Search (184 results, page 1 of 10)

  • × year_i:[2000 TO 2010}
  • × theme_ss:"Semantic Web"
  1. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.28
    0.27689838 = product of:
      0.48457217 = sum of:
        0.031377077 = product of:
          0.094131224 = sum of:
            0.094131224 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.094131224 = score(doc=701,freq=2.0), product of:
                0.25123185 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.029633347 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.019725623 = weight(_text_:web in 701) [ClassicSimilarity], result of:
          0.019725623 = score(doc=701,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.2039694 = fieldWeight in 701, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.094131224 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.094131224 = score(doc=701,freq=2.0), product of:
            0.25123185 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.029633347 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.094131224 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.094131224 = score(doc=701,freq=2.0), product of:
            0.25123185 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.029633347 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.01210759 = weight(_text_:information in 701) [ClassicSimilarity], result of:
          0.01210759 = score(doc=701,freq=18.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.23274568 = fieldWeight in 701, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.044836953 = weight(_text_:retrieval in 701) [ClassicSimilarity], result of:
          0.044836953 = score(doc=701,freq=28.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.5001983 = fieldWeight in 701, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.094131224 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.094131224 = score(doc=701,freq=2.0), product of:
            0.25123185 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.029633347 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.094131224 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.094131224 = score(doc=701,freq=2.0), product of:
            0.25123185 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.029633347 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.5714286 = coord(8/14)
    
    Abstract
    By the explosion of possibilities for a ubiquitous content production, the information overload problem reaches the level of complexity which cannot be managed by traditional modelling approaches anymore. Due to their pure syntactical nature traditional information retrieval approaches did not succeed in treating content itself (i.e. its meaning, and not its representation). This leads to a very low usefulness of the results of a retrieval process for a user's task at hand. In the last ten years ontologies have been emerged from an interesting conceptualisation paradigm to a very promising (semantic) modelling technology, especially in the context of the Semantic Web. From the information retrieval point of view, ontologies enable a machine-understandable form of content description, such that the retrieval process can be driven by the meaning of the content. However, the very ambiguous nature of the retrieval process in which a user, due to the unfamiliarity with the underlying repository and/or query syntax, just approximates his information need in a query, implies a necessity to include the user in the retrieval process more actively in order to close the gap between the meaning of the content and the meaning of a user's query (i.e. his information need). This thesis lays foundation for such an ontology-based interactive retrieval process, in which the retrieval system interacts with a user in order to conceptually interpret the meaning of his query, whereas the underlying domain ontology drives the conceptualisation process. In that way the retrieval process evolves from a query evaluation process into a highly interactive cooperation between a user and the retrieval system, in which the system tries to anticipate the user's information need and to deliver the relevant content proactively. Moreover, the notion of content relevance for a user's query evolves from a content dependent artefact to the multidimensional context-dependent structure, strongly influenced by the user's preferences. This cooperation process is realized as the so-called Librarian Agent Query Refinement Process. In order to clarify the impact of an ontology on the retrieval process (regarding its complexity and quality), a set of methods and tools for different levels of content and query formalisation is developed, ranging from pure ontology-based inferencing to keyword-based querying in which semantics automatically emerges from the results. Our evaluation studies have shown that the possibilities to conceptualize a user's information need in the right manner and to interpret the retrieval results accordingly are key issues for realizing much more meaningful information retrieval systems.
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
    Theme
    Semantic Web
  2. Faaborg, A.; Lagoze, C.: Semantic browsing (2003) 0.11
    0.11253681 = product of:
      0.31510305 = sum of:
        0.05979012 = weight(_text_:web in 1026) [ClassicSimilarity], result of:
          0.05979012 = score(doc=1026,freq=12.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.6182494 = fieldWeight in 1026, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1026)
        0.0070627616 = weight(_text_:information in 1026) [ClassicSimilarity], result of:
          0.0070627616 = score(doc=1026,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13576832 = fieldWeight in 1026, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1026)
        0.020970564 = weight(_text_:retrieval in 1026) [ClassicSimilarity], result of:
          0.020970564 = score(doc=1026,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.23394634 = fieldWeight in 1026, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1026)
        0.21791148 = weight(_text_:trondheim in 1026) [ClassicSimilarity], result of:
          0.21791148 = score(doc=1026,freq=2.0), product of:
            0.2889541 = queryWeight, product of:
              9.7509775 = idf(docFreq=6, maxDocs=44218)
              0.029633347 = queryNorm
            0.7541387 = fieldWeight in 1026, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              9.7509775 = idf(docFreq=6, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1026)
        0.009368123 = product of:
          0.028104367 = sum of:
            0.028104367 = weight(_text_:22 in 1026) [ClassicSimilarity], result of:
              0.028104367 = score(doc=1026,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.2708308 = fieldWeight in 1026, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1026)
          0.33333334 = coord(1/3)
      0.35714287 = coord(5/14)
    
    Abstract
    We have created software applications that allow users to both author and use Semantic Web metadata. To create and use a layer of semantic content on top of the existing Web, we have (1) implemented a user interface that expedites the task of attributing metadata to resources on the Web, and (2) augmented a Web browser to leverage this semantic metadata to provide relevant information and tasks to the user. This project provides a framework for annotating and reorganizing existing files, pages, and sites on the Web that is similar to Vannevar Bushrsquos original concepts of trail blazing and associative indexing.
    Source
    Research and advanced technology for digital libraries : 7th European Conference, proceedings / ECDL 2003, Trondheim, Norway, August 17-22, 2003
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
    Semantic Web
  3. ¬The Semantic Web : research and applications ; second European Semantic WebConference, ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1, 2005 ; proceedings (2005) 0.08
    0.07998884 = product of:
      0.27996093 = sum of:
        0.06616175 = weight(_text_:web in 439) [ClassicSimilarity], result of:
          0.06616175 = score(doc=439,freq=20.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.6841342 = fieldWeight in 439, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=439)
        0.013536699 = weight(_text_:information in 439) [ClassicSimilarity], result of:
          0.013536699 = score(doc=439,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2602176 = fieldWeight in 439, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=439)
        0.031133216 = weight(_text_:retrieval in 439) [ClassicSimilarity], result of:
          0.031133216 = score(doc=439,freq=6.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.34732026 = fieldWeight in 439, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=439)
        0.16912927 = weight(_text_:kongress in 439) [ClassicSimilarity], result of:
          0.16912927 = score(doc=439,freq=8.0), product of:
            0.19442701 = queryWeight, product of:
              6.5610886 = idf(docFreq=169, maxDocs=44218)
              0.029633347 = queryNorm
            0.8698856 = fieldWeight in 439, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              6.5610886 = idf(docFreq=169, maxDocs=44218)
              0.046875 = fieldNorm(doc=439)
      0.2857143 = coord(4/14)
    
    Abstract
    This book constitutes the refereed proceedings of the Second European Semantic Web Conference, ESWC 2005, heldin Heraklion, Crete, Greece in May/June 2005. The 48 revised full papers presented were carefully reviewed and selected from 148 submissions. The papers are organized in topical sections on semantic Web services, languages, ontologies, reasoning and querying, search and information retrieval, user and communities, natural language for the semantic Web, annotation tools, and semantic Web applications.
    LCSH
    Information storage and retrieval systems
    Information systems
    RSWK
    Semantic Web / Kongress / Iraklion <2005>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Iraklion <2005>
    Subject
    Semantic Web / Kongress / Iraklion <2005>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Iraklion <2005>
    Information storage and retrieval systems
    Information systems
    Theme
    Semantic Web
  4. Aberer, K. et al.: ¬The Semantic Web : 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007 : proceedings (2007) 0.06
    0.055851486 = product of:
      0.26064026 = sum of:
        0.072476566 = weight(_text_:web in 2477) [ClassicSimilarity], result of:
          0.072476566 = score(doc=2477,freq=54.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.74943143 = fieldWeight in 2477, product of:
              7.3484693 = tf(freq=54.0), with freq of:
                54.0 = termFreq=54.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2477)
        0.009885807 = weight(_text_:information in 2477) [ClassicSimilarity], result of:
          0.009885807 = score(doc=2477,freq=12.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.19003606 = fieldWeight in 2477, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2477)
        0.17827791 = weight(_text_:kongress in 2477) [ClassicSimilarity], result of:
          0.17827791 = score(doc=2477,freq=20.0), product of:
            0.19442701 = queryWeight, product of:
              6.5610886 = idf(docFreq=169, maxDocs=44218)
              0.029633347 = queryNorm
            0.91694003 = fieldWeight in 2477, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              6.5610886 = idf(docFreq=169, maxDocs=44218)
              0.03125 = fieldNorm(doc=2477)
      0.21428572 = coord(3/14)
    
    Abstract
    This book constitutes the refereed proceedings of the joint 6th International Semantic Web Conference, ISWC 2007, and the 2nd Asian Semantic Web Conference, ASWC 2007, held in Busan, Korea, in November 2007. The 50 revised full academic papers and 12 revised application papers presented together with 5 Semantic Web Challenge papers and 12 selected doctoral consortium articles were carefully reviewed and selected from a total of 257 submitted papers to the academic track and 29 to the applications track. The papers address all current issues in the field of the semantic Web, ranging from theoretical and foundational aspects to various applied topics such as management of semantic Web data, ontologies, semantic Web architecture, social semantic Web, as well as applications of the semantic Web. Short descriptions of the top five winning applications submitted to the Semantic Web Challenge competition conclude the volume.
    LCSH
    Semantic Web / Congresses
    Web site development / Congresses
    Information systems
    Information Systems Applications (incl.Internet)
    Multimedia Information Systems
    RSWK
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Pusan <2007> (BVB)
    Semantic Web / Wissensmanagement / Kongress / Pusan <2007> (BVB)
    Semantic Web / Anwendungssystem / Kongress / Pusan <2007> (BVB)
    Semantic Web / Metadatenmodell / Data Mining / Ontologie <Wissensverarbeitung> / Kongress / Pusan <2007> (BVB)
    Semantic Web / Kongress / Pusan <2007> (BVB)
    Subject
    Semantic Web / Congresses
    Web site development / Congresses
    Information systems
    Information Systems Applications (incl.Internet)
    Multimedia Information Systems
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Pusan <2007> (BVB)
    Semantic Web / Wissensmanagement / Kongress / Pusan <2007> (BVB)
    Semantic Web / Anwendungssystem / Kongress / Pusan <2007> (BVB)
    Semantic Web / Metadatenmodell / Data Mining / Ontologie <Wissensverarbeitung> / Kongress / Pusan <2007> (BVB)
    Semantic Web / Kongress / Pusan <2007> (BVB)
    Theme
    Semantic Web
  5. Hüsken, P.: Informationssuche im Semantic Web : Methoden des Information Retrieval für die Wissensrepräsentation (2006) 0.04
    0.043277536 = product of:
      0.15147136 = sum of:
        0.03856498 = weight(_text_:wide in 4332) [ClassicSimilarity], result of:
          0.03856498 = score(doc=4332,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.29372054 = fieldWeight in 4332, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=4332)
        0.05917687 = weight(_text_:web in 4332) [ClassicSimilarity], result of:
          0.05917687 = score(doc=4332,freq=16.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.6119082 = fieldWeight in 4332, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4332)
        0.013536699 = weight(_text_:information in 4332) [ClassicSimilarity], result of:
          0.013536699 = score(doc=4332,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2602176 = fieldWeight in 4332, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4332)
        0.04019281 = weight(_text_:retrieval in 4332) [ClassicSimilarity], result of:
          0.04019281 = score(doc=4332,freq=10.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.44838852 = fieldWeight in 4332, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4332)
      0.2857143 = coord(4/14)
    
    Abstract
    Das Semantic Web bezeichnet ein erweitertes World Wide Web (WWW), das die Bedeutung von präsentierten Inhalten in neuen standardisierten Sprachen wie RDF Schema und OWL modelliert. Diese Arbeit befasst sich mit dem Aspekt des Information Retrieval, d.h. es wird untersucht, in wie weit Methoden der Informationssuche sich auf modelliertes Wissen übertragen lassen. Die kennzeichnenden Merkmale von IR-Systemen wie vage Anfragen sowie die Unterstützung unsicheren Wissens werden im Kontext des Semantic Web behandelt. Im Fokus steht die Suche nach Fakten innerhalb einer Wissensdomäne, die entweder explizit modelliert sind oder implizit durch die Anwendung von Inferenz abgeleitet werden können. Aufbauend auf der an der Universität Duisburg-Essen entwickelten Retrievalmaschine PIRE wird die Anwendung unsicherer Inferenz mit probabilistischer Prädikatenlogik (pDatalog) implementiert.
    Footnote
    Zugl.: Dortmund, Univ., Dipl.-Arb., 2006 u.d.T.: Hüsken, Peter: Information-Retrieval im Semantic-Web.
    RSWK
    Information Retrieval / Semantic Web
    Subject
    Information Retrieval / Semantic Web
    Theme
    Semantic Web
  6. Spinning the Semantic Web : bringing the World Wide Web to its full potential (2003) 0.04
    0.04208579 = product of:
      0.14730026 = sum of:
        0.059519455 = weight(_text_:wide in 1981) [ClassicSimilarity], result of:
          0.059519455 = score(doc=1981,freq=14.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.45331508 = fieldWeight in 1981, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1981)
        0.06795238 = weight(_text_:web in 1981) [ClassicSimilarity], result of:
          0.06795238 = score(doc=1981,freq=62.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.70264983 = fieldWeight in 1981, product of:
              7.8740077 = tf(freq=62.0), with freq of:
                62.0 = termFreq=62.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1981)
        0.009343155 = weight(_text_:information in 1981) [ClassicSimilarity], result of:
          0.009343155 = score(doc=1981,freq=14.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1796046 = fieldWeight in 1981, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1981)
        0.010485282 = weight(_text_:retrieval in 1981) [ClassicSimilarity], result of:
          0.010485282 = score(doc=1981,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.11697317 = fieldWeight in 1981, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1981)
      0.2857143 = coord(4/14)
    
    Abstract
    As the World Wide Web continues to expand, it becomes increasingly difficult for users to obtain information efficiently. Because most search engines read format languages such as HTML or SGML, search results reflect formatting tags more than actual page content, which is expressed in natural language. Spinning the Semantic Web describes an exciting new type of hierarchy and standardization that will replace the current "Web of links" with a "Web of meaning." Using a flexible set of languages and tools, the Semantic Web will make all available information - display elements, metadata, services, images, and especially content - accessible. The result will be an immense repository of information accessible for a wide range of new applications. This first handbook for the Semantic Web covers, among other topics, software agents that can negotiate and collect information, markup languages that can tag many more types of information in a document, and knowledge systems that enable machines to read Web pages and determine their reliability. The truly interdisciplinary Semantic Web combines aspects of artificial intelligence, markup languages, natural language processing, information retrieval, knowledge representation, intelligent agents, and databases.
    Content
    Inhalt: Tim Bemers-Lee: The Original Dream - Re-enter Machines - Where Are We Now? - The World Wide Web Consortium - Where Is the Web Going Next? / Dieter Fensel, James Hendler, Henry Lieberman, and Wolfgang Wahlster: Why Is There a Need for the Semantic Web and What Will It Provide? - How the Semantic Web Will Be Possible / Jeff Heflin, James Hendler, and Sean Luke: SHOE: A Blueprint for the Semantic Web / Deborah L. McGuinness, Richard Fikes, Lynn Andrea Stein, and James Hendler: DAML-ONT: An Ontology Language for the Semantic Web / Michel Klein, Jeen Broekstra, Dieter Fensel, Frank van Harmelen, and Ian Horrocks: Ontologies and Schema Languages on the Web / Borys Omelayenko, Monica Crubezy, Dieter Fensel, Richard Benjamins, Bob Wielinga, Enrico Motta, Mark Musen, and Ying Ding: UPML: The Language and Tool Support for Making the Semantic Web Alive / Deborah L. McGuinness: Ontologies Come of Age / Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen: Sesame: An Architecture for Storing and Querying RDF Data and Schema Information / Rob Jasper and Mike Uschold: Enabling Task-Centered Knowledge Support through Semantic Markup / Yolanda Gil: Knowledge Mobility: Semantics for the Web as a White Knight for Knowledge-Based Systems / Sanjeev Thacker, Amit Sheth, and Shuchi Patel: Complex Relationships for the Semantic Web / Alexander Maedche, Steffen Staab, Nenad Stojanovic, Rudi Studer, and York Sure: SEmantic portAL: The SEAL Approach / Ora Lassila and Mark Adler: Semantic Gadgets: Ubiquitous Computing Meets the Semantic Web / Christopher Frye, Mike Plusch, and Henry Lieberman: Static and Dynamic Semantics of the Web / Masahiro Hori: Semantic Annotation for Web Content Adaptation / Austin Tate, Jeff Dalton, John Levine, and Alex Nixon: Task-Achieving Agents on the World Wide Web
    LCSH
    Semantic Web
    World Wide Web
    RSWK
    Semantic Web
    Subject
    Semantic Web
    Semantic Web
    World Wide Web
    Theme
    Semantic Web
  7. Krause, J.: Shell Model, Semantic Web and Web Information Retrieval (2006) 0.04
    0.035616066 = product of:
      0.12465622 = sum of:
        0.032137483 = weight(_text_:wide in 6061) [ClassicSimilarity], result of:
          0.032137483 = score(doc=6061,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.24476713 = fieldWeight in 6061, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6061)
        0.052305456 = weight(_text_:web in 6061) [ClassicSimilarity], result of:
          0.052305456 = score(doc=6061,freq=18.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.5408555 = fieldWeight in 6061, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6061)
        0.014268933 = weight(_text_:information in 6061) [ClassicSimilarity], result of:
          0.014268933 = score(doc=6061,freq=16.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.27429342 = fieldWeight in 6061, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6061)
        0.025944345 = weight(_text_:retrieval in 6061) [ClassicSimilarity], result of:
          0.025944345 = score(doc=6061,freq=6.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.28943354 = fieldWeight in 6061, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6061)
      0.2857143 = coord(4/14)
    
    Abstract
    The middle of the 1990s are coined by the increased enthusiasm for the possibilities of the WWW, which has only recently deviated - at least in relation to scientific information - for the differentiated measuring of its advantages and disadvantages. Web Information Retrieval originated as a specialized discipline with great commercial significance (for an overview see Lewandowski 2005). Besides the new technological structure that enables the indexing and searching (in seconds) of unimaginable amounts of data worldwide, new assessment processes for the ranking of search results are being developed, which use the link structures of the Web. They are the main innovation with respect to the traditional "mother discipline" of Information Retrieval. From the beginning, link structures of Web pages are applied to commercial search engines in a wide array of variations. From the perspective of scientific information, link topology based approaches were in essence trying to solve a self-created problem: on the one hand, it quickly became clear that the openness of the Web led to an up-tonow unknown increase in available information, but this also caused the quality of the Web pages searched to become a problem - and with it the relevance of the results. The gatekeeper function of traditional information providers, which narrows down every user query to focus on high-quality sources was lacking. Therefore, the recognition of the "authoritativeness" of the Web pages by general search engines such as Google was one of the most important factors for their success.
    Source
    Information und Sprache: Beiträge zu Informationswissenschaft, Computerlinguistik, Bibliothekswesen und verwandten Fächern. Festschrift für Harald H. Zimmermann. Herausgegeben von Ilse Harms, Heinz-Dirk Luckhardt und Hans W. Giessen
    Theme
    Semantic Web
  8. Hüsken, P.: Information Retrieval im Semantic Web (2006) 0.03
    0.034094267 = product of:
      0.11932993 = sum of:
        0.03856498 = weight(_text_:wide in 4333) [ClassicSimilarity], result of:
          0.03856498 = score(doc=4333,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.29372054 = fieldWeight in 4333, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=4333)
        0.046783425 = weight(_text_:web in 4333) [ClassicSimilarity], result of:
          0.046783425 = score(doc=4333,freq=10.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.48375595 = fieldWeight in 4333, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4333)
        0.00856136 = weight(_text_:information in 4333) [ClassicSimilarity], result of:
          0.00856136 = score(doc=4333,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16457605 = fieldWeight in 4333, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4333)
        0.025420163 = weight(_text_:retrieval in 4333) [ClassicSimilarity], result of:
          0.025420163 = score(doc=4333,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.2835858 = fieldWeight in 4333, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=4333)
      0.2857143 = coord(4/14)
    
    Abstract
    Das Semantic Web bezeichnet ein erweitertes World Wide Web (WWW), das die Bedeutung von präsentierten Inhalten in neuen standardisierten Sprachen wie RDF Schema und OWL modelliert. Diese Arbeit befasst sich mit dem Aspekt des Information Retrieval, d.h. es wird untersucht, in wie weit Methoden der Informationssuche sich auf modelliertes Wissen übertragen lassen. Die kennzeichnenden Merkmale von IR-Systemen wie vage Anfragen sowie die Unterstützung unsicheren Wissens werden im Kontext des Semantic Web behandelt. Im Fokus steht die Suche nach Fakten innerhalb einer Wissensdomäne, die entweder explizit modelliert sind oder implizit durch die Anwendung von Inferenz abgeleitet werden können. Aufbauend auf der an der Universität Duisburg-Essen entwickelten Retrievalmaschine PIRE wird die Anwendung unsicherer Inferenz mit probabilistischer Prädikatenlogik (pDatalog) implementiert.
    Theme
    Semantic Web
  9. Engels, R.H.P.; Lech, T.Ch.: Generating ontologies for the Semantic Web : OntoBuilder (2004) 0.03
    0.03132359 = product of:
      0.10963256 = sum of:
        0.025709987 = weight(_text_:wide in 4404) [ClassicSimilarity], result of:
          0.025709987 = score(doc=4404,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.1958137 = fieldWeight in 4404, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=4404)
        0.05917687 = weight(_text_:web in 4404) [ClassicSimilarity], result of:
          0.05917687 = score(doc=4404,freq=36.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.6119082 = fieldWeight in 4404, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4404)
        0.012762521 = weight(_text_:information in 4404) [ClassicSimilarity], result of:
          0.012762521 = score(doc=4404,freq=20.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2453355 = fieldWeight in 4404, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=4404)
        0.0119831795 = weight(_text_:retrieval in 4404) [ClassicSimilarity], result of:
          0.0119831795 = score(doc=4404,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.13368362 = fieldWeight in 4404, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=4404)
      0.2857143 = coord(4/14)
    
    Abstract
    Significant progress has been made in technologies for publishing and distributing knowledge and information on the web. However, much of the published information is not organized, and it is hard to find answers to questions that require more than a keyword search. In general, one can say that the web is organizing itself. Information is often published in relatively ad hoc fashion. Typically, concern about the presentation of content has been limited to purely layout issues. This, combined with the fact that the representation language used on the World Wide Web (HTML) is mainly format-oriented, makes publishing on the WWW easy, giving it an enormous expressiveness. People add private, educational or organizational content to the web that is of an immensely diverse nature. Content on the web is growing closer to a real universal knowledge base, with one problem relatively undefined; the problem of the interpretation of its contents. Although widely acknowledged for its general and universal advantages, the increasing popularity of the web also shows us some major drawbacks. The developments of the information content on the web during the last year alone, clearly indicates the need for some changes. Perhaps one of the most significant problems with the web as a distributed information system is the difficulty of finding and comparing information.
    Thus, there is a clear need for the web to become more semantic. The aim of introducing semantics into the web is to enhance the precision of search, but also enable the use of logical reasoning on web contents in order to answer queries. The CORPORUM OntoBuilder toolset is developed specifically for this task. It consists of a set of applications that can fulfil a variety of tasks, either as stand-alone tools, or augmenting each other. Important tasks that are dealt with by CORPORUM are related to document and information retrieval (find relevant documents, or support the user finding them), as well as information extraction (building a knowledge base from web documents to answer queries), information dissemination (summarizing strategies and information visualization), and automated document classification strategies. First versions of the toolset are encouraging in that they show large potential as a supportive technology for building up the Semantic Web. In this chapter, methods for transforming the current web into a semantic web are discussed, as well as a technical solution that can perform this task: the CORPORUM tool set. First, the toolset is introduced; followed by some pragmatic issues relating to the approach; then there will be a short overview of the theory in relation to CognIT's vision; and finally, a discussion on some of the applications that arose from the project.
    Source
    Towards the semantic Web: ontology-driven knowledge management. Eds.: J. Davies, u.a
    Theme
    Semantic Web
  10. Michon, J.: Biomedicine and the Semantic Web : a knowledge model for visual phenotype (2006) 0.03
    0.028886935 = product of:
      0.10110427 = sum of:
        0.032137483 = weight(_text_:wide in 246) [ClassicSimilarity], result of:
          0.032137483 = score(doc=246,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.24476713 = fieldWeight in 246, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=246)
        0.042707227 = weight(_text_:web in 246) [ClassicSimilarity], result of:
          0.042707227 = score(doc=246,freq=12.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.4416067 = fieldWeight in 246, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=246)
        0.011280581 = weight(_text_:information in 246) [ClassicSimilarity], result of:
          0.011280581 = score(doc=246,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.21684799 = fieldWeight in 246, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=246)
        0.014978974 = weight(_text_:retrieval in 246) [ClassicSimilarity], result of:
          0.014978974 = score(doc=246,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.16710453 = fieldWeight in 246, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=246)
      0.2857143 = coord(4/14)
    
    Abstract
    Semantic Web tools provide new and significant opportunities for organizing and improving the utility of biomedical information. As librarians become more involved with biomedical information, it is important for them, particularly catalogers, to be part of research teams that are employing these techniques and developing a high level interoperable biomedical infrastructure. To illustrate these principles, we used Semantic Web tools to create a knowledge model for human visual phenotypes (observable characteristics). This is an important foundation for generating associations between genomics and clinical medicine. In turn this can allow customized medical therapies and provide insights into the molecular basis of disease. The knowledge model incorporates a wide variety of clinical and genomic data including examination findings, demographics, laboratory tests, imaging and variations in DNA sequence. Information organization, storage and retrieval are facilitated through the use of metadata and the ability to make computable statements in the visual science domain. This paper presents our work, discusses the value of Semantic Web technologies in biomedicine, and identifies several important roles that library and information scientists can play in developing a more powerful biomedical information infrastructure.
    Footnote
    Simultaneously published as Knitting the Semantic Web
    Theme
    Semantic Web
  11. Towards the Semantic Web : ontology-driven knowledge management (2004) 0.03
    0.027659249 = product of:
      0.09680737 = sum of:
        0.033398256 = weight(_text_:wide in 4401) [ClassicSimilarity], result of:
          0.033398256 = score(doc=4401,freq=6.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.2543695 = fieldWeight in 4401, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0234375 = fieldNorm(doc=4401)
        0.04438265 = weight(_text_:web in 4401) [ClassicSimilarity], result of:
          0.04438265 = score(doc=4401,freq=36.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.45893115 = fieldWeight in 4401, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0234375 = fieldNorm(doc=4401)
        0.010039084 = weight(_text_:information in 4401) [ClassicSimilarity], result of:
          0.010039084 = score(doc=4401,freq=22.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.19298252 = fieldWeight in 4401, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0234375 = fieldNorm(doc=4401)
        0.008987385 = weight(_text_:retrieval in 4401) [ClassicSimilarity], result of:
          0.008987385 = score(doc=4401,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.10026272 = fieldWeight in 4401, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0234375 = fieldNorm(doc=4401)
      0.2857143 = coord(4/14)
    
    Abstract
    With the current changes driven by the expansion of the World Wide Web, this book uses a different approach from other books on the market: it applies ontologies to electronically available information to improve the quality of knowledge management in large and distributed organizations. Ontologies are formal theories supporting knowledge sharing and reuse. They can be used to explicitly represent semantics of semi-structured information. These enable sophisticated automatic support for acquiring, maintaining and accessing information. Methodology and tools are developed for intelligent access to large volumes of semi-structured and textual information sources in intra- and extra-, and internet-based environments to employ the full power of ontologies in supporting knowledge management from the information client perspective and the information provider. The aim of the book is to support efficient and effective knowledge management and focuses on weakly-structured online information sources. It is aimed primarily at researchers in the area of knowledge management and information retrieval and will also be a useful reference for students in computer science at the postgraduate level and for business managers who are aiming to increase the corporations' information infrastructure. The Semantic Web is a very important initiative affecting the future of the WWW that is currently generating huge interest. The book covers several highly significant contributions to the semantic web research effort, including a new language for defining ontologies, several novel software tools and a coherent methodology for the application of the tools for business advantage. It also provides 3 case studies which give examples of the real benefits to be derived from the adoption of semantic-web based ontologies in "real world" situations. As such, the book is an excellent mixture of theory, tools and applications in an important area of WWW research. * Provides guidelines for introducing knowledge management concepts and tools into enterprises, to help knowledge providers present their knowledge efficiently and effectively. * Introduces an intelligent search tool that supports users in accessing information and a tool environment for maintenance, conversion and acquisition of information sources. * Discusses three large case studies which will help to develop the technology according to the actual needs of large and or virtual organisations and will provide a testbed for evaluating tools and methods. The book is aimed at people with at least a good understanding of existing WWW technology and some level of technical understanding of the underpinning technologies (XML/RDF). It will be of interest to graduate students, academic and industrial researchers in the field, and the many industrial personnel who are tracking WWW technology developments in order to understand the business implications. It could also be used to support undergraduate courses in the area but is not itself an introductory text.
    Content
    Inhalt: OIL and DAML + OIL: Ontology Languages for the Semantic Web (pages 11-31) / Dieter Fensel, Frank van Harmelen and Ian Horrocks A Methodology for Ontology-Based Knowledge Management (pages 33-46) / York Sure and Rudi Studer Ontology Management: Storing, Aligning and Maintaining Ontologies (pages 47-69) / Michel Klein, Ying Ding, Dieter Fensel and Borys Omelayenko Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema (pages 71-89) / Jeen Broekstra, Arjohn Kampman and Frank van Harmelen Generating Ontologies for the Semantic Web: OntoBuilder (pages 91-115) / R. H. P. Engels and T. Ch. Lech OntoEdit: Collaborative Engineering of Ontologies (pages 117-132) / York Sure, Michael Erdmann and Rudi Studer QuizRDF: Search Technology for the Semantic Web (pages 133-144) / John Davies, Richard Weeks and Uwe Krohn Spectacle (pages 145-159) / Christiaan Fluit, Herko ter Horst, Jos van der Meer, Marta Sabou and Peter Mika OntoShare: Evolving Ontologies in a Knowledge Sharing System (pages 161-177) / John Davies, Alistair Duke and Audrius Stonkus Ontology Middleware and Reasoning (pages 179-196) / Atanas Kiryakov, Kiril Simov and Damyan Ognyanov Ontology-Based Knowledge Management at Work: The Swiss Life Case Studies (pages 197-218) / Ulrich Reimer, Peter Brockhausen, Thorsten Lau and Jacqueline R. Reich Field Experimenting with Semantic Web Tools in a Virtual Organization (pages 219-244) / Victor Iosif, Peter Mika, Rikard Larsson and Hans Akkermans A Future Perspective: Exploiting Peer-To-Peer and the Semantic Web for Knowledge Management (pages 245-264) / Dieter Fensel, Steffen Staab, Rudi Studer, Frank van Harmelen and John Davies Conclusions: Ontology-driven Knowledge Management - Towards the Semantic Web? (pages 265-266) / John Davies, Dieter Fensel and Frank van Harmelen
    LCSH
    Semantic web
    RSWK
    Semantic Web / Wissensmanagement / Wissenserwerb
    Wissensmanagement / World Wide web (BVB)
    Subject
    Semantic Web / Wissensmanagement / Wissenserwerb
    Wissensmanagement / World Wide web (BVB)
    Semantic web
    Theme
    Semantic Web
  12. Münch, V.: Bald soll das Web vernünftig antworten können (2002) 0.03
    0.0273907 = product of:
      0.12782326 = sum of:
        0.051419973 = weight(_text_:wide in 2553) [ClassicSimilarity], result of:
          0.051419973 = score(doc=2553,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.3916274 = fieldWeight in 2553, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0625 = fieldNorm(doc=2553)
        0.06833156 = weight(_text_:web in 2553) [ClassicSimilarity], result of:
          0.06833156 = score(doc=2553,freq=12.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.70657074 = fieldWeight in 2553, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=2553)
        0.008071727 = weight(_text_:information in 2553) [ClassicSimilarity], result of:
          0.008071727 = score(doc=2553,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1551638 = fieldWeight in 2553, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=2553)
      0.21428572 = coord(3/14)
    
    Abstract
    Über hundert Teilnehmerinnen und Teilnehmer informierten sich beim 9. AIKSymposium "Semantic Web" Mitte April über laufende Forschungs- und Entwicklungsarbeiten zur maschinellen Interpretation von Web-Inhalten. Die Informatik-Forschung will mit diesem Ansatz die Informationsbeschaffung aus dem World Wide Web automatisieren.
    Footnote
    Bericht vom 9. AIK-Symposium "Semantic Web", April 2002
    Source
    Information - Wissenschaft und Praxis. 53(2002) H.5, S.299-300
    Theme
    Semantic Web
  13. Kiryakov, A.; Popov, B.; Terziev, I.; Manov, D.; Ognyanoff, D.: Semantic annotation, indexing, and retrieval (2004) 0.03
    0.027095761 = product of:
      0.09483516 = sum of:
        0.025709987 = weight(_text_:wide in 700) [ClassicSimilarity], result of:
          0.025709987 = score(doc=700,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.1958137 = fieldWeight in 700, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=700)
        0.039451245 = weight(_text_:web in 700) [ClassicSimilarity], result of:
          0.039451245 = score(doc=700,freq=16.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.4079388 = fieldWeight in 700, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=700)
        0.005707573 = weight(_text_:information in 700) [ClassicSimilarity], result of:
          0.005707573 = score(doc=700,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.10971737 = fieldWeight in 700, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=700)
        0.023966359 = weight(_text_:retrieval in 700) [ClassicSimilarity], result of:
          0.023966359 = score(doc=700,freq=8.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.26736724 = fieldWeight in 700, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=700)
      0.2857143 = coord(4/14)
    
    Abstract
    The Semantic Web realization depends on the availability of a critical mass of metadata for the web content, associated with the respective formal knowledge about the world. We claim that the Semantic Web, at its current stage of development, is in a state of a critical need of metadata generation and usage schemata that are specific, well-defined and easy to understand. This paper introduces our vision for a holistic architecture for semantic annotation, indexing, and retrieval of documents with regard to extensive semantic repositories. A system (called KIM), implementing this concept, is presented in brief and it is used for the purposes of evaluation and demonstration. A particular schema for semantic annotation with respect to real-world entities is proposed. The underlying philosophy is that a practical semantic annotation is impossible without some particular knowledge modelling commitments. Our understanding is that a system for such semantic annotation should be based upon a simple model of real-world entity classes, complemented with extensive instance knowledge. To ensure the efficiency, ease of sharing, and reusability of the metadata, we introduce an upper-level ontology (of about 250 classes and 100 properties), which starts with some basic philosophical distinctions and then goes down to the most common entity types (people, companies, cities, etc.). Thus it encodes many of the domain-independent commonsense concepts and allows straightforward domain-specific extensions. On the basis of the ontology, a large-scale knowledge base of entity descriptions is bootstrapped, and further extended and maintained. Currently, the knowledge bases usually scales between 105 and 106 descriptions. Finally, this paper presents a semantically enhanced information extraction system, which provides automatic semantic annotation with references to classes in the ontology and to instances. The system has been running over a continuously growing document collection (currently about 0.5 million news articles), so it has been under constant testing and evaluation for some time now. On the basis of these semantic annotations, we perform semantic based indexing and retrieval where users can mix traditional information retrieval (IR) queries and ontology-based ones. We argue that such large-scale, fully automatic methods are essential for the transformation of the current largely textual web into a Semantic Web.
    Source
    Web semantics: science, services and agents on the World Wide Web. 2(2004) no.1, S.49-79
    Theme
    Semantic Web
  14. Scheir, P.; Pammer, V.; Lindstaedt, S.N.: Information retrieval on the Semantic Web : does it exist? (2007) 0.03
    0.026210284 = product of:
      0.122314654 = sum of:
        0.06458071 = weight(_text_:web in 4329) [ClassicSimilarity], result of:
          0.06458071 = score(doc=4329,freq=14.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.6677857 = fieldWeight in 4329, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4329)
        0.015792815 = weight(_text_:information in 4329) [ClassicSimilarity], result of:
          0.015792815 = score(doc=4329,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.3035872 = fieldWeight in 4329, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4329)
        0.04194113 = weight(_text_:retrieval in 4329) [ClassicSimilarity], result of:
          0.04194113 = score(doc=4329,freq=8.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.46789268 = fieldWeight in 4329, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4329)
      0.21428572 = coord(3/14)
    
    Abstract
    Plenty of contemporary attempts to search exist that are associated with the area of Semantic Web. But which of them qualify as information retrieval for the Semantic Web? Do such approaches exist? To answer these questions we take a look at the nature of the Semantic Web and Semantic Desktop and at definitions for information and data retrieval. We survey current approaches referred to by their authors as information retrieval for the Semantic Web or that use Semantic Web technology for search.
    Source
    Lernen - Wissen - Adaption : workshop proceedings / LWA 2007, Halle, September 2007. Martin Luther University Halle-Wittenberg, Institute for Informatics, Databases and Information Systems. Hrsg.: Alexander Hinneburg
    Theme
    Semantic Web
  15. Franklin, R.A.: Re-inventing subject access for the semantic web (2003) 0.02
    0.024975223 = product of:
      0.08741328 = sum of:
        0.055354897 = weight(_text_:web in 2556) [ClassicSimilarity], result of:
          0.055354897 = score(doc=2556,freq=14.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.57238775 = fieldWeight in 2556, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2556)
        0.0060537956 = weight(_text_:information in 2556) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=2556,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 2556, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2556)
        0.01797477 = weight(_text_:retrieval in 2556) [ClassicSimilarity], result of:
          0.01797477 = score(doc=2556,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.20052543 = fieldWeight in 2556, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2556)
        0.008029819 = product of:
          0.024089456 = sum of:
            0.024089456 = weight(_text_:22 in 2556) [ClassicSimilarity], result of:
              0.024089456 = score(doc=2556,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.23214069 = fieldWeight in 2556, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2556)
          0.33333334 = coord(1/3)
      0.2857143 = coord(4/14)
    
    Abstract
    First generation scholarly research on the Web lacked a firm system of authority control. Second generation Web research is beginning to model subject access with library science principles of bibliographic control and cataloguing. Harnessing the Web and organising the intellectual content with standards and controlled vocabulary provides precise search and retrieval capability, increasing relevance and efficient use of technology. Dublin Core metadata standards permit a full evaluation and cataloguing of Web resources appropriate to highly specific research needs and discovery. Current research points to a type of structure based on a system of faceted classification. This system allows the semantic and syntactic relationships to be defined. Controlled vocabulary, such as the Library of Congress Subject Headings, can be assigned, not in a hierarchical structure, but rather as descriptive facets of relating concepts. Web design features such as this are adding value to discovery and filtering out data that lack authority. The system design allows for scalability and extensibility, two technical features that are integral to future development of the digital library and resource discovery.
    Date
    30.12.2008 18:22:46
    Source
    Online information review. 27(2003) no.2, S.94-101
    Theme
    Semantic Web
  16. Matthews, B.M.: Integration via meaning : using the Semantic Web to deliver Web services (2002) 0.02
    0.024688333 = product of:
      0.11521222 = sum of:
        0.03856498 = weight(_text_:wide in 3609) [ClassicSimilarity], result of:
          0.03856498 = score(doc=3609,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.29372054 = fieldWeight in 3609, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=3609)
        0.06616175 = weight(_text_:web in 3609) [ClassicSimilarity], result of:
          0.06616175 = score(doc=3609,freq=20.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.6841342 = fieldWeight in 3609, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3609)
        0.0104854815 = weight(_text_:information in 3609) [ClassicSimilarity], result of:
          0.0104854815 = score(doc=3609,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.20156369 = fieldWeight in 3609, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3609)
      0.21428572 = coord(3/14)
    
    Abstract
    The major developments ofthe World-Wide Web (WWW) in the last two years have been Web Services and the Semantic Web. The former allows the construction of distributed systems across the WWW by providing a lightweight middleware architecture. The latter provides an infrastructure for accessing resources an the WWW via their relationships with respect to conceptual descriptions. In this paper, I shall review the progress undertaken in each of these two areas. Further, I shall argue that in order for the aims of both the Semantic Web and the Web Services activities to be successful, then the Web Service architecture needs to be augmented by concepts and tools of the Semantic Web. This infrastructure will allow resource discovery, brokering and access to be enabled in a standardised, integrated and interoperable manner. Finally, I survey the CLRC Information Technology R&D programme to show how it is contributing to the development of this future infrastructure.
    Source
    Gaining insight from research information (CRIS2002): Proceedings of the 6th International Conference an Current Research Information Systems, University of Kassel, August 29 - 31, 2002. Eds: W. Adamczak u. A. Nase
    Theme
    Semantic Web
  17. Legg, C.: Ontologies on the Semantic Web (2007) 0.02
    0.024619678 = product of:
      0.08616887 = sum of:
        0.025709987 = weight(_text_:wide in 1979) [ClassicSimilarity], result of:
          0.025709987 = score(doc=1979,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.1958137 = fieldWeight in 1979, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=1979)
        0.039451245 = weight(_text_:web in 1979) [ClassicSimilarity], result of:
          0.039451245 = score(doc=1979,freq=16.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.4079388 = fieldWeight in 1979, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=1979)
        0.009024465 = weight(_text_:information in 1979) [ClassicSimilarity], result of:
          0.009024465 = score(doc=1979,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1734784 = fieldWeight in 1979, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1979)
        0.0119831795 = weight(_text_:retrieval in 1979) [ClassicSimilarity], result of:
          0.0119831795 = score(doc=1979,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.13368362 = fieldWeight in 1979, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=1979)
      0.2857143 = coord(4/14)
    
    Abstract
    As an informational technology, the World Wide Web has enjoyed spectacular success. In just ten years it has transformed the way information is produced, stored, and shared in arenas as diverse as shopping, family photo albums, and high-level academic research. The "Semantic Web" is touted by its developers as equally revolutionary, although it has not yet achieved anything like the Web's exponential uptake. It seeks to transcend a current limitation of the Web - that it largely requires indexing to be accomplished merely on specific character strings. Thus, a person searching for information about "turkey" (the bird) receives from current search engines many irrelevant pages about "Turkey" (the country) and nothing about the Spanish "pavo" even if he or she is a Spanish-speaker able to understand such pages. The Semantic Web vision is to develop technology to facilitate retrieval of information via meanings, not just spellings. For this to be possible, most commentators believe, Semantic Web applications will have to draw on some kind of shared, structured, machine-readable conceptual scheme. Thus, there has been a convergence between the Semantic Web research community and an older tradition with roots in classical Artificial Intelligence (AI) research (sometimes referred to as "knowledge representation") whose goal is to develop a formal ontology. A formal ontology is a machine-readable theory of the most fundamental concepts or "categories" required in order to understand information pertaining to any knowledge domain. A review of the attempts that have been made to realize this goal provides an opportunity to reflect in interestingly concrete ways on various research questions such as the following: - How explicit a machine-understandable theory of meaning is it possible or practical to construct? - How universal a machine-understandable theory of meaning is it possible or practical to construct? - How much (and what kind of) inference support is required to realize a machine-understandable theory of meaning? - What is it for a theory of meaning to be machine-understandable anyway?
    Source
    Annual review of information science and technology. 41(2007), S.407-451
    Theme
    Semantic Web
  18. Harper, C.A.; Tillett, B.B.: Library of Congress controlled vocabularies and their application to the Semantic Web (2006) 0.02
    0.02301114 = product of:
      0.10738532 = sum of:
        0.03856498 = weight(_text_:wide in 242) [ClassicSimilarity], result of:
          0.03856498 = score(doc=242,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.29372054 = fieldWeight in 242, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=242)
        0.062766545 = weight(_text_:web in 242) [ClassicSimilarity], result of:
          0.062766545 = score(doc=242,freq=18.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.64902663 = fieldWeight in 242, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=242)
        0.0060537956 = weight(_text_:information in 242) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=242,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 242, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=242)
      0.21428572 = coord(3/14)
    
    Abstract
    This article discusses how various controlled vocabularies, classification schemes and thesauri can serve as some of the building blocks of the Semantic Web. These vocabularies have been developed over the course of decades, and can be put to great use in the development of robust web services and Semantic Web technologies. The article covers how initial collaboration between the Semantic Web, Library and Metadata communities are creating partnerships to complete work in this area. It then discusses some cores principles of authority control before talking more specifically about subject and genre vocabularies and name authority. It is hoped that future systems for internationally shared authority data will link the world's authority data from trusted sources to benefit users worldwide. Finally, the article looks at how encoding and markup of vocabularies can help ensure compatibility with the current and future state of Semantic Web development and provides examples of how this work can help improve the findability and navigation of information on the World Wide Web.
    Footnote
    Simultaneously published as Knitting the Semantic Web
    Theme
    Semantic Web
  19. Gibbins, N.; Shadbolt, N.: Resource Description Framework (RDF) (2009) 0.02
    0.02285055 = product of:
      0.1066359 = sum of:
        0.044992477 = weight(_text_:wide in 4695) [ClassicSimilarity], result of:
          0.044992477 = score(doc=4695,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.342674 = fieldWeight in 4695, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4695)
        0.054580662 = weight(_text_:web in 4695) [ClassicSimilarity], result of:
          0.054580662 = score(doc=4695,freq=10.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.5643819 = fieldWeight in 4695, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4695)
        0.0070627616 = weight(_text_:information in 4695) [ClassicSimilarity], result of:
          0.0070627616 = score(doc=4695,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13576832 = fieldWeight in 4695, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4695)
      0.21428572 = coord(3/14)
    
    Abstract
    The Resource Description Framework (RDF) is the standard knowledge representation language for the Semantic Web, an evolution of the World Wide Web that aims to provide a well-founded infrastructure for publishing, sharing and querying structured data. This entry provides an introduction to RDF and its related vocabulary definition language RDF Schema, and explains its relationship with the OWL Web Ontology Language. Finally, it provides an overview of the historical development of RDF and related languages for Web metadata.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
    Theme
    Semantic Web
  20. Birkenbihl, K.: Standards für das Semantic Web (2006) 0.02
    0.02234394 = product of:
      0.15640756 = sum of:
        0.07271883 = weight(_text_:wide in 5788) [ClassicSimilarity], result of:
          0.07271883 = score(doc=5788,freq=4.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.5538448 = fieldWeight in 5788, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0625 = fieldNorm(doc=5788)
        0.08368873 = weight(_text_:web in 5788) [ClassicSimilarity], result of:
          0.08368873 = score(doc=5788,freq=18.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.86536884 = fieldWeight in 5788, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=5788)
      0.14285715 = coord(2/14)
    
    Abstract
    Semantic Web - das ist die Anwendung von Wissenstechnologie im World Wide Web. Dieses Kapitel beschreibt in einigen einführenden Absätzen die Aufgabe und Entstehung von Standards. Sodann gibt es einen Überblick über die Technologien und Standards, die für das Web und seine Erweiterung zum Semantic Web entwickelt und eingesetzt werden. Diese werden überwiegend vom World Wide Web Consortium (W3C) [35] definiert. Abschließend folgen einige Bemerkungen zur weiteren Entwicklung des Semantic Web.
    Source
    Semantic Web: Wege zur vernetzten Wissensgesellschaft. Hrsg.: T. Pellegrini, u. A. Blumauer
    Theme
    Semantic Web

Languages

  • e 129
  • d 54

Types

  • a 112
  • el 56
  • m 18
  • n 10
  • s 9
  • x 6
  • r 3
  • More… Less…

Subjects

Classifications