Search (3 results, page 1 of 1)

  • × theme_ss:"Automatisches Indexieren"
  • × theme_ss:"Automatisches Abstracting"
  1. Salton, G.; Allan, J.; Buckley, C.; Singhal, A.: Automatic analysis, theme generation, and summarization of machine readable texts (1994) 0.01
    0.005721087 = product of:
      0.04004761 = sum of:
        0.010089659 = weight(_text_:information in 1949) [ClassicSimilarity], result of:
          0.010089659 = score(doc=1949,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.19395474 = fieldWeight in 1949, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=1949)
        0.029957948 = weight(_text_:retrieval in 1949) [ClassicSimilarity], result of:
          0.029957948 = score(doc=1949,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.33420905 = fieldWeight in 1949, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.078125 = fieldNorm(doc=1949)
      0.14285715 = coord(2/14)
    
    Footnote
    Wiederabgedruckt in: Readings in information retrieval. Ed.: K. Sparck Jones u. P. Willett. San Francisco: Morgan Kaufmann 1997. S.478-483.
  2. Jones, S.; Paynter, G.W.: Automatic extractionof document keyphrases for use in digital libraries : evaluations and applications (2002) 0.00
    0.0028605436 = product of:
      0.020023804 = sum of:
        0.0050448296 = weight(_text_:information in 601) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=601,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 601, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=601)
        0.014978974 = weight(_text_:retrieval in 601) [ClassicSimilarity], result of:
          0.014978974 = score(doc=601,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.16710453 = fieldWeight in 601, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=601)
      0.14285715 = coord(2/14)
    
    Abstract
    This article describes an evaluation of the Kea automatic keyphrase extraction algorithm. Document keyphrases are conventionally used as concise descriptors of document content, and are increasingly used in novel ways, including document clustering, searching and browsing interfaces, and retrieval engines. However, it is costly and time consuming to manually assign keyphrases to documents, motivating the development of tools that automatically perform this function. Previous studies have evaluated Kea's performance by measuring its ability to identify author keywords and keyphrases, but this methodology has a number of well-known limitations. The results presented in this article are based on evaluations by human assessors of the quality and appropriateness of Kea keyphrases. The results indicate that, in general, Kea produces keyphrases that are rated positively by human assessors. However, typical Kea settings can degrade performance, particularly those relating to keyphrase length and domain specificity. We found that for some settings, Kea's performance is better than that of similar systems, and that Kea's ranking of extracted keyphrases is effective. We also determined that author-specified keyphrases appear to exhibit an inherent ranking, and that they are rated highly and therefore suitable for use in training and evaluation of automatic keyphrasing systems.
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.8, S.653-677
  3. Wang, S.; Koopman, R.: Embed first, then predict (2019) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 5400) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=5400,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 5400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5400)
      0.071428575 = coord(1/14)
    
    Footnote
    Beitrag eines Special Issue: Research Information Systems and Science Classifications; including papers from "Trajectories for Research: Fathoming the Promise of the NARCIS Classification," 27-28 September 2018, The Hague, The Netherlands.