Search (19 results, page 1 of 1)

  • × year_i:[2010 TO 2020}
  • × theme_ss:"Citation indexing"
  1. Leydesdorff, L.; Opthof, T.: Citation analysis with medical subject Headings (MeSH) using the Web of Knowledge : a new routine (2013) 0.01
    0.0075481744 = product of:
      0.05283722 = sum of:
        0.046783425 = weight(_text_:web in 943) [ClassicSimilarity], result of:
          0.046783425 = score(doc=943,freq=10.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.48375595 = fieldWeight in 943, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=943)
        0.0060537956 = weight(_text_:information in 943) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=943,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 943, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=943)
      0.14285715 = coord(2/14)
    
    Abstract
    Citation analysis of documents retrieved from the Medline database (at the Web of Knowledge) has been possible only on a case-by-case basis. A technique is presented here for citation analysis in batch mode using both Medical Subject Headings (MeSH) at the Web of Knowledge and the Science Citation Index at the Web of Science (WoS). This freeware routine is applied to the case of "Brugada Syndrome," a specific disease and field of research (since 1992). The journals containing these publications, for example, are attributed to WoS categories other than "cardiac and cardiovascular systems", perhaps because of the possibility of genetic testing for this syndrome in the clinic. With this routine, all the instruments available for citation analysis can now be used on the basis of MeSH terms. Other options for crossing between Medline, WoS, and Scopus are also reviewed.
    Object
    Web of Knowledge
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.5, S.1076-1080
  2. Heneberg, P.: Lifting the fog of scientometric research artifacts : on the scientometric analysis of environmental tobacco smoke research (2013) 0.00
    0.004243123 = product of:
      0.029701859 = sum of:
        0.02465703 = weight(_text_:web in 613) [ClassicSimilarity], result of:
          0.02465703 = score(doc=613,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.25496176 = fieldWeight in 613, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=613)
        0.0050448296 = weight(_text_:information in 613) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=613,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 613, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=613)
      0.14285715 = coord(2/14)
    
    Abstract
    Previous analyses identified research on environmental tobacco smoke to be subject to strong fluctuations as measured by both quantitative and qualitative indicators. The evolution of search algorithms (based on the Web of Science and Web of Knowledge database platforms) was used to show the impact of errors of omission and commission in the outcomes of scientometric research. Optimization of the search algorithm led to the complete reassessment of previously published findings on the performance of environmental tobacco smoke research. Instead of strong continuous growth, the field of environmental tobacco smoke research was shown to experience stagnation or slow growth since mid-1990s when evaluated quantitatively. Qualitative analysis revealed steady but slow increase in the citation rate and decrease in uncitedness. Country analysis revealed the North-European countries as leaders in environmental tobacco smoke research (when the normalized results were evaluated both quantitatively and qualitatively), whereas the United States ranked first only when assessing the total number of papers produced. Scientometric research artifacts, including both errors of omission and commission, were shown to be capable of completely obscuring the real output of the chosen research field.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.2, S.334-344
  3. Gorraiz, J.; Purnell, P.J.; Glänzel, W.: Opportunities for and limitations of the Book Citation Index (2013) 0.00
    0.003932116 = product of:
      0.02752481 = sum of:
        0.017435152 = weight(_text_:web in 966) [ClassicSimilarity], result of:
          0.017435152 = score(doc=966,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 966, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=966)
        0.010089659 = weight(_text_:information in 966) [ClassicSimilarity], result of:
          0.010089659 = score(doc=966,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.19395474 = fieldWeight in 966, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=966)
      0.14285715 = coord(2/14)
    
    Abstract
    This article offers important background information about a new product, the Book Citation Index (BKCI), launched in 2011 by Thomson Reuters. Information is illustrated by some new facts concerning The BKCI's use in bibliometrics, coverage analysis, and a series of idiosyncrasies worthy of further discussion. The BKCI was launched primarily to assist researchers identify useful and relevant research that was previously invisible to them, owing to the lack of significant book content in citation indexes such as the Web of Science. So far, the content of 33,000 books has been added to the desktops of the global research community, the majority in the arts, humanities, and social sciences fields. Initial analyses of the data from The BKCI have indicated that The BKCI, in its current version, should not be used for bibliometric or evaluative purposes. The most significant limitations to this potential application are the high share of publications without address information, the inflation of publication counts, the lack of cumulative citation counts from different hierarchical levels, and inconsistency in citation counts between the cited reference search and the book citation index. However, The BKCI is a first step toward creating a reliable and necessary citation data source for monographs - a very challenging issue, because, unlike journals and conference proceedings, books have specific requirements, and several problems emerge not only in the context of subject classification, but also in their role as cited publications and in citing publications.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.7, S.1388-1398
  4. Leydesdorff, L.; Salah, A.A.A.: Maps on the basis of the Arts & Humanities Citation Index : the journals Leonardo and Art Journal versus "digital humanities" as a topic (2010) 0.00
    0.0038537113 = product of:
      0.026975978 = sum of:
        0.020922182 = weight(_text_:web in 3436) [ClassicSimilarity], result of:
          0.020922182 = score(doc=3436,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.21634221 = fieldWeight in 3436, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3436)
        0.0060537956 = weight(_text_:information in 3436) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=3436,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 3436, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3436)
      0.14285715 = coord(2/14)
    
    Abstract
    The possibilities of using the Arts & Humanities Citation Index (A&HCI) for journal mapping have not been sufficiently recognized because of the absence of a Journal Citations Report (JCR) for this database. A quasi-JCR for the A&HCI ([2008]) was constructed from the data contained in the Web of Science and is used for the evaluation of two journals as examples: Leonardo and Art Journal. The maps on the basis of the aggregated journal-journal citations within this domain can be compared with maps including references to journals in the Science Citation Index and Social Science Citation Index. Art journals are cited by (social) science journals more than by other art journals, but these journals draw upon one another in terms of their own references. This cultural impact in terms of being cited is not found when documents with a topic such as digital humanities are analyzed. This community of practice functions more as an intellectual organizer than a journal.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.4, S.787-801
  5. Robinson-García, N.; Jiménez-Contreras, E.; Torres-Salinas, D.: Analyzing data citation practices using the data citation index : a study of backup strategies of end users (2016) 0.00
    0.0035099457 = product of:
      0.02456962 = sum of:
        0.017435152 = weight(_text_:web in 3225) [ClassicSimilarity], result of:
          0.017435152 = score(doc=3225,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 3225, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3225)
        0.0071344664 = weight(_text_:information in 3225) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=3225,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 3225, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3225)
      0.14285715 = coord(2/14)
    
    Abstract
    We present an analysis of data citation practices based on the Data Citation Index (DCI) (Thomson Reuters). This database launched in 2012 links data sets and data studies with citations received from the other citation indexes. The DCI harvests citations to research data from papers indexed in the Web of Science. It relies on the information provided by the data repository. The findings of this study show that data citation practices are far from common in most research fields. Some differences have been reported on the way researchers cite data: Although in the areas of science and engineering & technology data sets were the most cited, in the social sciences and arts & humanities data studies play a greater role. A total of 88.1% of the records have received no citation, but some repositories show very low uncitedness rates. Although data citation practices are rare in most fields, they have expanded in disciplines such as crystallography and genomics. We conclude by emphasizing the role that the DCI could play in encouraging the consistent, standardized citation of research data-a role that would enhance their value as a means of following the research process from data collection to publication.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.12, S.2964-2975
  6. Belter, C.W.: Citation analysis as a literature search method for systematic reviews (2016) 0.00
    0.0034326524 = product of:
      0.024028566 = sum of:
        0.0060537956 = weight(_text_:information in 3158) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=3158,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 3158, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3158)
        0.01797477 = weight(_text_:retrieval in 3158) [ClassicSimilarity], result of:
          0.01797477 = score(doc=3158,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.20052543 = fieldWeight in 3158, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=3158)
      0.14285715 = coord(2/14)
    
    Abstract
    Systematic reviews are essential for evaluating biomedical treatment options, but the growing size and complexity of the available biomedical literature combined with the rigor of the systematic review method mean that systematic reviews are extremely difficult and labor-intensive to perform. In this article, I propose a method of searching the literature by systematically mining the various types of citation relationships between articles. I then test the method by comparing its precision and recall to that of 14 published systematic reviews. The method successfully retrieved 74% of the studies included in these reviews and 90% of the studies it could reasonably be expected to retrieve. The method also retrieved fewer than half of the total number of publications retrieved by these reviews and can be performed in substantially less time. This suggests that the proposed method offers a promising complement to traditional text-based methods of literature identification and retrieval for systematic reviews.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.11, S.2766-2777
  7. Ding, Y.; Zhang, G.; Chambers, T.; Song, M.; Wang, X.; Zhai, C.: Content-based citation analysis : the next generation of citation analysis (2014) 0.00
    0.002011945 = product of:
      0.014083615 = sum of:
        0.0060537956 = weight(_text_:information in 1521) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=1521,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 1521, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1521)
        0.008029819 = product of:
          0.024089456 = sum of:
            0.024089456 = weight(_text_:22 in 1521) [ClassicSimilarity], result of:
              0.024089456 = score(doc=1521,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.23214069 = fieldWeight in 1521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1521)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Date
    22. 8.2014 16:52:04
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.9, S.1820-1833
  8. Boyack, K.W.; Small, H.; Klavans, R.: Improving the accuracy of co-citation clustering using full text (2013) 0.00
    8.64828E-4 = product of:
      0.012107591 = sum of:
        0.012107591 = weight(_text_:information in 1036) [ClassicSimilarity], result of:
          0.012107591 = score(doc=1036,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.23274569 = fieldWeight in 1036, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1036)
      0.071428575 = coord(1/14)
    
    Abstract
    Historically, co-citation models have been based only on bibliographic information. Full-text analysis offers the opportunity to significantly improve the quality of the signals upon which these co-citation models are based. In this work we study the effect of reference proximity on the accuracy of co-citation clusters. Using a corpus of 270,521 full text documents from 2007, we compare the results of traditional co-citation clustering using only the bibliographic information to results from co-citation clustering where proximity between reference pairs is factored into the pairwise relationships. We find that accounting for reference proximity from full text can increase the textual coherence (a measure of accuracy) of a co-citation cluster solution by up to 30% over the traditional approach based on bibliographic information.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.9, S.1759-17676
  9. Bensman, S.J.: Eugene Garfield, Francis Narin, and PageRank : the theoretical bases of the Google search engine (2013) 0.00
    7.6474476E-4 = product of:
      0.010706427 = sum of:
        0.010706427 = product of:
          0.032119278 = sum of:
            0.032119278 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.032119278 = score(doc=1149,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.30952093 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1149)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Date
    17.12.2013 11:02:22
  10. Ardanuy, J.: Sixty years of citation analysis studies in the humanities (1951-2010) (2013) 0.00
    7.48963E-4 = product of:
      0.0104854815 = sum of:
        0.0104854815 = weight(_text_:information in 1015) [ClassicSimilarity], result of:
          0.0104854815 = score(doc=1015,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.20156369 = fieldWeight in 1015, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1015)
      0.071428575 = coord(1/14)
    
    Abstract
    This article provides an overview of studies that have used citation analysis in the field of humanities in the period 1951 to 2010. The work is based on an exhaustive search in databases-particularly those in library and information science-and on citation chaining from papers on citation analysis. The results confirm that use of this technique in the humanities is limited, and although there was some growth in the 1970s and 1980s, it has stagnated in the past 2 decades. Most of the work has been done by research staff, but almost one third involves library staff, and 15% has been done by students. The study also showed that less than one fourth of the works used a citation database such as the Arts & Humanities Citation Index and that 21% of the works were in publications other than library and information science journals. The United States has the greatest output, and English is by far the most frequently used language, and 13.9% of the studies are in other languages.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.8, S.1751-1755
  11. Hellqvist, B.: Referencing in the humanities and its implications for citation analysis (2010) 0.00
    7.134467E-4 = product of:
      0.009988253 = sum of:
        0.009988253 = weight(_text_:information in 3329) [ClassicSimilarity], result of:
          0.009988253 = score(doc=3329,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1920054 = fieldWeight in 3329, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3329)
      0.071428575 = coord(1/14)
    
    Abstract
    This article studies citation practices in the arts and humanities from a theoretical and conceptual viewpoint, drawing on studies from fields like linguistics, history, library & information science, and the sociology of science. The use of references in the humanities is discussed in connection with the growing interest in the possibilities of applying citation analysis to humanistic disciplines. The study shows how the use of references within the humanities is connected to concepts of originality, to intellectual organization, and to searching and writing. Finally, it is acknowledged that the use of references is connected to stylistic, epistemological, and organizational differences, and these differences must be taken into account when applying citation analysis to humanistic disciplines.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.2, S.310-318
  12. Zhang, G.; Ding, Y.; Milojevic, S.: Citation content analysis (CCA) : a framework for syntactic and semantic analysis of citation content (2013) 0.00
    6.115257E-4 = product of:
      0.00856136 = sum of:
        0.00856136 = weight(_text_:information in 975) [ClassicSimilarity], result of:
          0.00856136 = score(doc=975,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16457605 = fieldWeight in 975, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=975)
      0.071428575 = coord(1/14)
    
    Abstract
    This study proposes a new framework for citation content analysis (CCA), for syntactic and semantic analysis of citation content that can be used to better analyze the rich sociocultural context of research behavior. This framework could be considered the next generation of citation analysis. The authors briefly review the history and features of content analysis in traditional social sciences and its previous application in library and information science (LIS). Based on critical discussion of the theoretical necessity of a new method as well as the limits of citation analysis, the nature and purposes of CCA are discussed, and potential procedures to conduct CCA, including principles to identify the reference scope, a two-dimensional (citing and cited) and two-module (syntactic and semantic) codebook, are provided and described. Future work and implications are also suggested.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.7, S.1490-1503
  13. MacRoberts, M.H.; MacRoberts, B.R.: Problems of citation analysis : a study of uncited and seldom-cited influences (2010) 0.00
    5.7655195E-4 = product of:
      0.008071727 = sum of:
        0.008071727 = weight(_text_:information in 3308) [ClassicSimilarity], result of:
          0.008071727 = score(doc=3308,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1551638 = fieldWeight in 3308, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=3308)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.1, S.1-12
  14. Leydesdorff, L.; Moya-Anegón, F.de; Guerrero-Bote, V.P.: Journal maps on the basis of Scopus data : a comparison with the Journal Citation Reports of the ISI (2010) 0.00
    5.0960475E-4 = product of:
      0.0071344664 = sum of:
        0.0071344664 = weight(_text_:information in 3335) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=3335,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 3335, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3335)
      0.071428575 = coord(1/14)
    
    Abstract
    Using the Scopus dataset (1996-2007) a grand matrix of aggregated journal-journal citations was constructed. This matrix can be compared in terms of the network structures with the matrix contained in the Journal Citation Reports (JCR) of the Institute of Scientific Information (ISI). Because the Scopus database contains a larger number of journals and covers the humanities, one would expect richer maps. However, the matrix is in this case sparser than in the case of the ISI data. This is because of (a) the larger number of journals covered by Scopus and (b) the historical record of citations older than 10 years contained in the ISI database. When the data is highly structured, as in the case of large journals, the maps are comparable, although one may have to vary a threshold (because of the differences in densities). In the case of interdisciplinary journals and journals in the social sciences and humanities, the new database does not add a lot to what is possible with the ISI databases.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.2, S.352-369
  15. Wainer, J.; Valle, E.: What happens to computer science research after it is published? : Tracking CS research lines (2013) 0.00
    5.04483E-4 = product of:
      0.0070627616 = sum of:
        0.0070627616 = weight(_text_:information in 948) [ClassicSimilarity], result of:
          0.0070627616 = score(doc=948,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13576832 = fieldWeight in 948, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=948)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.6, S.1104-1111
  16. MacRoberts, M.H.; MacRoberts, B.R.: ¬The mismeasure of science : citation analysis (2018) 0.00
    5.04483E-4 = product of:
      0.0070627616 = sum of:
        0.0070627616 = weight(_text_:information in 4058) [ClassicSimilarity], result of:
          0.0070627616 = score(doc=4058,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13576832 = fieldWeight in 4058, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4058)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.3, S.474-482
  17. Riviera, E.: Scientific communities as autopoietic systems : the reproductive function of citations (2013) 0.00
    4.32414E-4 = product of:
      0.0060537956 = sum of:
        0.0060537956 = weight(_text_:information in 970) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=970,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 970, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=970)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.7, S.1442-1453
  18. Hu, X.; Rousseau, R.: Do citation chimeras exist? : The case of under-cited influential articles suffering delayed recognition (2019) 0.00
    4.32414E-4 = product of:
      0.0060537956 = sum of:
        0.0060537956 = weight(_text_:information in 5217) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=5217,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 5217, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5217)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.5, S.499-508
  19. Marx, W.; Bornmann, L.; Cardona, M.: Reference standards and reference multipliers for the comparison of the citation impact of papers published in different time periods (2010) 0.00
    3.6034497E-4 = product of:
      0.0050448296 = sum of:
        0.0050448296 = weight(_text_:information in 3998) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=3998,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 3998, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3998)
      0.071428575 = coord(1/14)
    
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.10, S.2061-20690