phenomena studied rather than disciplines, would serve interdisciplinary scholarship much better. It would also have advantages for disciplinary scholarship. The productivity of scholarship would thus be increased. -This novel approach is entirely feasible. Various concerns that might be raised can each be addressed. The broad outlines of what a new classification would look like are developed. -This new approach might serve as a complement to or a substitute for existing classification systems. -Domain analysis can and should be employed in the pursuit of a general classification. This will be particularly important with respect to interdisciplinary domains. -Though the impetus for this novel approach comes from interdisciplinarity, it is also better suited to the needs of the Semantic Web, and a digital environment more generally. Though the primary focus of the book is on classification systems, most chapters also address how the analysis could be extended to thesauri and ontologies. The possibility of a universal thesaurus is explored. The classification proposed has many of the advantages sought in ontologies for the Semantic Web. The book is therefore of interest to scholars working in these areas as well.
    LCSH
    Information technology / Management
    Subject
    Information technology / Management
  8. Gnoli, C.: Metadata about what? : distinguishing between ontic, epistemic, and documental dimensions in knowledge organization (2012) 0.00
    0.0035099457 = product of:
      0.02456962 = sum of:
        0.017435152 = weight(_text_:web in 323) [ClassicSimilarity], result of:
          0.017435152 = score(doc=323,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 323, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=323)
        0.0071344664 = weight(_text_:information in 323) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=323,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 323, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=323)
      0.14285715 = coord(2/14)
    
    Abstract
    The spread of many new media and formats is changing the scenario faced by knowledge organizers: as printed monographs are not the only standard form of knowledge carrier anymore, the traditional kind of knowledge organization (KO) systems based on academic disciplines is put into question. A sounder foundation can be provided by an analysis of the different dimensions concurring to form the content of any knowledge item-what Brian Vickery described as the steps "from the world to the classifier." The ultimate referents of documents are the phenomena of the real world, that can be ordered by ontology, the study of what exists. Phenomena coexist in subjects with the perspectives by which they are considered, pertaining to epistemology, and with the formal features of knowledge carriers, adding a further, pragmatic layer. All these dimensions can be accounted for in metadata, but are often done so in mixed ways, making indexes less rigorous and interoperable. For example, while facet analysis was originally developed for subject indexing, many "faceted" interfaces today mix subject facets with form facets, and schemes presented as "ontologies" for the "semantic Web" also code for non-semantic information. In bibliographic classifications, phenomena are often confused with the disciplines dealing with them, the latter being assumed to be the most useful starting point, for users will have either one or another perspective. A general citation order of dimensions- phenomena, perspective, carrier-is recommended, helping to concentrate most relevant information at the beginning of headings.
  9. Gnoli, C.: Boundaries and overlaps of disciplines in Bloch's methodology of historical knowledge (2014) 0.00
    0.002011945 = product of:
      0.014083615 = sum of:
        0.0060537956 = weight(_text_:information in 1414) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=1414,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 1414, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1414)
        0.008029819 = product of:
          0.024089456 = sum of:
            0.024089456 = weight(_text_:22 in 1414) [ClassicSimilarity], result of:
              0.024089456 = score(doc=1414,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.23214069 = fieldWeight in 1414, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1414)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    Marc Bloch's famous methodological essay, The Historian's Craft, contains many relevant considerations on knowledge organization. These have been selected and grouped into four main themes: terminology problems in history; principles for the organization of historical knowledge, with special reference to the genetic principle; sources of historical information, to be found not only in archives but also in very different media and contexts; and the nature and boundaries of history as a discipline. Analysis of them shows that knowledge organization is an important part of historians' work, and suggests that it can be especially fruitful when a cross-medial, interdisciplinary approach is adopted.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  10. Gnoli, C.: Classifying phenomena : part 4: themes and rhemes (2018) 0.00
    0.002011945 = product of:
      0.014083615 = sum of:
        0.0060537956 = weight(_text_:information in 4152) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=4152,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 4152, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4152)
        0.008029819 = product of:
          0.024089456 = sum of:
            0.024089456 = weight(_text_:22 in 4152) [ClassicSimilarity], result of:
              0.024089456 = score(doc=4152,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.23214069 = fieldWeight in 4152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4152)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    This is the fourth in a series of papers on classification based on phenomena instead of disciplines. Together with types, levels and facets that have been discussed in the previous parts, themes and rhemes are further structural components of such a classification. In a statement or in a longer document, a base theme and several particular themes can be identified. Base theme should be cited first in a classmark, followed by particular themes, each with its own facets. In some cases, rhemes can also be expressed, that is new information provided about a theme, converting an abstract statement ("wolves, affected by cervids") into a claim that some thing actually occurs ("wolves are affected by cervids"). In the Integrative Levels Classification rhemes can be expressed by special deictic classes, including those for actual specimens, anaphoras, unknown values, conjunctions and spans, whole universe, anthropocentric favoured classes, and favoured host classes. These features, together with rules for pronounciation, make a classification of phenomena a true language, that may be suitable for many uses.
    Date
    17. 2.2018 18:22:25
  11. Gnoli, C.: Fundamentos ontológicos de la organización del conocimiento : la teoría de los niveles integrativos aplicada al orden de cita (2011) 0.00
    0.0018364277 = product of:
      0.025709987 = sum of:
        0.025709987 = weight(_text_:wide in 2659) [ClassicSimilarity], result of:
          0.025709987 = score(doc=2659,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.1958137 = fieldWeight in 2659, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=2659)
      0.071428575 = coord(1/14)
    
    Abstract
    The field of knowledge organization (KO) can be described as composed of the four distinct but connected layers of theory, systems, representation, and application. This paper focuses on the relations between KO theory and KO systems. It is acknowledged how the structure of KO systems is the product of a mixture of ontological, epistemological, and pragmatical factors. However, different systems give different priorities to each factor. A more ontologically-oriented approach, though not offering quick solutions for any particular group of users, will produce systems of wide and long-lasting application as they are based on general, shareable principles. I take the case of the ontological theory of integrative levels, which has been considered as a useful source for general classifications for several decades, and is currently implemented in the Integrative Levels Classification system. The theory produces a sequence of main classes modelling a natural order between phenomena. This order has interesting effects also on other features of the system, like the citation order of concepts within compounds. As it has been shown by facet analytical theory, it is useful that citation order follow a principle of inversion, as compared to the order of the same concepts in the schedules. In the light of integrative levels theory, this principle also acquires an ontological meaning: phenomena of lower level should be cited first, as most often they act as specifications of higher-level ones. This ontological principle should be complemented by consideration of the epistemological treatment of phenomena: in case a lower-level phenomenon is the main theme, it can be promoted to the leading position in the compound subject heading. The integration of these principles is believed to produce optimal results in the ordering of knowledge contents.
  12. Binding, C.; Gnoli, C.; Tudhope, D.: Migrating a complex classification scheme to the semantic web : expressing the Integrative Levels Classification using SKOS RDF (2021) 0.00
    0.0017612164 = product of:
      0.02465703 = sum of:
        0.02465703 = weight(_text_:web in 600) [ClassicSimilarity], result of:
          0.02465703 = score(doc=600,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.25496176 = fieldWeight in 600, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=600)
      0.071428575 = coord(1/14)
    
    Theme
    Semantic Web
  13. Gnoli, C.; Santis, R. de; Pusterla, L.: Commerce, see also Rhetoric : cross-discipline relationships as authority data for enhanced retrieval (2015) 0.00
    0.001513105 = product of:
      0.021183468 = sum of:
        0.021183468 = weight(_text_:retrieval in 2299) [ClassicSimilarity], result of:
          0.021183468 = score(doc=2299,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.23632148 = fieldWeight in 2299, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2299)
      0.071428575 = coord(1/14)
    
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  14. Gnoli, C.: "Classic"vs. "freely" faceted classification (2007) 0.00
    0.0014944416 = product of:
      0.020922182 = sum of:
        0.020922182 = weight(_text_:web in 715) [ClassicSimilarity], result of:
          0.020922182 = score(doc=715,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.21634221 = fieldWeight in 715, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=715)
      0.071428575 = coord(1/14)
    
    Abstract
    Claudio Gnoli of the University of Pavia in Italy and Chair of ISKO Italy, explored the relative merits of classic 'faceted classification' (FC) and 'freely faceted classification' (FFC). In classic FC, the facets (and their relationships) which might be combined to express a compound subject, are restricted to those prescribed as inherent in the subject area. FC is therefore largely bounded by and restricted to a specific subject area. At the other extreme, free classification (as in the Web or folksonomies) allows the combination of values from multiple, disparate domains where the relationships among the elements are often indeterminate, and the semantics obscure. Claudio described how punched cards were an early example of free classification, and cited the coordination of dogs : postmen : bites as one where the absence of defined relationships made the semantics ambiguous
  15. Gnoli, C.: Categories and facets in integrative levels (2008) 0.00
    0.0014944416 = product of:
      0.020922182 = sum of:
        0.020922182 = weight(_text_:web in 1806) [ClassicSimilarity], result of:
          0.020922182 = score(doc=1806,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.21634221 = fieldWeight in 1806, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1806)
      0.071428575 = coord(1/14)
    
    Abstract
    Facets and general categories used in bibliographic classification have been based on a disciplinary organization of knowledge. However, facets and categories of phenomena independent from disciplines can be identified similarly. Phenomena can be classified according to a series of integrative levels (layers), which in turn can be grouped into the major strata of form, matter, life, mind, society and culture, agreeing with Nicolai Hartmann's ontology. Unlike a layer, a stratum is not constituted of elements of the lower ones; rather, it represents the formal pattern of the lower ones, like the horse hoof represents the shape of the steppe. Bibliographic categories can now be seen in the light of level theory: some categories are truly general, while others only appear at a given level, being the realization of a general category in the specific context of the level: these are the facets of that level. In the notation of the Integrative Level Classification project, categories and facets are represented by digits, and displayed in a Web interface with the help of colours.
  16. Almeida, P. de; Gnoli, C.: Fiction in a phenomenon-based classification (2021) 0.00
    0.0012839122 = product of:
      0.01797477 = sum of:
        0.01797477 = weight(_text_:retrieval in 712) [ClassicSimilarity], result of:
          0.01797477 = score(doc=712,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.20052543 = fieldWeight in 712, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=712)
      0.071428575 = coord(1/14)
    
    Abstract
    In traditional classification, fictional works are indexed only by their form, genre, and language, while their subject content is believed to be irrelevant. However, recent research suggests that this may not be the best approach. We tested indexing of a small sample of selected fictional works by Integrative Levels Classification (ILC2), a freely faceted system based on phenomena instead of disciplines and considered the structure of the resulting classmarks. Issues in the process of subject analysis, such as selection of relevant vs. non-relevant themes and citation order of relevant ones, are identified and discussed. Some phenomena that are covered in scholarly literature can also be identified as relevant themes in fictional literature and expressed in classmarks. This can allow for hybrid search and retrieval systems covering both fiction and nonfiction, which will result in better leveraging of the knowledge contained in fictional works.
  17. Gnoli, C.: ¬The meaning of facets in non-disciplinary classifications (2006) 0.00
    0.001245368 = product of:
      0.017435152 = sum of:
        0.017435152 = weight(_text_:web in 2291) [ClassicSimilarity], result of:
          0.017435152 = score(doc=2291,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 2291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2291)
      0.071428575 = coord(1/14)
    
    Abstract
    Disciplines are felt by many to be a constraint in classification, though they are a structuring principle of most bibliographic classification schemes. A non-disciplinary approach has been explored by the Classification Research Group, and research in this direction has been resumed recently by the Integrative Level Classification project. This paper focuses on the role and the definition of facets in non-disciplinary schemes. A generalized definition of facets is suggested with reference to predicate logic, allowing for having facets of phenomena as well as facets of disciplines. The general categories under which facets are often subsumed can be related ontologically to the evolutionary sequence of integrative levels. As a facet can be semantically connected with phenomena from any other part of a general scheme, its values can belong to three types, here called extra-defined foci (either special or general), and context-defined foci. Non-disciplinary freely faceted classification is being tested by applying it to little bibliographic samples stored in a MySQL database, and developing Web search interfaces to demonstrate possible uses of the described techniques.
  18. Gnoli, C.; Pullman, T.; Cousson, P.; Merli, G.; Szostak, R.: Representing the structural elements of a freely faceted classification (2011) 0.00
    0.001245368 = product of:
      0.017435152 = sum of:
        0.017435152 = weight(_text_:web in 4825) [ClassicSimilarity], result of:
          0.017435152 = score(doc=4825,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 4825, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4825)
      0.071428575 = coord(1/14)
    
    Abstract
    Freely faceted classifications allow for free combination of concepts across all knowledge domains, and for sorting of the resulting compound classmarks. Starting from work by the Classification Research Group, the Integrative Levels Classification (ILC) project has produced a first edition of a general freely faceted scheme. The system is managed as a MySQL database, and can be browsed through a Web interface. The ILC database structure provides a case for identifying and representing the structural elements of any freely faceted classification. These belong to both the notational and the verbal planes. Notational elements include: arrays, chains, deictics, facets, foci, place of definition of foci, examples of combinations, subclasses of a faceted class, groupings, related classes; verbal elements include: main caption, synonyms, descriptions, included terms, related terms, notes. Encoding of some of these elements in an international mark-up format like SKOS can be problematic, especially as this does not provide for faceted structures, although approximate SKOS equivalents are identified for most of them.
  19. Gnoli, C.; Ridi, C.R.: Unified Theory of Information, hypertextuality and levels of reality : without, within, and withal knowledge management (2014) 0.00
    0.001195129 = product of:
      0.016731806 = sum of:
        0.016731806 = weight(_text_:information in 1796) [ClassicSimilarity], result of:
          0.016731806 = score(doc=1796,freq=22.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.32163754 = fieldWeight in 1796, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1796)
      0.071428575 = coord(1/14)
    
    Abstract
    Purpose - The different senses of the term information in physical, biological and social interpretations, and the possibility of connections between them, are addressed. Special attention is paid to Hofkirchner's Unified Theory of Information (UTI), proposing an integrated view in which the notion of information gets additional properties as one moves from the physical to the biological and the social realms. The paper aims to discuss these issues. Design/methodology/approach - UTI is compared to other views of information, especially to two theories complementing several ideas of it: the theory of the hypertextual documental universe ("docuverse") and the theory of integrative levels of reality. Two alternative applications of the complex of these three theories are discussed: a pragmatical, hermeneutic one, and a more ambitious realist, ontological one. The latter can be extended until considering information ("bit") together with matter-energy ("it") as a fundamental element in the world. Problems and opportunities with each view are discussed. Findings - It is found that the common ground for all three theories is an evolutionary approach, paying attention to the phylogenetic connections between the different meanings of information. Research limitations/implications - Other theories of information, like Leontiev's, are not discussed as not especially related to the focus of the approach. Originality/value - The paper builds on previously unnoticed affinities between different families of information-related theories, showing how each of them can provide fruitful complements to the other ones in clarifying the nature of information.
    Theme
    Information
  20. Gnoli, C.: Mentefacts as a missing level in theory of information science (2018) 0.00
    6.446047E-4 = product of:
      0.009024465 = sum of:
        0.009024465 = weight(_text_:information in 4624) [ClassicSimilarity], result of:
          0.009024465 = score(doc=4624,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1734784 = fieldWeight in 4624, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=4624)
      0.071428575 = coord(1/14)
    
    Abstract
    Purpose The current debate between two theoretical approaches in library and information science and knowledge organization (KO), the cognitive one and the sociological one, is addressed in view of their possible integration in a more general model. The paper aims to discuss these issues. Design/methodology/approach Personal knowledge of individual users, as focused in the cognitive approach, and social production and use of knowledge, as focused in the sociological approach, are reconnected to the theory of levels of reality, particularly in the versions of Nicolai Hartmann and Karl R. Popper (three worlds). The notions of artefact and mentefact, as proposed in anthropological literature and applied in some KO systems, are also examined as further contributions to the generalized framework. Some criticisms to these models are reviewed and discussed. Findings Both the cognitive approach and the sociological approach, if taken in isolation, prove to be cases of philosophical monism as they emphasize a single level over the others. On the other hand, each of them can be considered as a component of a pluralist ontology and epistemology, where individual minds and social communities are but two successive levels in knowledge production and use, and are followed by a further level of "objectivated spirit"; this can in turn be analyzed into artefacts and mentefacts. While all these levels are relevant to information science, mentefacts and their properties are its most peculiar objects of study, which make it distinct from such other disciplines as psychology and sociology. Originality/value This analysis shows how existing approaches can benefit from additional notions contributed by levels theory, to develop more complete and accurate models of information and knowledge phenomena.
    Content
    Vgl.: https://www.emeraldinsight.com/doi/full/10.1108/JD-04-2018-0054. Vgl. auch den Folgeartikel von B. Hjoerland: The foundation of information science: one world or three? A discussion of Gnoli (2018). In: Journal of documentation. 74(2019) no.1, S.164-171.