Search (35 results, page 1 of 2)

  • × year_i:[2000 TO 2010}
  • × theme_ss:"Theorie verbaler Dokumentationssprachen"
  1. Dextre Clarke, S.G.: Thesaural relationships (2001) 0.01
    0.008014596 = product of:
      0.03740145 = sum of:
        0.0070627616 = weight(_text_:information in 1149) [ClassicSimilarity], result of:
          0.0070627616 = score(doc=1149,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13576832 = fieldWeight in 1149, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1149)
        0.020970564 = weight(_text_:retrieval in 1149) [ClassicSimilarity], result of:
          0.020970564 = score(doc=1149,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.23394634 = fieldWeight in 1149, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1149)
        0.009368123 = product of:
          0.028104367 = sum of:
            0.028104367 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.028104367 = score(doc=1149,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.2708308 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1149)
          0.33333334 = coord(1/3)
      0.21428572 = coord(3/14)
    
    Abstract
    A thesaurus in the controlled vocabulary environment is a tool designed to support effective infonnation retrieval (IR) by guiding indexers and searchers consistently to choose the same terms for expressing a given concept or combination of concepts. Terms in the thesaurus are linked by relationships of three well-known types: equivalence, hierarchical, and associative. The functions and properties of these three basic types and some subcategories are described, as well as some additional relationship types conunonly found in thesauri. Progressive automation of IR processes and the capability for simultaneous searching of vast networked resources are creating some pressures for change in the categorization and consistency of relationships.
    Date
    22. 9.2007 15:45:57
    Series
    Information science and knowledge management; vol.2
  2. Khoo, S.G.; Na, J.-C.: Semantic relations in information science (2006) 0.01
    0.007728597 = product of:
      0.036066785 = sum of:
        0.010461091 = weight(_text_:web in 1978) [ClassicSimilarity], result of:
          0.010461091 = score(doc=1978,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.108171105 = fieldWeight in 1978, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
        0.010039084 = weight(_text_:information in 1978) [ClassicSimilarity], result of:
          0.010039084 = score(doc=1978,freq=22.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.19298252 = fieldWeight in 1978, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
        0.015566608 = weight(_text_:retrieval in 1978) [ClassicSimilarity], result of:
          0.015566608 = score(doc=1978,freq=6.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.17366013 = fieldWeight in 1978, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
      0.21428572 = coord(3/14)
    
    Abstract
    This chapter examines the nature of semantic relations and their main applications in information science. The nature and types of semantic relations are discussed from the perspectives of linguistics and psychology. An overview of the semantic relations used in knowledge structures such as thesauri and ontologies is provided, as well as the main techniques used in the automatic extraction of semantic relations from text. The chapter then reviews the use of semantic relations in information extraction, information retrieval, question-answering, and automatic text summarization applications. Concepts and relations are the foundation of knowledge and thought. When we look at the world, we perceive not a mass of colors but objects to which we automatically assign category labels. Our perceptual system automatically segments the world into concepts and categories. Concepts are the building blocks of knowledge; relations act as the cement that links concepts into knowledge structures. We spend much of our lives identifying regular associations and relations between objects, events, and processes so that the world has an understandable structure and predictability. Our lives and work depend on the accuracy and richness of this knowledge structure and its web of relations. Relations are needed for reasoning and inferencing. Chaffin and Herrmann (1988b, p. 290) noted that "relations between ideas have long been viewed as basic to thought, language, comprehension, and memory." Aristotle's Metaphysics (Aristotle, 1961; McKeon, expounded on several types of relations. The majority of the 30 entries in a section of the Metaphysics known today as the Philosophical Lexicon referred to relations and attributes, including cause, part-whole, same and opposite, quality (i.e., attribute) and kind-of, and defined different types of each relation. Hume (1955) pointed out that there is a connection between successive ideas in our minds, even in our dreams, and that the introduction of an idea in our mind automatically recalls an associated idea. He argued that all the objects of human reasoning are divided into relations of ideas and matters of fact and that factual reasoning is founded on the cause-effect relation. His Treatise of Human Nature identified seven kinds of relations: resemblance, identity, relations of time and place, proportion in quantity or number, degrees in quality, contrariety, and causation. Mill (1974, pp. 989-1004) discoursed on several types of relations, claiming that all things are either feelings, substances, or attributes, and that attributes can be a quality (which belongs to one object) or a relation to other objects.
    Linguists in the structuralist tradition (e.g., Lyons, 1977; Saussure, 1959) have asserted that concepts cannot be defined on their own but only in relation to other concepts. Semantic relations appear to reflect a logical structure in the fundamental nature of thought (Caplan & Herrmann, 1993). Green, Bean, and Myaeng (2002) noted that semantic relations play a critical role in how we represent knowledge psychologically, linguistically, and computationally, and that many systems of knowledge representation start with a basic distinction between entities and relations. Green (2001, p. 3) said that "relationships are involved as we combine simple entities to form more complex entities, as we compare entities, as we group entities, as one entity performs a process on another entity, and so forth. Indeed, many things that we might initially regard as basic and elemental are revealed upon further examination to involve internal structure, or in other words, internal relationships." Concepts and relations are often expressed in language and text. Language is used not just for communicating concepts and relations, but also for representing, storing, and reasoning with concepts and relations. We shall examine the nature of semantic relations from a linguistic and psychological perspective, with an emphasis on relations expressed in text. The usefulness of semantic relations in information science, especially in ontology construction, information extraction, information retrieval, question-answering, and text summarization is discussed. Research and development in information science have focused on concepts and terms, but the focus will increasingly shift to the identification, processing, and management of relations to achieve greater effectiveness and refinement in information science techniques. Previous chapters in ARIST on natural language processing (Chowdhury, 2003), text mining (Trybula, 1999), information retrieval and the philosophy of language (Blair, 2003), and query expansion (Efthimiadis, 1996) provide a background for this discussion, as semantic relations are an important part of these applications.
    Source
    Annual review of information science and technology. 40(2006), S.157-228
  3. Evens, M.: Thesaural relations in information retrieval (2002) 0.01
    0.0076756445 = product of:
      0.053729508 = sum of:
        0.013536699 = weight(_text_:information in 1201) [ClassicSimilarity], result of:
          0.013536699 = score(doc=1201,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2602176 = fieldWeight in 1201, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1201)
        0.04019281 = weight(_text_:retrieval in 1201) [ClassicSimilarity], result of:
          0.04019281 = score(doc=1201,freq=10.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.44838852 = fieldWeight in 1201, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1201)
      0.14285715 = coord(2/14)
    
    Abstract
    Thesaural relations have long been used in information retrieval to enrich queries; they have sometimes been used to cluster documents as well. Sometimes the first query to an information retrieval system yields no results at all, or, what can be even more disconcerting, many thousands of hits. One solution is to rephrase the query, improving the choice of query terms by using related terms of different types. A collection of related terms is often called a thesaurus. This chapter describes the lexical-semantic relations that have been used in building thesauri and summarizes some of the effects of using these relational thesauri in information retrieval experiments
    Series
    Information science and knowledge management; vol.3
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  4. Maniez, J.: Actualité des langages documentaires : fondements théoriques de la recherche d'information (2002) 0.01
    0.007581752 = product of:
      0.05307226 = sum of:
        0.01712272 = weight(_text_:information in 887) [ClassicSimilarity], result of:
          0.01712272 = score(doc=887,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.3291521 = fieldWeight in 887, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=887)
        0.03594954 = weight(_text_:retrieval in 887) [ClassicSimilarity], result of:
          0.03594954 = score(doc=887,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.40105087 = fieldWeight in 887, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.09375 = fieldNorm(doc=887)
      0.14285715 = coord(2/14)
    
    Footnote
    Übers. d. Titels: Actuality of information languages: theoretical foundation of information retrieval
  5. Miller, U.; Teitelbaum, R.: Pre-coordination and post-coordination : past and future (2002) 0.01
    0.0072068013 = product of:
      0.050447606 = sum of:
        0.014125523 = weight(_text_:information in 1395) [ClassicSimilarity], result of:
          0.014125523 = score(doc=1395,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.27153665 = fieldWeight in 1395, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1395)
        0.036322083 = weight(_text_:retrieval in 1395) [ClassicSimilarity], result of:
          0.036322083 = score(doc=1395,freq=6.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.40520695 = fieldWeight in 1395, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1395)
      0.14285715 = coord(2/14)
    
    Abstract
    This article deals with the meaningful processing of information in relation to two systems of Information processing: pre-coordination and post-coordination. The different approaches are discussed, with emphasis an the need for a controlled vocabulary in information retrieval. Assigned indexing, which employs a controlled vocabulary, is described in detail. Types of indexing language can be divided into two broad groups - those using pre-coordinated terms and those depending an post-coordination. They represent two different basic approaches in processing and Information retrieval. The historical development of these two approaches is described, as well as the two tools that apply to these approaches: thesauri and subject headings.
    Theme
    Verbale Doksprachen im Online-Retrieval
  6. Khoo, C.; Chan, S.; Niu, Y.: ¬The many facets of the cause-effect relation (2002) 0.01
    0.006374111 = product of:
      0.044618774 = sum of:
        0.03856498 = weight(_text_:wide in 1192) [ClassicSimilarity], result of:
          0.03856498 = score(doc=1192,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.29372054 = fieldWeight in 1192, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=1192)
        0.0060537956 = weight(_text_:information in 1192) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=1192,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 1192, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1192)
      0.14285715 = coord(2/14)
    
    Abstract
    This chapter presents a broad survey of the cause-effect relation, with particular emphasis an how the relation is expressed in text. Philosophers have been grappling with the concept of causation for centuries. Researchers in social psychology have found that the human mind has a very complex mechanism for identifying and attributing the cause for an event. Inferring cause-effect relations between events and statements has also been found to be an important part of reading and text comprehension, especially for narrative text. Though many of the cause-effect relations in text are implied and have to be inferred by the reader, there is also a wide variety of linguistic expressions for explicitly indicating cause and effect. In addition, it has been found that certain words have "causal valence"-they bias the reader to attribute cause in certain ways. Cause-effect relations can also be divided into several different types.
    Series
    Information science and knowledge management; vol.3
  7. Vickery, B.B.: Structure and function in retrieval languages (2006) 0.01
    0.0063587003 = product of:
      0.0445109 = sum of:
        0.00856136 = weight(_text_:information in 5584) [ClassicSimilarity], result of:
          0.00856136 = score(doc=5584,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16457605 = fieldWeight in 5584, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5584)
        0.03594954 = weight(_text_:retrieval in 5584) [ClassicSimilarity], result of:
          0.03594954 = score(doc=5584,freq=8.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.40105087 = fieldWeight in 5584, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=5584)
      0.14285715 = coord(2/14)
    
    Abstract
    Purpose - The purpose of this paper is to summarize the varied structural characteristics which may be present in retrieval languages. Design/methodology/approach - The languages serve varied purposes in information systems, and a number of these are identified. The relations between structure and function are discussed and suggestions made as to the most suitable structures needed for various purposes. Findings - A quantitative approach has been developed: a simple measure is the number of separate terms in a retrieval language, but this has to be related to the scope of its subject field. Some ratio of terms to items in the field seems a more suitable measure of the average specificity of the terms. Other aspects can be quantified - for example, the average number of links in hierarchical chains, or the average number of cross-references in a thesaurus. Originality/value - All the approaches to the analysis of retrieval language reported in this paper are of continuing value. Some practical studies of computer information systems undertaken by Aslib Research Department have suggested a further approach.
  8. Gilchrist, A.: Structure and function in retrieval (2006) 0.01
    0.005670654 = product of:
      0.039694577 = sum of:
        0.00856136 = weight(_text_:information in 5585) [ClassicSimilarity], result of:
          0.00856136 = score(doc=5585,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16457605 = fieldWeight in 5585, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5585)
        0.031133216 = weight(_text_:retrieval in 5585) [ClassicSimilarity], result of:
          0.031133216 = score(doc=5585,freq=6.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.34732026 = fieldWeight in 5585, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=5585)
      0.14285715 = coord(2/14)
    
    Abstract
    Purpose - This paper forms part of the series "60 years of the best in information research", marking the 60th anniversary of the Journal of Documentation. It aims to review the influence of Brian Vickery's 1971 paper, "Structure and function in retrieval languages". The paper is not an update of Vickery's work, but a comment on a greatly changed environment, in which his analysis still has much validity. Design/methodology/approach - A commentary on selected literature illustrates the continuing relevance of Vickery's ideas. Findings - Generic survey and specific reference are still the main functions of retrieval languages, with minor functional additions such as relevance ranking. New structures are becoming increasingly significant, through developments such as XML. Future development in artificial intelligence hold out new prospects still. Originality/value - The paper shows the continuing relevance of "traditional" ideas of information science from the 1960s and 1970s.
  9. Tudhope, D.; Alani, H.; Jones, C.: Augmenting thesaurus relationships : possibilities for retrieval (2001) 0.01
    0.005505548 = product of:
      0.038538832 = sum of:
        0.0050448296 = weight(_text_:information in 1520) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=1520,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 1520, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1520)
        0.033494003 = weight(_text_:retrieval in 1520) [ClassicSimilarity], result of:
          0.033494003 = score(doc=1520,freq=10.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.37365708 = fieldWeight in 1520, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1520)
      0.14285715 = coord(2/14)
    
    Abstract
    This paper discusses issues concerning the augmentation of thesaurus relationships, in light of new application possibilities for retrieval. We first discuss a case study that explored the retrieval potential of an augmented set of thesaurus relationships by specialising standard relationships into richer subtypes, in particular hierarchical geographical containment and the associative relationship. We then locate this work in a broader context by reviewing various attempts to build taxonomies of thesaurus relationships, and conclude by discussing the feasibility of hierarchically augmenting the core set of thesaurus relationships, particularly the associative relationship. We discuss the possibility of enriching the specification and semantics of Related Term (RT relationships), while maintaining compatibility with traditional thesauri via a limited hierarchical extension of the associative (and hierarchical) relationships. This would be facilitated by distinguishing the type of term from the (sub)type of relationship and explicitly specifying semantic categories for terms following a faceted approach. We first illustrate how hierarchical spatial relationships can be used to provide more flexible retrieval for queries incorporating place names in applications employing online gazetteers and geographical thesauri. We then employ a set of experimental scenarios to investigate key issues affecting use of the associative (RT) thesaurus relationships in semantic distance measures. Previous work has noted the potential of RTs in thesaurus search aids but also the problem of uncontrolled expansion of query term sets. Results presented in this paper suggest the potential for taking account of the hierarchical context of an RT link and specialisations of the RT relationship
    Source
    Journal of digital information. 1(2001) no.8
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  10. ¬The semantics of relationships : an interdisciplinary perspective (2002) 0.01
    0.005317847 = product of:
      0.037224926 = sum of:
        0.011280581 = weight(_text_:information in 1430) [ClassicSimilarity], result of:
          0.011280581 = score(doc=1430,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.21684799 = fieldWeight in 1430, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1430)
        0.025944345 = weight(_text_:retrieval in 1430) [ClassicSimilarity], result of:
          0.025944345 = score(doc=1430,freq=6.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.28943354 = fieldWeight in 1430, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1430)
      0.14285715 = coord(2/14)
    
    Abstract
    Work on relationships takes place in many communities, including, among others, data modeling, knowledge representation, natural language processing, linguistics, and information retrieval. Unfortunately, continued disciplinary splintering and specialization keeps any one person from being familiar with the full expanse of that work. By including contributions form experts in a variety of disciplines and backgrounds, this volume demonstrates both the parallels that inform work on relationships across a number of fields and the singular emphases that have yet to be fully embraced, The volume is organized into 3 parts: (1) Types of relationships (2) Relationships in knowledge representation and reasoning (3) Applications of relationships
    Content
    Enthält die Beiträge: Pt.1: Types of relationships: CRUDE, D.A.: Hyponymy and its varieties; FELLBAUM, C.: On the semantics of troponymy; PRIBBENOW, S.: Meronymic relationships: from classical mereology to complex part-whole relations; KHOO, C. u.a.: The many facets of cause-effect relation - Pt.2: Relationships in knowledge representation and reasoning: GREEN, R.: Internally-structured conceptual models in cognitive semantics; HOVY, E.: Comparing sets of semantic relations in ontologies; GUARINO, N., C. WELTY: Identity and subsumption; JOUIS; C.: Logic of relationships - Pt.3: Applications of relationships: EVENS, M.: Thesaural relations in information retrieval; KHOO, C., S.H. MYAENG: Identifying semantic relations in text for information retrieval and information extraction; McCRAY, A.T., O. BODENREICHER: A conceptual framework for the biiomedical domain; HETZLER, B.: Visual analysis and exploration of relationships
    Series
    Information science and knowledge management; vol.3
  11. Mazzocchi, F.; Tiberi, M.; De Santis, B.; Plini, P.: Relational semantics in thesauri : an overview and some remarks at theoretical and practical levels (2007) 0.00
    0.004274482 = product of:
      0.029921371 = sum of:
        0.008737902 = weight(_text_:information in 1462) [ClassicSimilarity], result of:
          0.008737902 = score(doc=1462,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16796975 = fieldWeight in 1462, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1462)
        0.021183468 = weight(_text_:retrieval in 1462) [ClassicSimilarity], result of:
          0.021183468 = score(doc=1462,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.23632148 = fieldWeight in 1462, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1462)
      0.14285715 = coord(2/14)
    
    Abstract
    A thesaurus is a controlled vocabulary designed to allow for effective information retrieval. It con- sists of different kinds of semantic relationships, with the aim of guiding users to the choice of the most suitable index and search terms for expressing a certain concept. The relational semantics of a thesaurus deal with methods to connect terms with related meanings and arc intended to enhance information recall capabilities. In this paper, focused on hierarchical relations, different aspects of the relational semantics of thesauri, and among them the possibility of developing richer structures, are analyzed. Thesauri are viewed as semantic tools providing, for operational purposes, the representation of the meaning of the terms. The paper stresses how theories of semantics, holding different perspectives about the nature of meaning and how it is represented, affect the design of the relational semantics of thesauri. The need for tools capable of representing the complexity of knowledge and of the semantics of terms as it occurs in the literature of their respective subject fields is advocated. It is underlined how this would contribute to improving the retrieval of information. To achieve this goal, even though in a preliminary manner, we explore the possibility of setting against the framework of thesaurus design the notions of language games and hermeneutic horizon.
  12. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2008) 0.00
    0.004004761 = product of:
      0.028033325 = sum of:
        0.0070627616 = weight(_text_:information in 2461) [ClassicSimilarity], result of:
          0.0070627616 = score(doc=2461,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13576832 = fieldWeight in 2461, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2461)
        0.020970564 = weight(_text_:retrieval in 2461) [ClassicSimilarity], result of:
          0.020970564 = score(doc=2461,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.23394634 = fieldWeight in 2461, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2461)
      0.14285715 = coord(2/14)
    
    Abstract
    Moderne Verfahren des Information Retrieval verlangen nach aussagekräftigen und detailliert relationierten Dokumentationssprachen. Der selektive Transfer einzelner Modellierungsstrategien aus dem Bereich semantischer Technologien für die Gestaltung und Relationierung bestehender Dokumentationssprachen wird diskutiert. Am Beispiel des Gegenstandsbereichs "Theater" der Schlagwortnormdatei wird ein hierarchisch strukturiertes Relationeninventar definiert, welches sowohl hinreichend allgemeine als auch zahlreiche spezifische Relationstypen enthält, welche eine detaillierte und damit funktionale Relationierung des Vokabulars ermöglichen. Die Relationierung des Gegenstandsbereichs wird als Ontologie im OWL-Format modelliert. Im Gegensatz zu anderen Ansätzen und Überlegungen zur Schaffung von Relationeninventaren entwickelt der vorgestellte Vorschlag das Relationeninventar aus der Begriffsmenge eines vorgegebenen Gegenstandsbereichs heraus. Das entwickelte Inventar wird als eine hierarchisch strukturierte Taxonomie gestaltet, was einen Zugewinn an Übersichtlichkeit und Funktionalität bringt.
  13. Mai, J.-E.: Actors, domains, and constraints in the design and construction of controlled vocabularies (2008) 0.00
    0.0035812336 = product of:
      0.025068633 = sum of:
        0.010089659 = weight(_text_:information in 1921) [ClassicSimilarity], result of:
          0.010089659 = score(doc=1921,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.19395474 = fieldWeight in 1921, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1921)
        0.014978974 = weight(_text_:retrieval in 1921) [ClassicSimilarity], result of:
          0.014978974 = score(doc=1921,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.16710453 = fieldWeight in 1921, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1921)
      0.14285715 = coord(2/14)
    
    Abstract
    Classification schemes, thesauri, taxonomies, and other controlled vocabularies play important roles in the organization and retrieval of information in many different environments. While the design and construction of controlled vocabularies have been prescribed at the technical level in great detail over the past decades, the methodological level has been somewhat neglected. However, classification research has in recent years focused on developing approaches to the analysis of users, domains, and activities that could produce requirements for the design of controlled vocabularies. Researchers have often argued that the design, construction, and use of controlled vocabularies need to be based on analyses and understandings of the contexts in which these controlled vocabularies function. While one would assume that the growing body of research on human information behavior might help guide the development of controlled vocabularies shed light on these contexts, unfortunately, much of the research in this area is descriptive in nature and of little use for systems design. This paper discusses these trends and outlines a holistic approach that demonstrates how the design of controlled vocabularies can be informed by investigations of people's interactions with information. This approach is based on the Cognitive Work Analysis framework and outlines several dimensions of human-information interactions. Application of this approach will result is a comprehensive understanding of the contexts in which the controlled vocabulary will function and which can be used for the development of for the development of controlled vocabularies.
  14. Hjoerland, B.: Semantics and knowledge organization (2007) 0.00
    0.0035812336 = product of:
      0.025068633 = sum of:
        0.010089659 = weight(_text_:information in 1980) [ClassicSimilarity], result of:
          0.010089659 = score(doc=1980,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.19395474 = fieldWeight in 1980, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1980)
        0.014978974 = weight(_text_:retrieval in 1980) [ClassicSimilarity], result of:
          0.014978974 = score(doc=1980,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.16710453 = fieldWeight in 1980, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1980)
      0.14285715 = coord(2/14)
    
    Abstract
    The aim of this chapter is to demonstrate that semantic issues underlie all research questions within Library and Information Science (LIS, or, as hereafter, IS) and, in particular, the subfield known as Knowledge Organization (KO). Further, it seeks to show that semantics is a field influenced by conflicting views and discusses why it is important to argue for the most fruitful one of these. Moreover, the chapter demonstrates that IS has not yet addressed semantic problems in systematic fashion and examines why the field is very fragmented and without a proper theoretical basis. The focus here is on broad interdisciplinary issues and the long-term perspective. The theoretical problems involving semantics and concepts are very complicated. Therefore, this chapter starts by considering tools developed in KO for information retrieval (IR) as basically semantic tools. In this way, it establishes a specific IS focus on the relation between KO and semantics. It is well known that thesauri consist of a selection of concepts supplemented with information about their semantic relations (such as generic relations or "associative relations"). Some words in thesauri are "preferred terms" (descriptors), whereas others are "lead-in terms." The descriptors represent concepts. The difference between "a word" and "a concept" is that different words may have the same meaning and similar words may have different meanings, whereas one concept expresses one meaning.
    Source
    Annual review of information science and technology. 41(2007), S.367-405
  15. Dextre Clarke, S.G.; Gilchrist, A.; Will, L.: Revision and extension of thesaurus standards (2004) 0.00
    0.003574072 = product of:
      0.025018502 = sum of:
        0.008071727 = weight(_text_:information in 2615) [ClassicSimilarity], result of:
          0.008071727 = score(doc=2615,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1551638 = fieldWeight in 2615, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2615)
        0.016946774 = weight(_text_:retrieval in 2615) [ClassicSimilarity], result of:
          0.016946774 = score(doc=2615,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.18905719 = fieldWeight in 2615, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=2615)
      0.14285715 = coord(2/14)
    
    Abstract
    The current standards for monolingual and multilingual thesauri are long overdue for an update. This applies to the international standards ISO 2788 and ISO 5964, as well as the corresponding national standards in several countries and the American standard ANSI/NISO Z39.19. Work is now under way in the UK and in the USA to revise and extend the standards, with particular emphasis on interoperability needs in our world of vast electronic networks. Work in the UK is starting with the British Standards, in the hope of leading on to one international standard to serve all. Some of the issues still under discussion include the treatment of facet analysis, coverage of additional types of controlled vocabulary such as classification schemes, taxonomies and ontologies, and mapping from one vocabulary to another. 1. Are thesaurus standards still needed? Since the 1960s, even before the renowned Cranfield experiments (Cleverdon et al., 1966; Cleverdon, 1967) arguments have raged over the usefulness or otherwise of controlled vocabularies. The case has never been proved definitively one way or the other. At the same time, a recognition has become widespread that no one search method can answer all retrieval requirements. In today's environment of very large networks of resources, the skilled information professional uses a range of techniques. Among these, controlled vocabularies are valued alongside others. The first international standard for monolingual thesauri was issued in 1974. In those days, the main application was for postcoordinate indexing and retrieval from document collections or bibliographic databases. For many information professionals the only practicable alternative to a thesaurus was a classification scheme. And so the thesaurus developed a strong following. After computer systems with full text search capability became widely available, however, the arguments against controlled vocabularies gained more followers. The cost of building and maintaining a thesaurus or a classification scheme was a strong disincentive. Today's databases are typically immense compared with those three decades ago. Full text searching is taken for granted, not just in discrete databases but across all the resources in an intranet or even the Internet. But intranets have brought particular frustration as users discover that despite all the computer power, they cannot find items which they know to be present an the network. So the trend against controlled vocabularies is now being reversed, as many information professionals are turning to them for help. Standards to guide them are still in demand.
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  16. Milstead, J.L.: Standards for relationships between subject indexing terms (2001) 0.00
    0.0034326524 = product of:
      0.024028566 = sum of:
        0.0060537956 = weight(_text_:information in 1148) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=1148,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 1148, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1148)
        0.01797477 = weight(_text_:retrieval in 1148) [ClassicSimilarity], result of:
          0.01797477 = score(doc=1148,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.20052543 = fieldWeight in 1148, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1148)
      0.14285715 = coord(2/14)
    
    Abstract
    Relationships between the terms in thesauri and Indexes are the subject of national and international standards. The standards for thesauri enumerate and provide criteria for three basic types of relationship: equivalence, hierarchical, and associative. Standards and guidelines for indexes draw an the thesaurus standards to provide less detailed guidance for showing relationships between the terms used in an Index. The international standard for multilingual thesauri adds recommendations for assuring equal treatment of the languages of a thesaurus. The present standards were developed when lookup and search were essentially manual, and the value of the kinds of relationships has never been determined. It is not clear whether users understand or can use the distinctions between kinds of relationships. On the other hand, sophisticated text analysis systems may be able both to assist with development of more powerful term relationship schemes and to use the relationships to improve retrieval.
    Series
    Information science and knowledge management; vol.2
  17. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2008) 0.00
    0.0034326524 = product of:
      0.024028566 = sum of:
        0.0060537956 = weight(_text_:information in 1837) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=1837,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 1837, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1837)
        0.01797477 = weight(_text_:retrieval in 1837) [ClassicSimilarity], result of:
          0.01797477 = score(doc=1837,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.20052543 = fieldWeight in 1837, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1837)
      0.14285715 = coord(2/14)
    
    Abstract
    Moderne Verfahren des Information Retrieval verlangen nach aussagekräftigen und detailliert relationierten Dokumentationssprachen. Der selektive Transfer einzelner Modellierungsstrategien aus dem Bereich semantischer Technologien für die Gestaltung und Relationierung bestehender Dokumentationssprachen wird diskutiert. Am Beispiel des Gegenstandsbereichs "Theater" der Schlagwortnormdatei wird ein hierarchisch strukturiertes Relationeninventar definiert, welches sowohl hinreichend allgemeine als auch zahlreiche spezifische Relationstypen enthält, welche eine detaillierte und damit funktionale Relationierung des Vokabulars ermöglichen. Die Relationierung des Gegenstandsbereichs wird als Ontologie im OWL-Format modelliert. Im Gegensatz zu anderen Ansätzen und Überlegungen zur Schaffung von Relationeninventaren entwickelt der vorgestellte Vorschlag das Relationeninventar aus der Begriffsmenge eines vorgegebenen Gegenstandsbereichs heraus. Das entwickelte Inventar wird als eine hierarchisch strukturierte Taxonomie gestaltet, was einen Zugewinn an Übersichtlichkeit und Funktionalität bringt.
  18. Relationships in the organization of knowledge (2001) 0.00
    0.0033881254 = product of:
      0.023716876 = sum of:
        0.008737902 = weight(_text_:information in 1139) [ClassicSimilarity], result of:
          0.008737902 = score(doc=1139,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16796975 = fieldWeight in 1139, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1139)
        0.014978974 = weight(_text_:retrieval in 1139) [ClassicSimilarity], result of:
          0.014978974 = score(doc=1139,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.16710453 = fieldWeight in 1139, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1139)
      0.14285715 = coord(2/14)
    
    Abstract
    With fourteen contributions grouped in two sections, "Theoretical background" and "Systems", this work discusses the most common relationships used in the organization of recorded knowledge to facilitate information retrieval: the relationships between bibliographic entities, intra- and intertextual relationships, relevance relationships, and subject relationships in thesauri and other classificatory structures. The editors' goal is to "spur further interest, debate, research, and development".
    Content
    Enthält u.a. die Beiträge: GREEN, R.: Relationships in the organization of knowledge: an overview; TILLETT, B.: Bibliographic relationships; CLARKE, S.G.D.: Thesaural relationships; MILSTEAD, J.L.: Standards for relationships between subject indexing terms; HUDON, M.: Relationships in multilingual thesauri; BODENREIDER, O. u. C.A. BEAN: Relationships among knowledge structures: vocabulary integration within a subject domain; BEGHTOL, C.: Relationships in classificatory structure and meaning; BEAN, C.A. u. R. GREEN: Relevance relationships; EL-HOSHY, L.M.: Relationships in Library of Congress Subject Headings; MOLHOLT, P.: The Art and Architecture Thesaurus: controlling relationships through rules and structure; NELSON, S.J. u.a.: Relationships in Medical Subject Headings (MeSH); NEELAMEGHAN, A.: Lateral relationships in multicultural, mulrilingual databases in the spiritual and religous domains: the OM information service; SATIJA, M.P.: Relationships in Ranganathan's Colon classification; MITCHELL, J.S.: Relationships in the Dewey Decimal Classification System
    Series
    Information science and knowledge management; vol.2
  19. Panzer, M.: Semantische Integration heterogener und unterschiedlichsprachiger Wissensorganisationssysteme : CrissCross und jenseits (2008) 0.00
    0.001513105 = product of:
      0.021183468 = sum of:
        0.021183468 = weight(_text_:retrieval in 4335) [ClassicSimilarity], result of:
          0.021183468 = score(doc=4335,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.23632148 = fieldWeight in 4335, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4335)
      0.071428575 = coord(1/14)
    
    Abstract
    Klassische bibliothekarische Indexierungswerkzeuge werden bis heute nur selten fürs Retrieval nutzbar gemacht; die Wichtigkeit, verschiedene dieser Vokabularien zu harmonisieren und integriert zu verwenden, ist noch immer keine Selbstverständlichkeit. Im Rahmen des DFG-Projektes "CrissCross" wird, ausgehend von der deutschen Ausgabe der Dewey-Dezimalklassifikation, eine Verknüpfung zwischen der DDC und der Schlagwortnormdatei (SWD) aufgebaut, um eine verbale Suche über klassifikatorisch erschlossene Bestände zu ermöglichen. Als Verbreiterung der Basis des verbalen Zugriffs wird außerdem das Mapping der amerikanischen LCSH und des französischen RAMEAU angestrebt. Nach einer kurzen Vorstellung von CrissCross und der Abgrenzung gegenüber ähnlichen Unterfangen werden Rückwirkungen semantischer Integration auf die verknüpften Vokabulare diskutiert. Wie müssen und können sich z.B. Thesauri verändern, wenn sie mit anderen (strukturheterologen) Systemen verknüpft sind? Dabei liegt ein Schwerpunkt der Analyse auf dem semantischen Verhältnis üblicher Mappingrelationen zu den verknüpften Begriffen (besonders im Hinblick auf Polysemie). Außerdem wird der Mehrwert fürs Retrieval auf der Basis solcher Wissensorganisationssysteme, z.B. durch automatisierten Zugriff über Ontologien, diskutiert.
  20. Svenonius, E.: LCSH: semantics, syntax and specifity (2000) 0.00
    0.0012839122 = product of:
      0.01797477 = sum of:
        0.01797477 = weight(_text_:retrieval in 5599) [ClassicSimilarity], result of:
          0.01797477 = score(doc=5599,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.20052543 = fieldWeight in 5599, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=5599)
      0.071428575 = coord(1/14)
    
    Theme
    Verbale Doksprachen im Online-Retrieval