Search (28 results, page 1 of 2)

  • × theme_ss:"Inhaltsanalyse"
  1. Thelwall, M.; Buckley, K.; Paltoglou, G.: Sentiment strength detection for the social web (2012) 0.04
    0.036799267 = product of:
      0.09813137 = sum of:
        0.03218305 = weight(_text_:wide in 4972) [ClassicSimilarity], result of:
          0.03218305 = score(doc=4972,freq=2.0), product of:
            0.13148437 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029675366 = queryNorm
            0.24476713 = fieldWeight in 4972, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4972)
        0.04276778 = weight(_text_:web in 4972) [ClassicSimilarity], result of:
          0.04276778 = score(doc=4972,freq=12.0), product of:
            0.096845865 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029675366 = queryNorm
            0.4416067 = fieldWeight in 4972, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4972)
        0.023180548 = weight(_text_:data in 4972) [ClassicSimilarity], result of:
          0.023180548 = score(doc=4972,freq=4.0), product of:
            0.093835 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.029675366 = queryNorm
            0.24703519 = fieldWeight in 4972, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4972)
      0.375 = coord(3/8)
    
    Abstract
    Sentiment analysis is concerned with the automatic extraction of sentiment-related information from text. Although most sentiment analysis addresses commercial tasks, such as extracting opinions from product reviews, there is increasing interest in the affective dimension of the social web, and Twitter in particular. Most sentiment analysis algorithms are not ideally suited to this task because they exploit indirect indicators of sentiment that can reflect genre or topic instead. Hence, such algorithms used to process social web texts can identify spurious sentiment patterns caused by topics rather than affective phenomena. This article assesses an improved version of the algorithm SentiStrength for sentiment strength detection across the social web that primarily uses direct indications of sentiment. The results from six diverse social web data sets (MySpace, Twitter, YouTube, Digg, Runners World, BBC Forums) indicate that SentiStrength 2 is successful in the sense of performing better than a baseline approach for all data sets in both supervised and unsupervised cases. SentiStrength is not always better than machine-learning approaches that exploit indirect indicators of sentiment, however, and is particularly weaker for positive sentiment in news-related discussions. Overall, the results suggest that, even unsupervised, SentiStrength is robust enough to be applied to a wide variety of different social web contexts.
  2. Short, M.: Text mining and subject analysis for fiction; or, using machine learning and information extraction to assign subject headings to dime novels (2019) 0.02
    0.021556837 = product of:
      0.08622735 = sum of:
        0.022947572 = weight(_text_:data in 5481) [ClassicSimilarity], result of:
          0.022947572 = score(doc=5481,freq=2.0), product of:
            0.093835 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.029675366 = queryNorm
            0.24455236 = fieldWeight in 5481, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5481)
        0.06327978 = product of:
          0.12655956 = sum of:
            0.12655956 = weight(_text_:mining in 5481) [ClassicSimilarity], result of:
              0.12655956 = score(doc=5481,freq=6.0), product of:
                0.16744171 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.029675366 = queryNorm
                0.75584245 = fieldWeight in 5481, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5481)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    This article describes multiple experiments in text mining at Northern Illinois University that were undertaken to improve the efficiency and accuracy of cataloging. It focuses narrowly on subject analysis of dime novels, a format of inexpensive fiction that was popular in the United States between 1860 and 1915. NIU holds more than 55,000 dime novels in its collections, which it is in the process of comprehensively digitizing. Classification, keyword extraction, named-entity recognition, clustering, and topic modeling are discussed as means of assigning subject headings to improve their discoverability by researchers and to increase the productivity of digitization workflows.
    Theme
    Data Mining
  3. Bi, Y.: Sentiment classification in social media data by combining triplet belief functions (2022) 0.01
    0.012746179 = product of:
      0.050984714 = sum of:
        0.019669347 = weight(_text_:data in 613) [ClassicSimilarity], result of:
          0.019669347 = score(doc=613,freq=2.0), product of:
            0.093835 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.029675366 = queryNorm
            0.2096163 = fieldWeight in 613, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=613)
        0.031315368 = product of:
          0.062630735 = sum of:
            0.062630735 = weight(_text_:mining in 613) [ClassicSimilarity], result of:
              0.062630735 = score(doc=613,freq=2.0), product of:
                0.16744171 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.029675366 = queryNorm
                0.37404498 = fieldWeight in 613, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.046875 = fieldNorm(doc=613)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    Sentiment analysis is an emerging technique that caters for semantic orientation and opinion mining. It is increasingly used to analyze online reviews and posts for identifying people's opinions and attitudes to products and events in order to improve business performance of companies and aid to make better organizing strategies of events. This paper presents an innovative approach to combining the outputs of sentiment classifiers under the framework of belief functions. It consists of the formulation of sentiment classifier outputs in the triplet evidence structure and the development of general formulas for combining triplet functions derived from sentiment classification results via three evidential combination rules along with comparative analyses. The empirical studies have been conducted on examining the effectiveness of our method for sentiment classification individually and in combination, and the results demonstrate that the best combined classifiers by our method outperforms the best individual classifiers over five review datasets.
  4. White, M.D.; Marsh, E.E.: Content analysis : a flexible methodology (2006) 0.01
    0.012670368 = product of:
      0.05068147 = sum of:
        0.038619664 = weight(_text_:wide in 5589) [ClassicSimilarity], result of:
          0.038619664 = score(doc=5589,freq=2.0), product of:
            0.13148437 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029675366 = queryNorm
            0.29372054 = fieldWeight in 5589, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=5589)
        0.012061807 = product of:
          0.024123615 = sum of:
            0.024123615 = weight(_text_:22 in 5589) [ClassicSimilarity], result of:
              0.024123615 = score(doc=5589,freq=2.0), product of:
                0.103918076 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029675366 = queryNorm
                0.23214069 = fieldWeight in 5589, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5589)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    Content analysis is a highly flexible research method that has been widely used in library and information science (LIS) studies with varying research goals and objectives. The research method is applied in qualitative, quantitative, and sometimes mixed modes of research frameworks and employs a wide range of analytical techniques to generate findings and put them into context. This article characterizes content analysis as a systematic, rigorous approach to analyzing documents obtained or generated in the course of research. It briefly describes the steps involved in content analysis, differentiates between quantitative and qualitative content analysis, and shows that content analysis serves the purposes of both quantitative research and qualitative research. The authors draw on selected LIS studies that have used content analysis to illustrate the concepts addressed in the article. The article also serves as a gateway to methodological books and articles that provide more detail about aspects of content analysis discussed only briefly in the article.
    Source
    Library trends. 55(2006) no.1, S.22-45
  5. Bertola, F.; Patti, V.: Ontology-based affective models to organize artworks in the social semantic web (2016) 0.01
    0.011658128 = product of:
      0.046632513 = sum of:
        0.03024139 = weight(_text_:web in 2669) [ClassicSimilarity], result of:
          0.03024139 = score(doc=2669,freq=6.0), product of:
            0.096845865 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029675366 = queryNorm
            0.3122631 = fieldWeight in 2669, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2669)
        0.016391123 = weight(_text_:data in 2669) [ClassicSimilarity], result of:
          0.016391123 = score(doc=2669,freq=2.0), product of:
            0.093835 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.029675366 = queryNorm
            0.17468026 = fieldWeight in 2669, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2669)
      0.25 = coord(2/8)
    
    Abstract
    In this paper, we focus on applying sentiment analysis to resources from online art collections, by exploiting, as information source, tags intended as textual traces that visitors leave to comment artworks on social platforms. We present a framework where methods and tools from a set of disciplines, ranging from Semantic and Social Web to Natural Language Processing, provide us the building blocks for creating a semantic social space to organize artworks according to an ontology of emotions. The ontology is inspired by the Plutchik's circumplex model, a well-founded psychological model of human emotions. Users can be involved in the creation of the emotional space, through a graphical interactive interface. The development of such semantic space enables new ways of accessing and exploring art collections. The affective categorization model and the emotion detection output are encoded into W3C ontology languages. This gives us the twofold advantage to enable tractable reasoning on detected emotions and related artworks, and to foster the interoperability and integration of tools developed in the Semantic Web and Linked Data community. The proposal has been evaluated against a real-word case study, a dataset of tagged multimedia artworks from the ArsMeteo Italian online collection, and validated through a user study.
  6. Beghtol, C.: Toward a theory of fiction analysis for information storage and retrieval (1992) 0.01
    0.010577051 = product of:
      0.042308204 = sum of:
        0.026225796 = weight(_text_:data in 5830) [ClassicSimilarity], result of:
          0.026225796 = score(doc=5830,freq=2.0), product of:
            0.093835 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.029675366 = queryNorm
            0.2794884 = fieldWeight in 5830, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=5830)
        0.01608241 = product of:
          0.03216482 = sum of:
            0.03216482 = weight(_text_:22 in 5830) [ClassicSimilarity], result of:
              0.03216482 = score(doc=5830,freq=2.0), product of:
                0.103918076 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029675366 = queryNorm
                0.30952093 = fieldWeight in 5830, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5830)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    This paper examnines various isues that arise in establishing a theoretical basis for an experimental fiction analysis system. It analyzes the warrants of fiction and of works about fiction. From this analysis, it derives classificatory requirements for a fiction system. Classificatory techniques that may contribute to the specification of data elements in fiction are suggested
    Date
    5. 8.2006 13:22:08
  7. Hauff-Hartig, S.: Automatische Transkription von Videos : Fernsehen 3.0: Automatisierte Sentimentanalyse und Zusammenstellung von Kurzvideos mit hohem Aufregungslevel KI-generierte Metadaten: Von der Technologiebeobachtung bis zum produktiven Einsatz (2021) 0.01
    0.010577051 = product of:
      0.042308204 = sum of:
        0.026225796 = weight(_text_:data in 251) [ClassicSimilarity], result of:
          0.026225796 = score(doc=251,freq=2.0), product of:
            0.093835 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.029675366 = queryNorm
            0.2794884 = fieldWeight in 251, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=251)
        0.01608241 = product of:
          0.03216482 = sum of:
            0.03216482 = weight(_text_:22 in 251) [ClassicSimilarity], result of:
              0.03216482 = score(doc=251,freq=2.0), product of:
                0.103918076 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029675366 = queryNorm
                0.30952093 = fieldWeight in 251, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=251)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Date
    22. 5.2021 12:43:05
    Source
    Open Password. 2021, Nr.947 vom 14.07.2021 [https://www.password-online.de/?mailpoet_router&endpoint=view_in_browser&action=view&data=WzMxOCwiNjczMmIwMzRlMDdmIiwwLDAsMjg4LDFd]
  8. Xie, H.; Li, X.; Wang, T.; Lau, R.Y.K.; Wong, T.-L.; Chen, L.; Wang, F.L.; Li, Q.: Incorporating sentiment into tag-based user profiles and resource profiles for personalized search in folksonomy (2016) 0.01
    0.006770199 = product of:
      0.027080797 = sum of:
        0.0139679 = weight(_text_:web in 2671) [ClassicSimilarity], result of:
          0.0139679 = score(doc=2671,freq=2.0), product of:
            0.096845865 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029675366 = queryNorm
            0.14422815 = fieldWeight in 2671, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=2671)
        0.013112898 = weight(_text_:data in 2671) [ClassicSimilarity], result of:
          0.013112898 = score(doc=2671,freq=2.0), product of:
            0.093835 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.029675366 = queryNorm
            0.1397442 = fieldWeight in 2671, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03125 = fieldNorm(doc=2671)
      0.25 = coord(2/8)
    
    Abstract
    In recent years, there has been a rapid growth of user-generated data in collaborative tagging (a.k.a. folksonomy-based) systems due to the prevailing of Web 2.0 communities. To effectively assist users to find their desired resources, it is critical to understand user behaviors and preferences. Tag-based profile techniques, which model users and resources by a vector of relevant tags, are widely employed in folksonomy-based systems. This is mainly because that personalized search and recommendations can be facilitated by measuring relevance between user profiles and resource profiles. However, conventional measurements neglect the sentiment aspect of user-generated tags. In fact, tags can be very emotional and subjective, as users usually express their perceptions and feelings about the resources by tags. Therefore, it is necessary to take sentiment relevance into account into measurements. In this paper, we present a novel generic framework SenticRank to incorporate various sentiment information to various sentiment-based information for personalized search by user profiles and resource profiles. In this framework, content-based sentiment ranking and collaborative sentiment ranking methods are proposed to obtain sentiment-based personalized ranking. To the best of our knowledge, this is the first work of integrating sentiment information to address the problem of the personalized tag-based search in collaborative tagging systems. Moreover, we compare the proposed sentiment-based personalized search with baselines in the experiments, the results of which have verified the effectiveness of the proposed framework. In addition, we study the influences by popular sentiment dictionaries, and SenticNet is the most prominent knowledge base to boost the performance of personalized search in folksonomy.
  9. Rosso, M.A.: User-based identification of Web genres (2008) 0.01
    0.005774311 = product of:
      0.046194486 = sum of:
        0.046194486 = weight(_text_:web in 1863) [ClassicSimilarity], result of:
          0.046194486 = score(doc=1863,freq=14.0), product of:
            0.096845865 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029675366 = queryNorm
            0.47698978 = fieldWeight in 1863, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1863)
      0.125 = coord(1/8)
    
    Abstract
    This research explores the use of genre as a document descriptor in order to improve the effectiveness of Web searching. A major issue to be resolved is the identification of what document categories should be used as genres. As genre is a kind of folk typology, document categories must enjoy widespread recognition by their intended user groups in order to qualify as genres. Three user studies were conducted to develop a genre palette and show that it is recognizable to users. (Palette is a term used to denote a classification, attributable to Karlgren, Bretan, Dewe, Hallberg, and Wolkert, 1998.) To simplify the users' classification task, it was decided to focus on Web pages from the edu domain. The first study was a survey of user terminology for Web pages. Three participants separated 100 Web page printouts into stacks according to genre, assigning names and definitions to each genre. The second study aimed to refine the resulting set of 48 (often conceptually and lexically similar) genre names and definitions into a smaller palette of user-preferred terminology. Ten participants classified the same 100 Web pages. A set of five principles for creating a genre palette from individuals' sortings was developed, and the list of 48 was trimmed to 18 genres. The third study aimed to show that users would agree on the genres of Web pages when choosing from the genre palette. In an online experiment in which 257 participants categorized a new set of 55 pages using the 18 genres, on average, over 70% agreed on the genre of each page. Suggestions for improving the genre palette and future directions for the work are discussed.
  10. Rowe, N.C.: Inferring depictions in natural-language captions for efficient access to picture data (1994) 0.00
    0.0049682953 = product of:
      0.039746363 = sum of:
        0.039746363 = weight(_text_:data in 7296) [ClassicSimilarity], result of:
          0.039746363 = score(doc=7296,freq=6.0), product of:
            0.093835 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.029675366 = queryNorm
            0.42357713 = fieldWeight in 7296, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7296)
      0.125 = coord(1/8)
    
    Abstract
    Multimedia data can require significant examination time to find desired features ('content analysis'). An alternative is using natural-language captions to describe the data, and matching captions to English queries. But it is hard to include everything in the caption of a complicated datum, so significant content analysis may still seem required. We discuss linguistic clues in captions, both syntactic and semantic, that can simplify or eliminate content analysis. We introduce the notion of content depiction and ruled for depiction inference. Our approach is implemented in an expert system which demonstrated significant increases in recall in experiments
  11. Roberts, C.W.; Popping, R.: Computer-supported content analysis : some recent developments (1993) 0.00
    0.0040977807 = product of:
      0.032782245 = sum of:
        0.032782245 = weight(_text_:data in 4236) [ClassicSimilarity], result of:
          0.032782245 = score(doc=4236,freq=2.0), product of:
            0.093835 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.029675366 = queryNorm
            0.34936053 = fieldWeight in 4236, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.078125 = fieldNorm(doc=4236)
      0.125 = coord(1/8)
    
    Abstract
    Presents an overview of some recent developments in the clause-based content analysis of linguistic data. Introduces network analysis of evaluative texts, for the analysis of cognitive maps, and linguistic content analysis. Focuses on the types of substantive inferences afforded by the three approaches
  12. Solomon, P.: Access to fiction for children : a user-based assessment of options and opportunities (1997) 0.00
    0.004056596 = product of:
      0.03245277 = sum of:
        0.03245277 = weight(_text_:data in 5845) [ClassicSimilarity], result of:
          0.03245277 = score(doc=5845,freq=4.0), product of:
            0.093835 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.029675366 = queryNorm
            0.34584928 = fieldWeight in 5845, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5845)
      0.125 = coord(1/8)
    
    Abstract
    Reports on a study of children's intentions, purposes, search terms, strategies, successes and breakdowns in accessing fiction. Data was gathered using naturalistic methods of persistent, intensive observation and questioning with children in several school library media centres in the USA, including 997 OPAC transactions. Analyzes the data and highlights aspects of the broader context of the system which may help in development of mechanisms for electronic access
  13. Saif, H.; He, Y.; Fernandez, M.; Alani, H.: Contextual semantics for sentiment analysis of Twitter (2016) 0.00
    0.0040228814 = product of:
      0.03218305 = sum of:
        0.03218305 = weight(_text_:wide in 2667) [ClassicSimilarity], result of:
          0.03218305 = score(doc=2667,freq=2.0), product of:
            0.13148437 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.029675366 = queryNorm
            0.24476713 = fieldWeight in 2667, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2667)
      0.125 = coord(1/8)
    
    Abstract
    Sentiment analysis on Twitter has attracted much attention recently due to its wide applications in both, commercial and public sectors. In this paper we present SentiCircles, a lexicon-based approach for sentiment analysis on Twitter. Different from typical lexicon-based approaches, which offer a fixed and static prior sentiment polarities of words regardless of their context, SentiCircles takes into account the co-occurrence patterns of words in different contexts in tweets to capture their semantics and update their pre-assigned strength and polarity in sentiment lexicons accordingly. Our approach allows for the detection of sentiment at both entity-level and tweet-level. We evaluate our proposed approach on three Twitter datasets using three different sentiment lexicons to derive word prior sentiments. Results show that our approach significantly outperforms the baselines in accuracy and F-measure for entity-level subjectivity (neutral vs. polar) and polarity (positive vs. negative) detections. For tweet-level sentiment detection, our approach performs better than the state-of-the-art SentiStrength by 4-5% in accuracy in two datasets, but falls marginally behind by 1% in F-measure in the third dataset.
  14. Bade, D.: ¬The creation and persistence of misinformation in shared library catalogs : language and subject knowledge in a technological era (2002) 0.00
    0.0038441764 = product of:
      0.015376706 = sum of:
        0.011356103 = weight(_text_:data in 1858) [ClassicSimilarity], result of:
          0.011356103 = score(doc=1858,freq=6.0), product of:
            0.093835 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.029675366 = queryNorm
            0.12102204 = fieldWeight in 1858, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.015625 = fieldNorm(doc=1858)
        0.0040206024 = product of:
          0.008041205 = sum of:
            0.008041205 = weight(_text_:22 in 1858) [ClassicSimilarity], result of:
              0.008041205 = score(doc=1858,freq=2.0), product of:
                0.103918076 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.029675366 = queryNorm
                0.07738023 = fieldWeight in 1858, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1858)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Date
    22. 9.1997 19:16:05
    Footnote
    Rez. in JASIST 54(2003) no.4, S.356-357 (S.J. Lincicum): "Reliance upon shared cataloging in academic libraries in the United States has been driven largely by the need to reduce the expense of cataloging operations without muck regard for the Impact that this approach might have an the quality of the records included in local catalogs. In recent years, ever increasing pressures have prompted libraries to adopt practices such as "rapid" copy cataloging that purposely reduce the scrutiny applied to bibliographic records downloaded from shared databases, possibly increasing the number of errors that slip through unnoticed. Errors in bibliographic records can lead to serious problems for library catalog users. If the data contained in bibliographic records is inaccurate, users will have difficulty discovering and recognizing resources in a library's collection that are relevant to their needs. Thus, it has become increasingly important to understand the extent and nature of errors that occur in the records found in large shared bibliographic databases, such as OCLC WorldCat, to develop cataloging practices optimized for the shared cataloging environment. Although this monograph raises a few legitimate concerns about recent trends in cataloging practice, it fails to provide the "detailed look" at misinformation in library catalogs arising from linguistic errors and mistakes in subject analysis promised by the publisher. A basic premise advanced throughout the text is that a certain amount of linguistic and subject knowledge is required to catalog library materials effectively. The author emphasizes repeatedly that most catalogers today are asked to catalog an increasingly diverse array of materials, and that they are often required to work in languages or subject areas of which they have little or no knowledge. He argues that the records contributed to shared databases are increasingly being created by catalogers with inadequate linguistic or subject expertise. This adversely affects the quality of individual library catalogs because errors often go uncorrected as records are downloaded from shared databases to local catalogs by copy catalogers who possess even less knowledge. Calling misinformation an "evil phenomenon," Bade states that his main goal is to discuss, "two fundamental types of misinformation found in bibliographic and authority records in library catalogs: that arising from linguistic errors, and that caused by errors in subject analysis, including missing or wrong subject headings" (p. 2). After a superficial discussion of "other" types of errors that can occur in bibliographic records, such as typographical errors and errors in the application of descriptive cataloging rules, Bade begins his discussion of linguistic errors. He asserts that sharing bibliographic records created by catalogers with inadequate linguistic or subject knowledge has, "disastrous effects an the library community" (p. 6). To support this bold assertion, Bade provides as evidence little more than a laundry list of errors that he has personally observed in bibliographic records over the years. When he eventually cites several studies that have addressed the availability and quality of records available for materials in languages other than English, he fails to describe the findings of these studies in any detail, let alone relate the findings to his own observations in a meaningful way. Bade claims that a lack of linguistic expertise among catalogers is the "primary source for linguistic misinformation in our databases" (p. 10), but he neither cites substantive data from existing studies nor provides any new data regarding the overall level of linguistic knowledge among catalogers to support this claim. The section concludes with a brief list of eight sensible, if unoriginal, suggestions for coping with the challenge of cataloging materials in unfamiliar languages.
  15. Kessel, K.: Who's afraid of the big, bad uktena mster? : subject cataloging for images (2016) 0.00
    0.0032782245 = product of:
      0.026225796 = sum of:
        0.026225796 = weight(_text_:data in 3003) [ClassicSimilarity], result of:
          0.026225796 = score(doc=3003,freq=2.0), product of:
            0.093835 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.029675366 = queryNorm
            0.2794884 = fieldWeight in 3003, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=3003)
      0.125 = coord(1/8)
    
    Abstract
    This article describes the difference between cataloging images and cataloging books, the obstacles to including subject data in image cataloging records and how these obstacles can be overcome to make image collections more accessible. I call for participants to help create a subject authority reference resource for non-Western art. This article is an expanded and revised version of a presentation for the 2016 Joint ARLIS/VRA conference in Seattle.
  16. From information to knowledge : conceptual and content analysis by computer (1995) 0.00
    0.0028975685 = product of:
      0.023180548 = sum of:
        0.023180548 = weight(_text_:data in 5392) [ClassicSimilarity], result of:
          0.023180548 = score(doc=5392,freq=4.0), product of:
            0.093835 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.029675366 = queryNorm
            0.24703519 = fieldWeight in 5392, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5392)
      0.125 = coord(1/8)
    
    Content
    SCHMIDT, K.M.: Concepts - content - meaning: an introduction; DUCHASTEL, J. et al.: The SACAO project: using computation toward textual data analysis; PAQUIN, L.-C. u. L. DUPUY: An approach to expertise transfer: computer-assisted text analysis; HOGENRAAD, R., Y. BESTGEN u. J.-L. NYSTEN: Terrorist rhetoric: texture and architecture; MOHLER, P.P.: On the interaction between reading and computing: an interpretative approach to content analysis; LANCASHIRE, I.: Computer tools for cognitive stylistics; MERGENTHALER, E.: An outline of knowledge based text analysis; NAMENWIRTH, J.Z.: Ideography in computer-aided content analysis; WEBER, R.P. u. J.Z. Namenwirth: Content-analytic indicators: a self-critique; McKINNON, A.: Optimizing the aberrant frequency word technique; ROSATI, R.: Factor analysis in classical archaeology: export patterns of Attic pottery trade; PETRILLO, P.S.: Old and new worlds: ancient coinage and modern technology; DARANYI, S., S. MARJAI u.a.: Caryatids and the measurement of semiosis in architecture; ZARRI, G.P.: Intelligent information retrieval: an application in the field of historical biographical data; BOUCHARD, G., R. ROY u.a.: Computers and genealogy: from family reconstitution to population reconstruction; DEMÉLAS-BOHY, M.-D. u. M. RENAUD: Instability, networks and political parties: a political history expert system prototype; DARANYI, S., A. ABRANYI u. G. KOVACS: Knowledge extraction from ethnopoetic texts by multivariate statistical methods; FRAUTSCHI, R.L.: Measures of narrative voice in French prose fiction applied to textual samples from the enlightenment to the twentieth century; DANNENBERG, R. u.a.: A project in computer music: the musician's workbench
  17. Chen, H.: ¬An analysis of image queries in the field of art history (2001) 0.00
    0.0028684465 = product of:
      0.022947572 = sum of:
        0.022947572 = weight(_text_:data in 5187) [ClassicSimilarity], result of:
          0.022947572 = score(doc=5187,freq=2.0), product of:
            0.093835 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.029675366 = queryNorm
            0.24455236 = fieldWeight in 5187, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5187)
      0.125 = coord(1/8)
    
    Abstract
    Chen arranged with an Art History instructor to require 20 medieval art images in papers received from 29 students. Participants completed a self administered presearch and postsearch questionnaire, and were interviewed after questionnaire analysis, in order to collect both the keywords and phrases they planned to use, and those actually used. Three MLIS student reviewers then mapped the queries to Enser and McGregor's four categories, Jorgensen's 12 classes, and Fidel's 12 feature data and object poles providing a degree of match on a seven point scale (one not at all to 7 exact). The reviewers give highest scores to Enser and McGregor;'s categories. Modifications to both the Enser and McGregor and Jorgensen schemes are suggested
  18. Morehead, D.R.; Pejtersen, A.M.; Rouse, W.B.: ¬The value of information and computer-aided information seeking : problem formulation and application to fiction retrieval (1984) 0.00
    0.0028684465 = product of:
      0.022947572 = sum of:
        0.022947572 = weight(_text_:data in 5828) [ClassicSimilarity], result of:
          0.022947572 = score(doc=5828,freq=2.0), product of:
            0.093835 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.029675366 = queryNorm
            0.24455236 = fieldWeight in 5828, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5828)
      0.125 = coord(1/8)
    
    Abstract
    Issues concerning the formulation and application of a model of how humans value information are examined. Formulation of a value function is based on research from modelling, value assessment, human information seeking behavior, and human decision making. The proposed function is incorporated into a computer-based fiction retrieval system and evaluated using data from nine searches. Evaluation is based on the ability of an individual's value function to discriminate among novels selected, rejected, and not considered. The results are discussed in terms of both formulation and utilization of a value function as well as the implications for extending the proposed formulation to other information seeking environments
  19. Marsh, E.E.; White, M.D.: ¬A taxonomy of relationships between images and text (2003) 0.00
    0.002618981 = product of:
      0.020951848 = sum of:
        0.020951848 = weight(_text_:web in 4444) [ClassicSimilarity], result of:
          0.020951848 = score(doc=4444,freq=2.0), product of:
            0.096845865 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029675366 = queryNorm
            0.21634221 = fieldWeight in 4444, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4444)
      0.125 = coord(1/8)
    
    Abstract
    The paper establishes a taxonomy of image-text relationships that reflects the ways that images and text interact. It is applicable to all subject areas and document types. The taxonomy was developed to answer the research question: how does an illustration relate to the text with which it is associated, or, what are the functions of illustration? Developed in a two-stage process - first, analysis of relevant research in children's literature, dictionary development, education, journalism, and library and information design and, second, subsequent application of the first version of the taxonomy to 954 image-text pairs in 45 Web pages (pages with educational content for children, online newspapers, and retail business pages) - the taxonomy identifies 49 relationships and groups them in three categories according to the closeness of the conceptual relationship between image and text. The paper uses qualitative content analysis to illustrate use of the taxonomy to analyze four image-text pairs in government publications and discusses the implications of the research for information retrieval and document design.
  20. Allen, R.B.; Wu, Y.: Metrics for the scope of a collection (2005) 0.00
    0.002618981 = product of:
      0.020951848 = sum of:
        0.020951848 = weight(_text_:web in 4570) [ClassicSimilarity], result of:
          0.020951848 = score(doc=4570,freq=2.0), product of:
            0.096845865 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029675366 = queryNorm
            0.21634221 = fieldWeight in 4570, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4570)
      0.125 = coord(1/8)
    
    Abstract
    Some collections cover many topics, while others are narrowly focused an a limited number of topics. We introduce the concept of the "scope" of a collection of documents and we compare two ways of measuring lt. These measures are based an the distances between documents. The first uses the overlap of words between pairs of documents. The second measure uses a novel method that calculates the semantic relatedness to pairs of words from the documents. Those values are combined to obtain an overall distance between the documents. The main validation for the measures compared Web pages categorized by Yahoo. Sets of pages sampied from broad categories were determined to have a higher scope than sets derived from subcategories. The measure was significant and confirmed the expected difference in scope. Finally, we discuss other measures related to scope.