Search (98 results, page 1 of 5)

  • × year_i:[2010 TO 2020}
  • × theme_ss:"Metadaten"
  1. Miller, S.J.: Metadata for digital collections : a how-to-do-it manual (2011) 0.03
    0.032921575 = product of:
      0.11522551 = sum of:
        0.019725623 = weight(_text_:web in 4911) [ClassicSimilarity], result of:
          0.019725623 = score(doc=4911,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.2039694 = fieldWeight in 4911, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4911)
        0.058574736 = weight(_text_:elektronische in 4911) [ClassicSimilarity], result of:
          0.058574736 = score(doc=4911,freq=8.0), product of:
            0.14013545 = queryWeight, product of:
              4.728978 = idf(docFreq=1061, maxDocs=44218)
              0.029633347 = queryNorm
            0.41798657 = fieldWeight in 4911, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.728978 = idf(docFreq=1061, maxDocs=44218)
              0.03125 = fieldNorm(doc=4911)
        0.03121758 = weight(_text_:bibliothek in 4911) [ClassicSimilarity], result of:
          0.03121758 = score(doc=4911,freq=4.0), product of:
            0.121660605 = queryWeight, product of:
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.029633347 = queryNorm
            0.25659564 = fieldWeight in 4911, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.03125 = fieldNorm(doc=4911)
        0.005707573 = weight(_text_:information in 4911) [ClassicSimilarity], result of:
          0.005707573 = score(doc=4911,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.10971737 = fieldWeight in 4911, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=4911)
      0.2857143 = coord(4/14)
    
    Abstract
    More and more libraries, archives, and museums are creating online collections of digitized resources. Where can those charged with organizing these new collections turn for guidance on the actual practice of metadata design and creation? "Metadata for Digital Collections: A How-to-do-it Manual" is suitable for libraries, archives, and museums. This practical, hands-on volume will make it easy for readers to acquire the knowledge and skills they need, whether they use the book on the job or in a classroom. Author Steven Miller introduces readers to fundamental concepts and practices in a style accessible to beginners and LIS students, as well as experienced practitioners with little metadata training. He also takes account of the widespread use of digital collection management systems such as CONTENTdm. Rather than surveying a large number of metadata schemes, Miller covers only three of the schemes most commonly used in general digital resource description, namely, Dublin Core, MODS, and VRA. By limiting himself, Miller is able to address the chosen schemes in greater depth. He is also able to include numerous practical examples that clarify common application issues and challenges. He provides practical guidance on applying each of the Dublin Core elements, taking special care to clarify those most commonly misunderstood. The book includes a step-by-step guide on how to design and document a metadata scheme for local institutional needs and for specific digital collection projects. The text also serves well as an introduction to broader metadata topics, including XML encoding, mapping between different schemes, metadata interoperability and record sharing, OAI harvesting, and the emerging environment of Linked Data and the Semantic Web, explaining their relevance to current practitioners and students. Each chapter offers a set of exercises, with suggestions for instructors. A companion website includes additional practical and reference resources.
    Content
    Introduction to metadata for digital collections -- Introduction to resource description and Dublin Core -- Resource identification and responsibility elements -- Resource content and relationship elements -- Controlled vocabularies for improved resource discovery -- XML-encoded metadata -- MODS : the Metadata Object Description Schema -- VRA Core : the Visual Resources Association Core Categories -- Metadata interoperability, shareability, and quality -- Designing and documenting a metadata scheme -- Metadata, linked data, and the Semantic Web.
    LCSH
    Cataloging of electronic information resources / Standards
    RSWK
    Elektronische Bibliothek, Elektronische Publikation, Katalogisierung, Metadatenmodell, Dublin Core, Einführung (BSB)
    Subject
    Elektronische Bibliothek, Elektronische Publikation, Katalogisierung, Metadatenmodell, Dublin Core, Einführung (BSB)
    Cataloging of electronic information resources / Standards
  2. Woitas, K.: Bibliografische Daten, Normdaten und Metadaten im Semantic Web : Konzepte der bibliografischen Kontrolle im Wandel (2010) 0.03
    0.028334448 = product of:
      0.13222742 = sum of:
        0.045449268 = weight(_text_:wide in 115) [ClassicSimilarity], result of:
          0.045449268 = score(doc=115,freq=4.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.34615302 = fieldWeight in 115, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=115)
        0.038986187 = weight(_text_:web in 115) [ClassicSimilarity], result of:
          0.038986187 = score(doc=115,freq=10.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.40312994 = fieldWeight in 115, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=115)
        0.047791965 = weight(_text_:bibliothek in 115) [ClassicSimilarity], result of:
          0.047791965 = score(doc=115,freq=6.0), product of:
            0.121660605 = queryWeight, product of:
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.029633347 = queryNorm
            0.39283025 = fieldWeight in 115, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.0390625 = fieldNorm(doc=115)
      0.21428572 = coord(3/14)
    
    Abstract
    Bibliografische Daten, Normdaten und Metadaten im Semantic Web - Konzepte der Bibliografischen Kontrolle im Wandel. Der Titel dieser Arbeit zielt in ein essentielles Feld der Bibliotheks- und Informationswissenschaft, die Bibliografische Kontrolle. Als zweites zentrales Konzept wird der in der Weiterentwicklung des World Wide Webs (WWW) bedeutsame Begriff des Semantic Webs genannt. Auf den ersten Blick handelt es sich hier um einen ungleichen Wettstreit. Auf der einen Seite die Bibliografische Kontrolle, welche die Methoden und Mittel zur Erschließung von bibliothekarischen Objekten umfasst und traditionell in Form von formal-inhaltlichen Surrogaten in Katalogen daherkommt. Auf der anderen Seite das Buzzword Semantic Web mit seinen hochtrabenden Konnotationen eines durch Selbstreferenzialität "bedeutungstragenden", wenn nicht sogar "intelligenten" Webs. Wie kamen also eine wissenschaftliche Bibliothekarin und ein Mitglied des World Wide Web Consortiums 2007 dazu, gemeinsam einen Aufsatz zu publizieren und darin zu behaupten, das semantische Netz würde ein "bibliothekarischeres" Netz sein? Um sich dieser Frage zu nähern, soll zunächst kurz die historische Entwicklung der beiden Informationssphären Bibliothek und WWW gemeinsam betrachtet werden. Denn so oft - und völlig zurecht - die informationelle Revolution durch das Internet beschworen wird, so taucht auch immer wieder das Analogon einer weltweiten, virtuellen Bibliothek auf. Genauer gesagt, nahmen die theoretischen Überlegungen, die später zur Entwicklung des Internets führen sollten, ihren Ausgangspunkt (neben Kybernetik und entstehender Computertechnik) beim Konzept des Informationsspeichers Bibliothek.
    Theme
    Semantic Web
  3. Managing metadata in web-scale discovery systems (2016) 0.03
    0.027179774 = product of:
      0.09512921 = sum of:
        0.025709987 = weight(_text_:wide in 3336) [ClassicSimilarity], result of:
          0.025709987 = score(doc=3336,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.1958137 = fieldWeight in 3336, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=3336)
        0.03416578 = weight(_text_:web in 3336) [ClassicSimilarity], result of:
          0.03416578 = score(doc=3336,freq=12.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.35328537 = fieldWeight in 3336, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=3336)
        0.03121758 = weight(_text_:bibliothek in 3336) [ClassicSimilarity], result of:
          0.03121758 = score(doc=3336,freq=4.0), product of:
            0.121660605 = queryWeight, product of:
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.029633347 = queryNorm
            0.25659564 = fieldWeight in 3336, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.03125 = fieldNorm(doc=3336)
        0.0040358636 = weight(_text_:information in 3336) [ClassicSimilarity], result of:
          0.0040358636 = score(doc=3336,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.0775819 = fieldWeight in 3336, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=3336)
      0.2857143 = coord(4/14)
    
    Abstract
    This book shows you how to harness the power of linked data and web-scale discovery systems to manage and link widely varied content across your library collection. Libraries are increasingly using web-scale discovery systems to help clients find a wide assortment of library materials, including books, journal articles, special collections, archival collections, videos, music and open access collections. Depending on the library material catalogued, the discovery system might need to negotiate different metadata standards, such as AACR, RDA, RAD, FOAF, VRA Core, METS, MODS, RDF and more. In Managing Metadata in Web-Scale Discovery Systems, editor Louise Spiteri and a range of international experts show you how to: * maximize the effectiveness of web-scale discovery systems * provide a smooth and seamless discovery experience to your users * help users conduct searches that yield relevant results * manage the sheer volume of items to which you can provide access, so your users can actually find what they need * maintain shared records that reflect the needs, languages, and identities of culturally and ethnically varied communities * manage metadata both within, across, and outside, library discovery tools by converting your library metadata to linked open data that all systems can access * manage user generated metadata from external services such as Goodreads and LibraryThing * mine user generated metadata to better serve your users in areas such as collection development or readers' advisory. The book will be essential reading for cataloguers, technical services and systems librarians and library and information science students studying modules on metadata, cataloguing, systems design, data management, and digital libraries. The book will also be of interest to those managing metadata in archives, museums and other cultural heritage institutions.
    Content
    1. Introduction: the landscape of web-scale discovery - Louise Spiteri 2. Sharing metadata across discovery systems - Marshall Breeding, Angela Kroeger and Heather Moulaison Sandy 3. Managing linked open data across discovery systems - Ali Shiri and Danoosh Davoodi 4. Redefining library resources in discovery systems - Christine DeZelar-Tiedman 5. Managing volume in discovery systems - Aaron Tay 6. Managing outsourced metadata in discovery systems - Laurel Tarulli 7. Managing user-generated metadata in discovery systems - Louise Spiteri
    RSWK
    Metadaten / Discovery Service / Datenmanagement / Wissenschaftliche Bibliothek
    Subject
    Metadaten / Discovery Service / Datenmanagement / Wissenschaftliche Bibliothek
  4. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.02
    0.01913742 = product of:
      0.066980965 = sum of:
        0.024409214 = weight(_text_:web in 3283) [ClassicSimilarity], result of:
          0.024409214 = score(doc=3283,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.25239927 = fieldWeight in 3283, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3283)
        0.012233062 = weight(_text_:information in 3283) [ClassicSimilarity], result of:
          0.012233062 = score(doc=3283,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.23515764 = fieldWeight in 3283, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3283)
        0.020970564 = weight(_text_:retrieval in 3283) [ClassicSimilarity], result of:
          0.020970564 = score(doc=3283,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.23394634 = fieldWeight in 3283, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3283)
        0.009368123 = product of:
          0.028104367 = sum of:
            0.028104367 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
              0.028104367 = score(doc=3283,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.2708308 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
          0.33333334 = coord(1/3)
      0.2857143 = coord(4/14)
    
    Abstract
    This book constitutes the refereed proceedings of the 10th Metadata and Semantics Research Conference, MTSR 2016, held in Göttingen, Germany, in November 2016. The 26 full papers and 6 short papers presented were carefully reviewed and selected from 67 submissions. The papers are organized in several sessions and tracks: Digital Libraries, Information Retrieval, Linked and Social Data, Metadata and Semantics for Open Repositories, Research Information Systems and Data Infrastructures, Metadata and Semantics for Agriculture, Food and Environment, Metadata and Semantics for Cultural Collections and Applications, European and National Projects.
    Series
    Communications in computer and information science; 672
    Theme
    Semantic Web
  5. Bohne-Lang, A.: Semantische Metadaten für den Webauftritt einer Bibliothek (2016) 0.02
    0.01660582 = product of:
      0.07749383 = sum of:
        0.02465703 = weight(_text_:web in 3337) [ClassicSimilarity], result of:
          0.02465703 = score(doc=3337,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.25496176 = fieldWeight in 3337, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3337)
        0.047791965 = weight(_text_:bibliothek in 3337) [ClassicSimilarity], result of:
          0.047791965 = score(doc=3337,freq=6.0), product of:
            0.121660605 = queryWeight, product of:
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.029633347 = queryNorm
            0.39283025 = fieldWeight in 3337, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3337)
        0.0050448296 = weight(_text_:information in 3337) [ClassicSimilarity], result of:
          0.0050448296 = score(doc=3337,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.09697737 = fieldWeight in 3337, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3337)
      0.21428572 = coord(3/14)
    
    Abstract
    Das Semantic Web ist schon seit über 10 Jahren viel beachtet und hat mit der Verfügbarkeit von Resource Description Framework (RDF) und den entsprechenden Ontologien einen großen Sprung in die Praxis gemacht. Vertreter kleiner Bibliotheken und Bibliothekare mit geringer Technik-Affinität stehen aber im Alltag vor großen Hürden, z.B. bei der Frage, wie man diese Technik konkret in den eigenen Webauftritt einbinden kann: man kommt sich vor wie Don Quijote, der versucht die Windmühlen zu bezwingen. RDF mit seinen Ontologien ist fast unverständlich komplex für Nicht-Informatiker und somit für den praktischen Einsatz auf Bibliotheksseiten in der Breite nicht direkt zu gebrauchen. Mit Schema.org wurde ursprünglich von den drei größten Suchmaschinen der Welt Google, Bing und Yahoo eine einfach und effektive semantische Beschreibung von Entitäten entwickelt. Aktuell wird Schema.org durch Google, Microsoft, Yahoo und Yandex weiter gesponsert und von vielen weiteren Suchmaschinen verstanden. Vor diesem Hintergrund hat die Bibliothek der Medizinischen Fakultät Mannheim auf ihrer Homepage (http://www.umm.uni-heidelberg.de/bibl/) verschiedene maschinenlesbare semantische Metadaten eingebettet. Sehr interessant und zukunftsweisend ist die neueste Entwicklung von Schema.org, bei der man eine 'Library' (https://schema.org/Library) mit Öffnungszeiten und vielem mehr modellieren kann. Ferner haben wir noch semantische Metadaten im Open Graph- und Dublin Core-Format eingebettet, um alte Standards und Facebook-konforme Informationen maschinenlesbar zur Verfügung zu stellen.
    Source
    GMS Medizin - Bibliothek - Information. 16(2016) Nr.3, 11 S. [http://www.egms.de/static/pdf/journals/mbi/2017-16/mbi000372.pdf]
    Theme
    Semantic Web
  6. Metadata and semantics research : 9th Research Conference, MTSR 2015, Manchester, UK, September 9-11, 2015, Proceedings (2015) 0.02
    0.015912503 = product of:
      0.07425835 = sum of:
        0.029588435 = weight(_text_:web in 3274) [ClassicSimilarity], result of:
          0.029588435 = score(doc=3274,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.3059541 = fieldWeight in 3274, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3274)
        0.013536699 = weight(_text_:information in 3274) [ClassicSimilarity], result of:
          0.013536699 = score(doc=3274,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2602176 = fieldWeight in 3274, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3274)
        0.031133216 = weight(_text_:retrieval in 3274) [ClassicSimilarity], result of:
          0.031133216 = score(doc=3274,freq=6.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.34732026 = fieldWeight in 3274, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=3274)
      0.21428572 = coord(3/14)
    
    Content
    The papers are organized in several sessions and tracks: general track on ontology evolution, engineering, and frameworks, semantic Web and metadata extraction, modelling, interoperability and exploratory search, data analysis, reuse and visualization; track on digital libraries, information retrieval, linked and social data; track on metadata and semantics for open repositories, research information systems and data infrastructure; track on metadata and semantics for agriculture, food and environment; track on metadata and semantics for cultural collections and applications; track on European and national projects.
    LCSH
    Information storage and retrieval systems
    Series
    Communications in computer and information science; 544
    Subject
    Information storage and retrieval systems
    Theme
    Semantic Web
  7. Belém, F.M.; Almeida, J.M.; Gonçalves, M.A.: ¬A survey on tag recommendation methods : a review (2017) 0.02
    0.015274854 = product of:
      0.053461988 = sum of:
        0.02465703 = weight(_text_:web in 3524) [ClassicSimilarity], result of:
          0.02465703 = score(doc=3524,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.25496176 = fieldWeight in 3524, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3524)
        0.0071344664 = weight(_text_:information in 3524) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=3524,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 3524, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3524)
        0.014978974 = weight(_text_:retrieval in 3524) [ClassicSimilarity], result of:
          0.014978974 = score(doc=3524,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.16710453 = fieldWeight in 3524, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3524)
        0.0066915164 = product of:
          0.020074548 = sum of:
            0.020074548 = weight(_text_:22 in 3524) [ClassicSimilarity], result of:
              0.020074548 = score(doc=3524,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.19345059 = fieldWeight in 3524, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3524)
          0.33333334 = coord(1/3)
      0.2857143 = coord(4/14)
    
    Abstract
    Tags (keywords freely assigned by users to describe web content) have become highly popular on Web 2.0 applications, because of the strong stimuli and easiness for users to create and describe their own content. This increase in tag popularity has led to a vast literature on tag recommendation methods. These methods aim at assisting users in the tagging process, possibly increasing the quality of the generated tags and, consequently, improving the quality of the information retrieval (IR) services that rely on tags as data sources. Regardless of the numerous and diversified previous studies on tag recommendation, to our knowledge, no previous work has summarized and organized them into a single survey article. In this article, we propose a taxonomy for tag recommendation methods, classifying them according to the target of the recommendations, their objectives, exploited data sources, and underlying techniques. Moreover, we provide a critical overview of these methods, pointing out their advantages and disadvantages. Finally, we describe the main open challenges related to the field, such as tag ambiguity, cold start, and evaluation issues.
    Date
    16.11.2017 13:30:22
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.4, S.830-844
  8. Hider, P.: Information resource description : creating and managing metadata (2012) 0.01
    0.014579715 = product of:
      0.06803867 = sum of:
        0.034870304 = weight(_text_:web in 2086) [ClassicSimilarity], result of:
          0.034870304 = score(doc=2086,freq=8.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.36057037 = fieldWeight in 2086, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2086)
        0.018189391 = weight(_text_:information in 2086) [ClassicSimilarity], result of:
          0.018189391 = score(doc=2086,freq=26.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.34965688 = fieldWeight in 2086, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2086)
        0.014978974 = weight(_text_:retrieval in 2086) [ClassicSimilarity], result of:
          0.014978974 = score(doc=2086,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.16710453 = fieldWeight in 2086, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2086)
      0.21428572 = coord(3/14)
    
    Abstract
    An overview of the field of information organization that examines resource description as both a product and process of the contemporary digital environment. This timely book employs the unifying mechanism of the semantic web and the resource description framework to integrate the various traditions and practices of information and knowledge organization. Uniquely, it covers both the domain-specific traditions and practices and the practices of the 'metadata movement' through a single lens - that of resource description in the broadest, semantic web sense. This approach more readily accommodates coverage of the new Resource Description and Access (RDA) standard, which aims to move library cataloguing into the centre of the semantic web. The work surrounding RDA looks set to revolutionise the field of information organization, and this book will bring both the standard and its model and concepts into focus.
    BK
    06.99 (Information und Dokumentation: Sonstiges)
    Classification
    06.99 (Information und Dokumentation: Sonstiges)
    Content
    Information resource attributes - metadata for information retrieval - metadata sources and quality - economics and management of metadata - knowledge organization systems - the semantic web - books and e-books, websites and audiovisual resources - business and government documents - learning resources - the field of information/knowledge organization.
    LCSH
    Libraries / information technology
    RSWK
    Information / Beschreibung (BVB)
    Subject
    Information / Beschreibung (BVB)
    Libraries / information technology
  9. Hooland, S. van; Verborgh, R.: Linked data for Lilibraries, archives and museums : how to clean, link, and publish your metadata (2014) 0.01
    0.014567627 = product of:
      0.06798226 = sum of:
        0.013948122 = weight(_text_:web in 5153) [ClassicSimilarity], result of:
          0.013948122 = score(doc=5153,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.14422815 = fieldWeight in 5153, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=5153)
        0.044148326 = weight(_text_:bibliothek in 5153) [ClassicSimilarity], result of:
          0.044148326 = score(doc=5153,freq=8.0), product of:
            0.121660605 = queryWeight, product of:
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.029633347 = queryNorm
            0.36288103 = fieldWeight in 5153, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.03125 = fieldNorm(doc=5153)
        0.009885807 = weight(_text_:information in 5153) [ClassicSimilarity], result of:
          0.009885807 = score(doc=5153,freq=12.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.19003606 = fieldWeight in 5153, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=5153)
      0.21428572 = coord(3/14)
    
    Abstract
    This highly practical handbook teaches you how to unlock the value of your existing metadata through cleaning, reconciliation, enrichment and linking and how to streamline the process of new metadata creation. Libraries, archives and museums are facing up to the challenge of providing access to fast growing collections whilst managing cuts to budgets. Key to this is the creation, linking and publishing of good quality metadata as Linked Data that will allow their collections to be discovered, accessed and disseminated in a sustainable manner. This highly practical handbook teaches you how to unlock the value of your existing metadata through cleaning, reconciliation, enrichment and linking and how to streamline the process of new metadata creation. Metadata experts Seth van Hooland and Ruben Verborgh introduce the key concepts of metadata standards and Linked Data and how they can be practically applied to existing metadata, giving readers the tools and understanding to achieve maximum results with limited resources. Readers will learn how to critically assess and use (semi-)automated methods of managing metadata through hands-on exercises within the book and on the accompanying website. Each chapter is built around a case study from institutions around the world, demonstrating how freely available tools are being successfully used in different metadata contexts. This handbook delivers the necessary conceptual and practical understanding to empower practitioners to make the right decisions when making their organisations resources accessible on the Web. Key topics include, the value of metadata; metadata creation - architecture, data models and standards; metadata cleaning; metadata reconciliation; metadata enrichment through Linked Data and named-entity recognition; importing and exporting metadata; ensuring a sustainable publishing model. This will be an invaluable guide for metadata practitioners and researchers within all cultural heritage contexts, from library cataloguers and archivists to museum curatorial staff. It will also be of interest to students and academics within information science and digital humanities fields. IT managers with responsibility for information systems, as well as strategy heads and budget holders, at cultural heritage organisations, will find this a valuable decision-making aid.
    LCSH
    Libraries and museums / Electronic information resources
    Archives / Electronic information resources
    RSWK
    Bibliothek / Archiv / Museum / Metadaten / Linked Data
    Linked Data / Bibliothek / Archiv / Museum
    Subject
    Bibliothek / Archiv / Museum / Metadaten / Linked Data
    Linked Data / Bibliothek / Archiv / Museum
    Libraries and museums / Electronic information resources
    Archives / Electronic information resources
  10. Li, C.; Sugimoto, S.: Provenance description of metadata application profiles for long-term maintenance of metadata schemas : Luciano Floridi's philosophy of information as the foundation for library and information science (2018) 0.01
    0.014042661 = product of:
      0.065532416 = sum of:
        0.032137483 = weight(_text_:wide in 4048) [ClassicSimilarity], result of:
          0.032137483 = score(doc=4048,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.24476713 = fieldWeight in 4048, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4048)
        0.02465703 = weight(_text_:web in 4048) [ClassicSimilarity], result of:
          0.02465703 = score(doc=4048,freq=4.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.25496176 = fieldWeight in 4048, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4048)
        0.008737902 = weight(_text_:information in 4048) [ClassicSimilarity], result of:
          0.008737902 = score(doc=4048,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16796975 = fieldWeight in 4048, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4048)
      0.21428572 = coord(3/14)
    
    Abstract
    Purpose Provenance information is crucial for consistent maintenance of metadata schemas over time. The purpose of this paper is to propose a provenance model named DSP-PROV to keep track of structural changes of metadata schemas. Design/methodology/approach The DSP-PROV model is developed through applying the general provenance description standard PROV of the World Wide Web Consortium to the Dublin Core Application Profile. Metadata Application Profile of Digital Public Library of America is selected as a case study to apply the DSP-PROV model. Finally, this paper evaluates the proposed model by comparison between formal provenance description in DSP-PROV and semi-formal change log description in English. Findings Formal provenance description in the DSP-PROV model has advantages over semi-formal provenance description in English to keep metadata schemas consistent over time. Research limitations/implications The DSP-PROV model is applicable to keep track of the structural changes of metadata schema over time. Provenance description of other features of metadata schema such as vocabulary and encoding syntax are not covered. Originality/value This study proposes a simple model for provenance description of structural features of metadata schemas based on a few standards widely accepted on the Web and shows the advantage of the proposed model to conventional semi-formal provenance description.
  11. Gartner, R.: Metadata : shaping knowledge from antiquity to the semantic web (2016) 0.01
    0.013883932 = product of:
      0.06479168 = sum of:
        0.034870304 = weight(_text_:web in 731) [ClassicSimilarity], result of:
          0.034870304 = score(doc=731,freq=8.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.36057037 = fieldWeight in 731, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=731)
        0.008737902 = weight(_text_:information in 731) [ClassicSimilarity], result of:
          0.008737902 = score(doc=731,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.16796975 = fieldWeight in 731, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=731)
        0.021183468 = weight(_text_:retrieval in 731) [ClassicSimilarity], result of:
          0.021183468 = score(doc=731,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.23632148 = fieldWeight in 731, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=731)
      0.21428572 = coord(3/14)
    
    Abstract
    This book offers a comprehensive guide to the world of metadata, from its origins in the ancient cities of the Middle East, to the Semantic Web of today. The author takes us on a journey through the centuries-old history of metadata up to the modern world of crowdsourcing and Google, showing how metadata works and what it is made of. The author explores how it has been used ideologically and how it can never be objective. He argues how central it is to human cultures and the way they develop. Metadata: Shaping Knowledge from Antiquity to the Semantic Web is for all readers with an interest in how we humans organize our knowledge and why this is important. It is suitable for those new to the subject as well as those know its basics. It also makes an excellent introduction for students of information science and librarianship.
    LCSH
    Information storage and retrieval
    Subject
    Information storage and retrieval
    Theme
    Semantic Web
  12. Grün, S.; Poley, C: Statistische Analysen von Semantic Entities aus Metadaten- und Volltextbeständen von German Medical Science (2017) 0.01
    0.013847725 = product of:
      0.064622715 = sum of:
        0.033111244 = weight(_text_:bibliothek in 5032) [ClassicSimilarity], result of:
          0.033111244 = score(doc=5032,freq=2.0), product of:
            0.121660605 = queryWeight, product of:
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.029633347 = queryNorm
            0.27216077 = fieldWeight in 5032, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.046875 = fieldNorm(doc=5032)
        0.013536699 = weight(_text_:information in 5032) [ClassicSimilarity], result of:
          0.013536699 = score(doc=5032,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2602176 = fieldWeight in 5032, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=5032)
        0.01797477 = weight(_text_:retrieval in 5032) [ClassicSimilarity], result of:
          0.01797477 = score(doc=5032,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.20052543 = fieldWeight in 5032, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=5032)
      0.21428572 = coord(3/14)
    
    Abstract
    This paper analyzes the information content of metadata and full texts in German Medical Science (GMS) articles in English language. The object of the study is to compare semantic entities that are used to enrich GMS metadata (titles and abstracts) and GMS full texts. The aim of the study is to test whether using full texts increases the value added information. The comparison and evaluation of semantic entities was done statistically. Measures of descriptive statistics were gathered for this purpose. In addition to the ratio of central tendencies and scatterings, we computed the overlaps and complements of the values. The results show a distinct increase of information when full texts are added. On average, metadata contain 25 different entities and full texts 215. 89% of the concepts in the metadata are also represented in the full texts. Hence, 11% of the metadata concepts are found in the metadata only. In summary, the results show that the addition of full texts increases the informational value, e.g. for information retrieval processes.
    Source
    GMS Medizin-Bibliothek-Information. 17(2017) no.3, S.1-5
  13. Peters, I.; Stock, W.G.: Power tags in information retrieval (2010) 0.01
    0.013760499 = product of:
      0.06421566 = sum of:
        0.017435152 = weight(_text_:web in 865) [ClassicSimilarity], result of:
          0.017435152 = score(doc=865,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 865, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=865)
        0.010089659 = weight(_text_:information in 865) [ClassicSimilarity], result of:
          0.010089659 = score(doc=865,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.19395474 = fieldWeight in 865, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=865)
        0.036690846 = weight(_text_:retrieval in 865) [ClassicSimilarity], result of:
          0.036690846 = score(doc=865,freq=12.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.40932083 = fieldWeight in 865, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=865)
      0.21428572 = coord(3/14)
    
    Abstract
    Purpose - Many Web 2.0 services (including Library 2.0 catalogs) make use of folksonomies. The purpose of this paper is to cut off all tags in the long tail of a document-specific tag distribution. The remaining tags at the beginning of a tag distribution are considered power tags and form a new, additional search option in information retrieval systems. Design/methodology/approach - In a theoretical approach the paper discusses document-specific tag distributions (power law and inverse-logistic shape), the development of such distributions (Yule-Simon process and shuffling theory) and introduces search tags (besides the well-known index tags) as a possibility for generating tag distributions. Findings - Search tags are compatible with broad and narrow folksonomies and with all knowledge organization systems (e.g. classification systems and thesauri), while index tags are only applicable in broad folksonomies. Based on these findings, the paper presents a sketch of an algorithm for mining and processing power tags in information retrieval systems. Research limitations/implications - This conceptual approach is in need of empirical evaluation in a concrete retrieval system. Practical implications - Power tags are a new search option for retrieval systems to limit the amount of hits. Originality/value - The paper introduces power tags as a means for enhancing the precision of search results in information retrieval systems that apply folksonomies, e.g. catalogs in Library 2.0environments.
  14. Handbook of metadata, semantics and ontologies (2014) 0.01
    0.0124158375 = product of:
      0.057940573 = sum of:
        0.025709987 = weight(_text_:wide in 5134) [ClassicSimilarity], result of:
          0.025709987 = score(doc=5134,freq=2.0), product of:
            0.1312982 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029633347 = queryNorm
            0.1958137 = fieldWeight in 5134, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=5134)
        0.024158856 = weight(_text_:web in 5134) [ClassicSimilarity], result of:
          0.024158856 = score(doc=5134,freq=6.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.24981049 = fieldWeight in 5134, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=5134)
        0.008071727 = weight(_text_:information in 5134) [ClassicSimilarity], result of:
          0.008071727 = score(doc=5134,freq=8.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1551638 = fieldWeight in 5134, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=5134)
      0.21428572 = coord(3/14)
    
    Abstract
    Metadata research has emerged as a discipline cross-cutting many domains, focused on the provision of distributed descriptions (often called annotations) to Web resources or applications. Such associated descriptions are supposed to serve as a foundation for advanced services in many application areas, including search and location, personalization, federation of repositories and automated delivery of information. Indeed, the Semantic Web is in itself a concrete technological framework for ontology-based metadata. For example, Web-based social networking requires metadata describing people and their interrelations, and large databases with biological information use complex and detailed metadata schemas for more precise and informed search strategies. There is a wide diversity in the languages and idioms used for providing meta-descriptions, from simple structured text in metadata schemas to formal annotations using ontologies, and the technologies for storing, sharing and exploiting meta-descriptions are also diverse and evolve rapidly. In addition, there is a proliferation of schemas and standards related to metadata, resulting in a complex and moving technological landscape - hence, the need for specialized knowledge and skills in this area. The Handbook of Metadata, Semantics and Ontologies is intended as an authoritative reference for students, practitioners and researchers, serving as a roadmap for the variety of metadata schemas and ontologies available in a number of key domain areas, including culture, biology, education, healthcare, engineering and library science.
    LCSH
    Semantic networks (Information theory)
    Subject
    Semantic networks (Information theory)
  15. Roux, M.: Metadata for search engines : what can be learned from e-Sciences? (2012) 0.01
    0.012177391 = product of:
      0.056827825 = sum of:
        0.020922182 = weight(_text_:web in 96) [ClassicSimilarity], result of:
          0.020922182 = score(doc=96,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.21634221 = fieldWeight in 96, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=96)
        0.0104854815 = weight(_text_:information in 96) [ClassicSimilarity], result of:
          0.0104854815 = score(doc=96,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.20156369 = fieldWeight in 96, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=96)
        0.025420163 = weight(_text_:retrieval in 96) [ClassicSimilarity], result of:
          0.025420163 = score(doc=96,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.2835858 = fieldWeight in 96, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=96)
      0.21428572 = coord(3/14)
    
    Abstract
    E-sciences are data-intensive sciences that make a large use of the Web to share, collect, and process data. In this context, primary scientific data is becoming a new challenging issue as data must be extensively described (1) to account for empiric conditions and results that allow interpretation and/or analyses and (2) to be understandable by computers used for data storage and information retrieval. With this respect, metadata is a focal point whatever it is considered from the point of view of the user to visualize and exploit data as well as this of the search tools to find and retrieve information. Numerous disciplines are concerned with the issues of describing complex observations and addressing pertinent knowledge. In this paper, similarities and differences in data description and exploration strategies among disciplines in e-sciences are examined.
    Source
    Next generation search engines: advanced models for information retrieval. Eds.: C. Jouis, u.a
  16. Kopácsi, S. et al.: Development of a classification server to support metadata harmonization in a long term preservation system (2016) 0.01
    0.011449423 = product of:
      0.05343064 = sum of:
        0.010089659 = weight(_text_:information in 3280) [ClassicSimilarity], result of:
          0.010089659 = score(doc=3280,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.19395474 = fieldWeight in 3280, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=3280)
        0.029957948 = weight(_text_:retrieval in 3280) [ClassicSimilarity], result of:
          0.029957948 = score(doc=3280,freq=2.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.33420905 = fieldWeight in 3280, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.078125 = fieldNorm(doc=3280)
        0.013383033 = product of:
          0.040149096 = sum of:
            0.040149096 = weight(_text_:22 in 3280) [ClassicSimilarity], result of:
              0.040149096 = score(doc=3280,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.38690117 = fieldWeight in 3280, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3280)
          0.33333334 = coord(1/3)
      0.21428572 = coord(3/14)
    
    Series
    Communications in computer and information science; 672
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  17. Derrot, S.; Koskas, M.: My fair metadata : cataloging legal deposit Ebooks at the National Library of France (2016) 0.01
    0.010808873 = product of:
      0.07566211 = sum of:
        0.024409214 = weight(_text_:web in 5140) [ClassicSimilarity], result of:
          0.024409214 = score(doc=5140,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.25239927 = fieldWeight in 5140, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5140)
        0.051252894 = weight(_text_:elektronische in 5140) [ClassicSimilarity], result of:
          0.051252894 = score(doc=5140,freq=2.0), product of:
            0.14013545 = queryWeight, product of:
              4.728978 = idf(docFreq=1061, maxDocs=44218)
              0.029633347 = queryNorm
            0.36573824 = fieldWeight in 5140, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.728978 = idf(docFreq=1061, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5140)
      0.14285715 = coord(2/14)
    
    Abstract
    French law on digital legal deposit covers websites and online content as well as ebooks. It imposes no obligation to produce a bibliography, indexing being sufficient. But despite their innovative characteristics, ebooks are still books, and their metadata is closer to that of printed materials than to the web indexing. To set up an ebook deposit workflow, the BnF benefits from its experience with digital documents and its tradition of legal deposit. This is to present the questions that it faces when dealing with the cataloging of ebooks and the management of their metadata, and the solutions that are emerging.
    Form
    Elektronische Dokumente
  18. Metadata and semantics research : 8th Research Conference, MTSR 2014, Karlsruhe, Germany, November 27-29, 2014, Proceedings (2014) 0.01
    0.010692686 = product of:
      0.0498992 = sum of:
        0.017435152 = weight(_text_:web in 2192) [ClassicSimilarity], result of:
          0.017435152 = score(doc=2192,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.18028519 = fieldWeight in 2192, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2192)
        0.011280581 = weight(_text_:information in 2192) [ClassicSimilarity], result of:
          0.011280581 = score(doc=2192,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.21684799 = fieldWeight in 2192, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2192)
        0.021183468 = weight(_text_:retrieval in 2192) [ClassicSimilarity], result of:
          0.021183468 = score(doc=2192,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.23632148 = fieldWeight in 2192, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2192)
      0.21428572 = coord(3/14)
    
    Abstract
    This book constitutes the refereed proceedings of the 8th Metadata and Semantics Research Conference, MTSR 2014, held in Karlsruhe, Germany, in November 2014. The 23 full papers and 9 short papers presented were carefully reviewed and selected from 57 submissions. The papers are organized in several sessions and tracks. They cover the following topics: metadata and linked data: tools and models; (meta) data quality assessment and curation; semantic interoperability, ontology-based data access and representation; big data and digital libraries in health, science and technology; metadata and semantics for open repositories, research information systems and data infrastructure; metadata and semantics for cultural collections and applications; semantics for agriculture, food and environment.
    Content
    Metadata and linked data.- Tools and models.- (Meta)data quality assessment and curation.- Semantic interoperability, ontology-based data access and representation.- Big data and digital libraries in health, science and technology.- Metadata and semantics for open repositories, research information systems and data infrastructure.- Metadata and semantics for cultural collections and applications.- Semantics for agriculture, food and environment.
    LCSH
    Information storage and retrieval systems
    Series
    Communications in computer and information science; 478
    Subject
    Information storage and retrieval systems
    Theme
    Semantic Web
  19. Ilik, V.; Storlien, J.; Olivarez, J.: Metadata makeover (2014) 0.01
    0.009378341 = product of:
      0.04376559 = sum of:
        0.024409214 = weight(_text_:web in 2606) [ClassicSimilarity], result of:
          0.024409214 = score(doc=2606,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.25239927 = fieldWeight in 2606, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2606)
        0.009988253 = weight(_text_:information in 2606) [ClassicSimilarity], result of:
          0.009988253 = score(doc=2606,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1920054 = fieldWeight in 2606, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2606)
        0.009368123 = product of:
          0.028104367 = sum of:
            0.028104367 = weight(_text_:22 in 2606) [ClassicSimilarity], result of:
              0.028104367 = score(doc=2606,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.2708308 = fieldWeight in 2606, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2606)
          0.33333334 = coord(1/3)
      0.21428572 = coord(3/14)
    
    Abstract
    Catalogers have become fluent in information technology such as web design skills, HyperText Markup Language (HTML), Cascading Stylesheets (CSS), eXensible Markup Language (XML), and programming languages. The knowledge gained from learning information technology can be used to experiment with methods of transforming one metadata schema into another using various software solutions. This paper will discuss the use of eXtensible Stylesheet Language Transformations (XSLT) for repurposing, editing, and reformatting metadata. Catalogers have the requisite skills for working with any metadata schema, and if they are excluded from metadata work, libraries are wasting a valuable human resource.
    Date
    10. 9.2000 17:38:22
  20. Pfister, E.; Wittwer, B.; Wolff, M.: Metadaten - Manuelle Datenpflege vs. Automatisieren : ein Praxisbericht zu Metadatenmanagement an der ETH-Bibliothek (2017) 0.01
    0.0091427 = product of:
      0.06399889 = sum of:
        0.054630768 = weight(_text_:bibliothek in 5630) [ClassicSimilarity], result of:
          0.054630768 = score(doc=5630,freq=4.0), product of:
            0.121660605 = queryWeight, product of:
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.029633347 = queryNorm
            0.44904238 = fieldWeight in 5630, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.1055303 = idf(docFreq=1980, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5630)
        0.009368123 = product of:
          0.028104367 = sum of:
            0.028104367 = weight(_text_:22 in 5630) [ClassicSimilarity], result of:
              0.028104367 = score(doc=5630,freq=2.0), product of:
                0.103770934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029633347 = queryNorm
                0.2708308 = fieldWeight in 5630, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5630)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    Neue Entwicklungen im Bibliothekswesen und in der Technologie führen zu neuen ufgaben, die spezialisierte Fachkräfte erfordern. Die ETH-Bibliothek reagierte darauf, indem sie das Pilotprojekt "Metadatenmanagement" startete, welches sich mit Datenanalysen, -einspielungen und -mutationen, Datenmappings, der Erstellung eines Datenflussdiagramms, sowie mit der Einführung von RDA und GND beschäftigte. Nach zwei Jahren zeigte sich, dass zahlreiche Aufgabengebiete existieren, welche von Metadatenspezialisten, als Schnittstelle zwischen den Fachabteilungen und der IT, übernommen werden können. Dieser Bericht fasst die getätigten Arbeiten, Erfahrungen und Erkenntnisse der zweijährigen Pilotphase zusammen.
    Source
    B.I.T.online. 20(2017) H.1, S.22-25

Authors

Languages

  • e 85
  • d 12
  • pt 1
  • More… Less…

Types

  • a 77
  • el 14
  • m 14
  • s 6
  • x 2
  • n 1
  • r 1
  • More… Less…

Subjects