Search (3 results, page 1 of 1)

  • × theme_ss:"Computerlinguistik"
  • × theme_ss:"Informetrie"
  1. Levin, M.; Krawczyk, S.; Bethard, S.; Jurafsky, D.: Citation-based bootstrapping for large-scale author disambiguation (2012) 0.00
    0.003211426 = product of:
      0.022479981 = sum of:
        0.017435152 = weight(_text_:web in 246) [ClassicSimilarity], result of:
          0.017435152 = score(doc=246,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 246, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=246)
        0.0050448296 = weight(_text_:information in 246) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=246,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 246, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=246)
      0.14285715 = coord(2/14)
    
    Abstract
    We present a new, two-stage, self-supervised algorithm for author disambiguation in large bibliographic databases. In the first "bootstrap" stage, a collection of high-precision features is used to bootstrap a training set with positive and negative examples of coreferring authors. A supervised feature-based classifier is then trained on the bootstrap clusters and used to cluster the authors in a larger unlabeled dataset. Our self-supervised approach shares the advantages of unsupervised approaches (no need for expensive hand labels) as well as supervised approaches (a rich set of features that can be discriminatively trained). The algorithm disambiguates 54,000,000 author instances in Thomson Reuters' Web of Knowledge with B3 F1 of.807. We analyze parameters and features, particularly those from citation networks, which have not been deeply investigated in author disambiguation. The most important citation feature is self-citation, which can be approximated without expensive extraction of the full network. For the supervised stage, the minor improvement due to other citation features (increasing F1 from.748 to.767) suggests they may not be worth the trouble of extracting from databases that don't already have them. A lean feature set without expensive abstract and title features performs 130 times faster with about equal F1.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.5, S.1030-1047
  2. Moohebat, M.; Raj, R.G.; Kareem, S.B.A.; Thorleuchter, D.: Identifying ISI-indexed articles by their lexical usage : a text analysis approach (2015) 0.00
    6.115257E-4 = product of:
      0.00856136 = sum of:
        0.00856136 = weight(_text_:information in 1664) [ClassicSimilarity], result of:
          0.00856136 = score(doc=1664,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16457605 = fieldWeight in 1664, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1664)
      0.071428575 = coord(1/14)
    
    Abstract
    This research creates an architecture for investigating the existence of probable lexical divergences between articles, categorized as Institute for Scientific Information (ISI) and non-ISI, and consequently, if such a difference is discovered, to propose the best available classification method. Based on a collection of ISI- and non-ISI-indexed articles in the areas of business and computer science, three classification models are trained. A sensitivity analysis is applied to demonstrate the impact of words in different syntactical forms on the classification decision. The results demonstrate that the lexical domains of ISI and non-ISI articles are distinguishable by machine learning techniques. Our findings indicate that the support vector machine identifies ISI-indexed articles in both disciplines with higher precision than do the Naïve Bayesian and K-Nearest Neighbors techniques.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.3, S.501-511
  3. Radev, D.R.; Joseph, M.T.; Gibson, B.; Muthukrishnan, P.: ¬A bibliometric and network analysis of the field of computational linguistics (2016) 0.00
    5.04483E-4 = product of:
      0.0070627616 = sum of:
        0.0070627616 = weight(_text_:information in 2764) [ClassicSimilarity], result of:
          0.0070627616 = score(doc=2764,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13576832 = fieldWeight in 2764, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2764)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.3, S.683-706