Search (497 results, page 25 of 25)

  • × theme_ss:"Wissensrepräsentation"
  1. Beierle, C.; Kern-Isberner, G.: Methoden wissensbasierter Systeme : Grundlagen, Algorithmen, Anwendungen (2008) 0.00
    4.076838E-4 = product of:
      0.005707573 = sum of:
        0.005707573 = weight(_text_:information in 4622) [ClassicSimilarity], result of:
          0.005707573 = score(doc=4622,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.10971737 = fieldWeight in 4622, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=4622)
      0.071428575 = coord(1/14)
    
    LCSH
    Information theory
    Subject
    Information theory
  2. Semantic knowledge and semantic representations (1995) 0.00
    4.076838E-4 = product of:
      0.005707573 = sum of:
        0.005707573 = weight(_text_:information in 3568) [ClassicSimilarity], result of:
          0.005707573 = score(doc=3568,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.10971737 = fieldWeight in 3568, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=3568)
      0.071428575 = coord(1/14)
    
    LCSH
    Human information processing
    Subject
    Human information processing
  3. Endres-Niggemeyer, B.; Jauris-Heipke, S.; Pinsky, S.M.; Ulbricht, U.: Wissen gewinnen durch Wissen : Ontologiebasierte Informationsextraktion (2006) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 6016) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=6016,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 6016, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6016)
      0.071428575 = coord(1/14)
    
    Source
    Information - Wissenschaft und Praxis. 57(2006) H.6/7, S.301-308
  4. Forscher erschließen Inhalte von Wiki-Webseiten (2006) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 55) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=55,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 55, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=55)
      0.071428575 = coord(1/14)
    
    Series
    Foyer: Information digital
  5. Frâncu, V.: Subjects in FRBR and poly-hierarchical thesauri as possible knowledge organization tools (2006) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 259) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=259,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 259, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=259)
      0.071428575 = coord(1/14)
    
    Abstract
    The paper presents the possibilities offered by poly-hierarchical conceptual structures as knowledge organizers, starting from the FRBR entity-relation model. Of the ten entities defined in the FRBR model, the first six, the bibliographic entities plus those representing the intellectual responsibilities, are clearly described by their attributes. Unlike those the other four representing subjects in their own right: concepts, objects, events and places only have the term for the entity as attribute. Subjects have to be more extensively treated in a revised version of the FRBR model, with particular attention for the semantic and syntactic relations between concepts representing subjects themselves and between these concepts and terms used in indexing. The conceptual model of poly-hierarchical thesauri is regarded as an entity-relation model, one capable to accommodate both conceptually and relationally subjects in the bibliographic universe. Polyhierarchical thesauri are considered as frameworks or templates meant to enhance knowledge representation and to support information searching.
  6. Oliveira Lima, G.A.B. de: Hypertext model - HTXM : a model for hypertext organization of documents (2008) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 2504) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=2504,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 2504, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2504)
      0.071428575 = coord(1/14)
    
    Content
    This article reports an applied research on the construction and implementation of a semantically structured conceptual prototype to help in the organization and representation of human knowledge in hypertextual systems, based on four references: the Facet Analysis Theory (FAT), the Conceptual Map Theory, semantic structure of hypertext links and the technical guidelines of the Associacao Brasileira de Normas Técnicas (ABNT). This prototype, called Modelo Hipertextual para Organizacao de Documentos (MHTX) - Model For Hypertext Organization of Documents HTXM - is formed by a semantic structure called Conceptual Map (CM) and Expanded Summary (ES), the latter based on the summary of a selected doctoral thesis to which access points were designed. In the future, this prototype maybe used to implement a digital libraty called BTDECI - UFMG (Biblioteca de Teses e Dissertacöes do Programa de Pós-Graduacao da Escola de Ciência da Informacao da UFMG - Library of Theses and Dissertations of the Graduate Program of School of Information Science of Universidade Federal de Minas Gerais).
  7. Iglesias, E.; Hye, S.S.: Topic maps and the ILS : an undelivered promise (2008) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 2542) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=2542,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 2542, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2542)
      0.071428575 = coord(1/14)
    
    Footnote
    Beitrag in einem Themenheft "Information organization futures"
  8. Jorge-Botana, G.; León, J.A.; Olmos, R.; Hassan-Montero, Y.: Visualizing polysemy using LSA and the predication algorithm (2010) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 3696) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=3696,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 3696, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3696)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.8, S.1706-1724
  9. Román, J.H.; Hulin, K.J.; Collins, L.M.; Powell, J.E.: Entity disambiguation using semantic networks (2012) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 461) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=461,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 461, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=461)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.10, S.2087-2099
  10. Solskinnsbakk, G.; Gulla, J.A.; Haderlein, V.; Myrseth, P.; Cerrato, O.: Quality of hierarchies in ontologies and folksonomies (2012) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 1034) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=1034,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 1034, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1034)
      0.071428575 = coord(1/14)
    
    Abstract
    Ontologies have been a hot research topic for the recent decade and have been used for many applications such as information integration, semantic search, knowledge management, etc. Manual engineering of ontologies is a costly process and automatic ontology engineering lacks in precision. Folksonomies have recently emerged as another hot research topic and several research efforts have been made to extract lightweight ontologies automatically from folksonomy data. Due to the high cost of manual ontology engineering and the lack of precision in automatic ontology engineering it is important that we are able to evaluate the structure of the ontology. Detection of problems with the suggested ontology at an early stage can, especially for manually engineered ontologies, be cost saving. In this paper we present an approach to evaluate the quality of hierarchical relations in ontologies and folksonomy based structures. The approach is based on constructing shallow semantic representations of the ontology concepts and folksonomy tags. We specify four hypotheses regarding the semantic representations and different quality aspects of the hierarchical relations and perform an evaluation on two different data sets. The results of the evaluation confirm our hypotheses.
  11. Kleineberg, M.: ¬The blind men and the elephant : towards an organization of epistemic contexts (2013) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 1074) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=1074,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 1074, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1074)
      0.071428575 = coord(1/14)
    
    Footnote
    Part of a section "Papers from the 13th Meeting of the German ISKO "Theory, Information, and Organization of Knowledge," Potsdam, 19-20 March 2013"
  12. Frické, M.: Logical division (2016) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 3183) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=3183,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 3183, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3183)
      0.071428575 = coord(1/14)
    
    Abstract
    Division is obviously important to Knowledge Organization. Typically, an organizational infrastructure might acknowledge three types of connecting relationships: class hierarchies, where some classes are subclasses of others, partitive hierarchies, where some items are parts of others, and instantiation, where some items are members of some classes (see Z39.19 ANSI/NISO 2005 as an example). The first two of these involve division (the third, instantiation, does not involve division). Logical division would usually be a part of hierarchical classification systems, which, in turn, are central to shelving in libraries, to subject classification schemes, to controlled vocabularies, and to thesauri. Partitive hierarchies, and partitive division, are often essential to controlled vocabularies, thesauri, and subject tagging systems. Partitive hierarchies also relate to the bearers of information; for example, a journal would typically have its component articles as parts and, in turn, they might have sections as their parts, and, of course, components might be arrived at by partitive division (see Tillett 2009 as an illustration). Finally, verbal division, disambiguating homographs, is basic to controlled vocabularies. Thus Division is a broad and relevant topic. This article, though, is going to focus on Logical Division.
  13. Mainzer, K.: ¬The emergence of self-conscious systems : from symbolic AI to embodied robotics (2014) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 3398) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=3398,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 3398, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3398)
      0.071428575 = coord(1/14)
    
    Source
    Philosophy, computing and information science. Eds.: R. Hagengruber u. U.V. Riss
  14. Jansen, L.: Four rules for classifying social entities (2014) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 3409) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=3409,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 3409, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3409)
      0.071428575 = coord(1/14)
    
    Source
    Philosophy, computing and information science. Eds.: R. Hagengruber u. U.V. Riss
  15. Wen, B.; Horlings, E.; Zouwen, M. van der; Besselaar, P. van den: Mapping science through bibliometric triangulation : an experimental approach applied to water research (2017) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 3437) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=3437,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 3437, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3437)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.3, S.724-738
  16. Rolland-Thomas, P.: Thesaural codes : an appraisal of their use in the Library of Congress Subject Headings (1993) 0.00
    2.8827597E-4 = product of:
      0.0040358636 = sum of:
        0.0040358636 = weight(_text_:information in 549) [ClassicSimilarity], result of:
          0.0040358636 = score(doc=549,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.0775819 = fieldWeight in 549, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=549)
      0.071428575 = coord(1/14)
    
    Abstract
    LCSH is known as such since 1975. It always has created headings to serve the LC collections instead of a theoretical basis. It started to replace cross reference codes by thesaural codes in 1986, in a mechanical fashion. It was in no way transformed into a thesaurus. Its encyclopedic coverage, its pre-coordinate concepts make it substantially distinct, considering that thesauri usually map a restricted field of knowledge and use uniterms. The questions raised are whether the new symbols comply with thesaurus standards and if they are true to one or to several models. Explanations and definitions from other lists of subject headings and thesauri, literature in the field of classification and subject indexing will provide some answers. For instance, see refers from a subject heading not used to another or others used. Exceptionally it will lead from a specific term to a more general one. Some equate a see reference with the equivalence relationship. Such relationships are pointed by USE in LCSH. See also references are made from the broader subject to narrower parts of it and also between associated subjects. They suggest lateral or vertical connexions as well as reciprocal relationships. They serve a coordination purpose for some, lay down a methodical search itinerary for others. Since their inception in the 1950's thesauri have been devised for indexing and retrieving information in the fields of science and technology. Eventually they attended to a number of social sciences and humanities. Research derived from thesauri was voluminous. Numerous guidelines are designed. They did not discriminate between the "hard" sciences and the social sciences. RT relationships are widely but diversely used in numerous controlled vocabularies. LCSH's aim is to achieve a list almost free of RT and SA references. It thus restricts relationships to BT/NT, USE and UF. This raises the question as to whether all fields of knowledge can "fit" in the Procrustean bed of RT/NT, i.e., genus/species relationships. Standard codes were devised. It was soon realized that BT/NT, well suited to the genus/species couple could not signal a whole-part relationship. In LCSH, BT and NT function as reciprocals, the whole-part relationship is taken into account by ISO. It is amply elaborated upon by authors. The part-whole connexion is sometimes studied apart. The decision to replace cross reference codes was an improvement. Relations can now be distinguished through the distinct needs of numerous fields of knowledge are not attended to. Topic inclusion, and topic-subtopic, could provide the missing link where genus/species or whole/part are inadequate. Distinct codes, BT/NT and whole/part, should be provided. Sorting relationships with mechanical means can only lead to confusion.
  17. Teutsch, K.: ¬Die Welt ist doch eine Scheibe : Google-Herausforderer eyePlorer (2009) 0.00
    1.8017249E-4 = product of:
      0.0025224148 = sum of:
        0.0025224148 = weight(_text_:information in 2678) [ClassicSimilarity], result of:
          0.0025224148 = score(doc=2678,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.048488684 = fieldWeight in 2678, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2678)
      0.071428575 = coord(1/14)
    
    Content
    Eine neue visuelle Ordnung Martin Hirsch ist der Enkel des Nobelpreisträgers Werner Heisenberg. Außerdem ist er Hirnforscher und beschäftigt sich seit Jahren mit der Frage: Was tut mein Kopf eigentlich, während ich hirnforsche? Ralf von Grafenstein ist Marketingexperte und spezialisiert auf Dienstleistungen im Internet. Zusammen haben sie also am 1. Dezember 2008 eine Firma in Berlin gegründet, deren Heiliger Gral besagte Scheibe ist, auf der - das ist die Idee - bald die ganze Welt, die Internetwelt zumindest, Platz finden soll. Die Scheibe heißt eyePlorer, was sich als Aufforderung an ihre Nutzer versteht. Die sollen auf einer neuartigen, eben scheibenförmigen Plattform die unermesslichen Datensätze des Internets in eine neue visuelle Ordnung bringen. Der Schlüssel dafür, da waren sich Hirsch und von Grafenstein sicher, liegt in der Hirnforschung, denn warum nicht die assoziativen Fähigkeiten des Menschen auf Suchmaschinen übertragen? Anbieter wie Google lassen von solchen Ansätzen bislang die Finger. Hier setzt man dafür auf Volltextprogramme, also sprachbegabte Systeme, die letztlich aber, genau wie die Schlagwortsuche, nur zu opak gerankten Linksammlungen führen. Weiter als auf Seite zwei des Suchergebnisses wagt sich der träge Nutzer meistens nicht vor. Weil sie niemals wahrgenommen wird, fällt eine Menge möglicherweise kostbare Information unter den Tisch.

Years

Languages

  • e 395
  • d 92
  • pt 3
  • f 1
  • sp 1
  • More… Less…

Types

  • a 347
  • el 133
  • m 35
  • x 28
  • n 15
  • s 14
  • r 7
  • p 4
  • A 1
  • EL 1
  • More… Less…

Subjects

Classifications