Search (9 results, page 1 of 1)

  • × author_ss:"Gnoli, C."
  • × year_i:[2000 TO 2010}
  1. Gnoli, C.; Mei, H.: Freely faceted classification for Web-based information retrieval (2006) 0.01
    0.0143090235 = product of:
      0.06677544 = sum of:
        0.029588435 = weight(_text_:web in 534) [ClassicSimilarity], result of:
          0.029588435 = score(doc=534,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.3059541 = fieldWeight in 534, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=534)
        0.0060537956 = weight(_text_:information in 534) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=534,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 534, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=534)
        0.031133216 = weight(_text_:retrieval in 534) [ClassicSimilarity], result of:
          0.031133216 = score(doc=534,freq=6.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.34732026 = fieldWeight in 534, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=534)
      0.21428572 = coord(3/14)
    
    Abstract
    In free classification, each concept is expressed by a constant notation, and classmarks are formed by free combinations of them, allowing the retrieval of records from a database by searching any of the component concepts. A refinement of free classification is freely faceted classification, where notation can include facets, expressing the kind of relations held between the concepts. The Integrative Level Classification project aims at testing free and freely faceted classification by applying them to small bibliographical samples in various domains. A sample, called the Dandelion Bibliography of Facet Analysis, is described here. Experience was gained using this system to classify 300 specialized papers dealing with facet analysis itself recorded on a MySQL database and building a Web interface exploiting freely faceted notation. The interface is written in PHP and uses string functions to process the queries and to yield relevant results selected and ordered according to the principles of integrative levels.
    Theme
    Klassifikationssysteme im Online-Retrieval
  2. Gnoli, C.: Naturalism vs pragmatism in knowledge organization (2004) 0.00
    0.003790876 = product of:
      0.02653613 = sum of:
        0.00856136 = weight(_text_:information in 2663) [ClassicSimilarity], result of:
          0.00856136 = score(doc=2663,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16457605 = fieldWeight in 2663, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2663)
        0.01797477 = weight(_text_:retrieval in 2663) [ClassicSimilarity], result of:
          0.01797477 = score(doc=2663,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.20052543 = fieldWeight in 2663, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2663)
      0.14285715 = coord(2/14)
    
    Abstract
    Several authors remark that categories used in languages, including indexing ones, are affected by cultural biases, and do not reflect reality in an objective way. Hence knowledge organization would essentially be determined by pragmatic factors. However, human categories are connected with the structure of reality through biological bonds, and this allows for a naturalistic approach too. Naturalism has been adopted by Farradane in proposing relational categories, and by Dahlberg and the CRG in applying the theory of integrative levels to general classification schemes. The latter is especially relevant for possible developments in making the structure of schemes independent from disciplines, and in applying it to digital information retrieval.
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  3. Gnoli, C.: "Classic"vs. "freely" faceted classification (2007) 0.00
    0.0014944416 = product of:
      0.020922182 = sum of:
        0.020922182 = weight(_text_:web in 715) [ClassicSimilarity], result of:
          0.020922182 = score(doc=715,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.21634221 = fieldWeight in 715, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=715)
      0.071428575 = coord(1/14)
    
    Abstract
    Claudio Gnoli of the University of Pavia in Italy and Chair of ISKO Italy, explored the relative merits of classic 'faceted classification' (FC) and 'freely faceted classification' (FFC). In classic FC, the facets (and their relationships) which might be combined to express a compound subject, are restricted to those prescribed as inherent in the subject area. FC is therefore largely bounded by and restricted to a specific subject area. At the other extreme, free classification (as in the Web or folksonomies) allows the combination of values from multiple, disparate domains where the relationships among the elements are often indeterminate, and the semantics obscure. Claudio described how punched cards were an early example of free classification, and cited the coordination of dogs : postmen : bites as one where the absence of defined relationships made the semantics ambiguous
  4. Gnoli, C.: Categories and facets in integrative levels (2008) 0.00
    0.0014944416 = product of:
      0.020922182 = sum of:
        0.020922182 = weight(_text_:web in 1806) [ClassicSimilarity], result of:
          0.020922182 = score(doc=1806,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.21634221 = fieldWeight in 1806, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1806)
      0.071428575 = coord(1/14)
    
    Abstract
    Facets and general categories used in bibliographic classification have been based on a disciplinary organization of knowledge. However, facets and categories of phenomena independent from disciplines can be identified similarly. Phenomena can be classified according to a series of integrative levels (layers), which in turn can be grouped into the major strata of form, matter, life, mind, society and culture, agreeing with Nicolai Hartmann's ontology. Unlike a layer, a stratum is not constituted of elements of the lower ones; rather, it represents the formal pattern of the lower ones, like the horse hoof represents the shape of the steppe. Bibliographic categories can now be seen in the light of level theory: some categories are truly general, while others only appear at a given level, being the realization of a general category in the specific context of the level: these are the facets of that level. In the notation of the Integrative Level Classification project, categories and facets are represented by digits, and displayed in a Web interface with the help of colours.
  5. Gnoli, C.: ¬The meaning of facets in non-disciplinary classifications (2006) 0.00
    0.001245368 = product of:
      0.017435152 = sum of:
        0.017435152 = weight(_text_:web in 2291) [ClassicSimilarity], result of:
          0.017435152 = score(doc=2291,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 2291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2291)
      0.071428575 = coord(1/14)
    
    Abstract
    Disciplines are felt by many to be a constraint in classification, though they are a structuring principle of most bibliographic classification schemes. A non-disciplinary approach has been explored by the Classification Research Group, and research in this direction has been resumed recently by the Integrative Level Classification project. This paper focuses on the role and the definition of facets in non-disciplinary schemes. A generalized definition of facets is suggested with reference to predicate logic, allowing for having facets of phenomena as well as facets of disciplines. The general categories under which facets are often subsumed can be related ontologically to the evolutionary sequence of integrative levels. As a facet can be semantically connected with phenomena from any other part of a general scheme, its values can belong to three types, here called extra-defined foci (either special or general), and context-defined foci. Non-disciplinary freely faceted classification is being tested by applying it to little bibliographic samples stored in a MySQL database, and developing Web search interfaces to demonstrate possible uses of the described techniques.
  6. Gnoli, C.: Ten long-term research questions in knowledge organization (2008) 0.00
    4.32414E-4 = product of:
      0.0060537956 = sum of:
        0.0060537956 = weight(_text_:information in 2134) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=2134,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 2134, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2134)
      0.071428575 = coord(1/14)
    
    Abstract
    Research can benefit by periodical consideration of its status in a long-term perspective. In knowledge organization (KO), a number of basic questions remain to be addressed in the 21st century. Ten of them are identified and synthetically discussed: (1) Can KO principles be extended to a broader scope, including hypertexts, multimedia, museum objects, and monuments? (2) Can the two basic approaches, ontological and epistemological, be reconciled? (3) Can any ontological foundation of KO be identified? (4) Should disciplines continue to be the structural base of KO? (5) How can viewpoint warrant be respected? (6) How can KO be adapted to local collection needs? (7) How can KO deal with changes in knowledge? (8) How can KO systems represent all the dimensions listed above? (9) How can software and formats be improved to better serve these needs? (10) Who should do KO: information professionals, authors or readers?
  7. Gnoli, C.: ISKO News (2007) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 1092) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=1092,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 1092, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1092)
      0.071428575 = coord(1/14)
    
    Abstract
    Bericht über: Levels of Reality, Seminar, Bolzano (Bozen) Italy, 26-28 September 2007: Ontologies, the knowledge organization systems now widely used in knowledge management applications, take their name from a branch of philosophy. Philosophical ontology deals with the kinds and the properties of what exists, and with how they can be described by categories like entity, attribute, or process. Readers familiar with facet analysis will notice some analogy with the "fundamental categories" of faceted classifications, and this resemblance is not accidental. Indeed, knowledge organization systems use conceptual structures that can be variously reconnected with the categories of ontology. Though having more practical purposes, the ontologies and classifications of information science can benefit of those of philosophy.
  8. Gnoli, C.: Progress in synthetic classification : towards unique definition of concepts (2007) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 2527) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=2527,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 2527, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2527)
      0.071428575 = coord(1/14)
    
    Content
    Beitrag anlässlich: Proceedings of the International Seminar "Information access for the global community", 4-5 June 2007, The Hague. - Vgl.: http://www.udcc.org/seminar07/presentations/gnoli.pdf.
  9. Gnoli, C.: Knowledge organization in Italy (2004) 0.00
    3.5672335E-4 = product of:
      0.0049941265 = sum of:
        0.0049941265 = weight(_text_:information in 3750) [ClassicSimilarity], result of:
          0.0049941265 = score(doc=3750,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.0960027 = fieldWeight in 3750, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3750)
      0.071428575 = coord(1/14)
    
    Abstract
    As an Italian chapter of ISKO has recently been reorganized, I was kindly invited to Write a short report an current KO activities in our country. So, in the following, I will briefly illustrate the local situation of the various kinds of knowledge organization systems, as well as related developments and activities. I am grateful to Paola Capitani, Emanuela Casson, Michele Santoro, and Lorena Zuccolo for providing useful information to be included here.
    Content
    Terminology and thesauri BNCF is also involved in a working group collecting information an online terminological resources <http://wwwindire.it/websemantico>. The group is headed by Paola Capitani, and has organized several roundtables an terminology in special domains, such as economy, fashion, law, and education. Thesauri are generally poorly known and used in Italy, although there are significant exceptions: among faceted systems we can mention the "Thesauro italiano di sociologia," published in 1999, and the "Thesaurus regionale toscano," as well as specialized an social sciences including a general outline, available both in print (1996) and online <http:// www regione.toscana.it/ius/ns-thesaurus/>. Classification systems The Dewey Decimal Classification (DDC) is by far the most widespread classification scheme in Italian libraries. A working group, coordinated by Luigi Crocetti, regularly translates the new editions of DDC manuals, and gives refresher courses an it for librarians. BNCF makes DDC numbers for bibliographical records both of its own catalogue, and of the national bibliography (= Bibliografia nazionale italiana: BNI), which is available for other libraries in a CD-ROM edition. A very large number of public libraries use DDC for their shelfmarks, so that users are accustomed to it. This situation is different from other European countries, e.g., Spain where UDC is widespread."