Search (345 results, page 1 of 18)

  • × theme_ss:"Semantic Web"
  1. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.13
    0.13248876 = product of:
      0.22081459 = sum of:
        0.047705904 = product of:
          0.14311771 = sum of:
            0.14311771 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.14311771 = score(doc=701,freq=2.0), product of:
                0.3819745 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.04505473 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.029990964 = weight(_text_:web in 701) [ClassicSimilarity], result of:
          0.029990964 = score(doc=701,freq=4.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.2039694 = fieldWeight in 701, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
        0.14311771 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.14311771 = score(doc=701,freq=2.0), product of:
            0.3819745 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.04505473 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.6 = coord(3/5)
    
    Abstract
    By the explosion of possibilities for a ubiquitous content production, the information overload problem reaches the level of complexity which cannot be managed by traditional modelling approaches anymore. Due to their pure syntactical nature traditional information retrieval approaches did not succeed in treating content itself (i.e. its meaning, and not its representation). This leads to a very low usefulness of the results of a retrieval process for a user's task at hand. In the last ten years ontologies have been emerged from an interesting conceptualisation paradigm to a very promising (semantic) modelling technology, especially in the context of the Semantic Web. From the information retrieval point of view, ontologies enable a machine-understandable form of content description, such that the retrieval process can be driven by the meaning of the content. However, the very ambiguous nature of the retrieval process in which a user, due to the unfamiliarity with the underlying repository and/or query syntax, just approximates his information need in a query, implies a necessity to include the user in the retrieval process more actively in order to close the gap between the meaning of the content and the meaning of a user's query (i.e. his information need). This thesis lays foundation for such an ontology-based interactive retrieval process, in which the retrieval system interacts with a user in order to conceptually interpret the meaning of his query, whereas the underlying domain ontology drives the conceptualisation process. In that way the retrieval process evolves from a query evaluation process into a highly interactive cooperation between a user and the retrieval system, in which the system tries to anticipate the user's information need and to deliver the relevant content proactively. Moreover, the notion of content relevance for a user's query evolves from a content dependent artefact to the multidimensional context-dependent structure, strongly influenced by the user's preferences. This cooperation process is realized as the so-called Librarian Agent Query Refinement Process. In order to clarify the impact of an ontology on the retrieval process (regarding its complexity and quality), a set of methods and tools for different levels of content and query formalisation is developed, ranging from pure ontology-based inferencing to keyword-based querying in which semantics automatically emerges from the results. Our evaluation studies have shown that the possibilities to conceptualize a user's information need in the right manner and to interpret the retrieval results accordingly are key issues for realizing much more meaningful information retrieval systems.
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
    Theme
    Semantic Web
  2. Li, Z.: ¬A domain specific search engine with explicit document relations (2013) 0.10
    0.10144578 = product of:
      0.1690763 = sum of:
        0.048862036 = weight(_text_:wide in 1210) [ClassicSimilarity], result of:
          0.048862036 = score(doc=1210,freq=2.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.24476713 = fieldWeight in 1210, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1210)
        0.079525545 = weight(_text_:web in 1210) [ClassicSimilarity], result of:
          0.079525545 = score(doc=1210,freq=18.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.5408555 = fieldWeight in 1210, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1210)
        0.040688716 = product of:
          0.08137743 = sum of:
            0.08137743 = weight(_text_:server in 1210) [ClassicSimilarity], result of:
              0.08137743 = score(doc=1210,freq=2.0), product of:
                0.25762302 = queryWeight, product of:
                  5.7180014 = idf(docFreq=394, maxDocs=44218)
                  0.04505473 = queryNorm
                0.31587794 = fieldWeight in 1210, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.7180014 = idf(docFreq=394, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1210)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    The current web consists of documents that are highly heterogeneous and hard for machines to understand. The Semantic Web is a progressive movement of the Word Wide Web, aiming at converting the current web of unstructured documents to the web of data. In the Semantic Web, web documents are annotated with metadata using standardized ontology language. These annotated documents are directly processable by machines and it highly improves their usability and usefulness. In Ericsson, similar problems occur. There are massive documents being created with well-defined structures. Though these documents are about domain specific knowledge and can have rich relations, they are currently managed by a traditional search engine, which ignores the rich domain specific information and presents few data to users. Motivated by the Semantic Web, we aim to find standard ways to process these documents, extract rich domain specific information and annotate these data to documents with formal markup languages. We propose this project to develop a domain specific search engine for processing different documents and building explicit relations for them. This research project consists of the three main focuses: examining different domain specific documents and finding ways to extract their metadata; integrating a text search engine with an ontology server; exploring novel ways to build relations for documents. We implement this system and demonstrate its functions. As a prototype, the system provides required features and will be extended in the future.
    Theme
    Semantic Web
  3. Birkenbihl, K.: Standards für das Semantic Web (2006) 0.10
    0.09512122 = product of:
      0.23780304 = sum of:
        0.11056217 = weight(_text_:wide in 5788) [ClassicSimilarity], result of:
          0.11056217 = score(doc=5788,freq=4.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.5538448 = fieldWeight in 5788, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0625 = fieldNorm(doc=5788)
        0.12724088 = weight(_text_:web in 5788) [ClassicSimilarity], result of:
          0.12724088 = score(doc=5788,freq=18.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.86536884 = fieldWeight in 5788, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=5788)
      0.4 = coord(2/5)
    
    Abstract
    Semantic Web - das ist die Anwendung von Wissenstechnologie im World Wide Web. Dieses Kapitel beschreibt in einigen einführenden Absätzen die Aufgabe und Entstehung von Standards. Sodann gibt es einen Überblick über die Technologien und Standards, die für das Web und seine Erweiterung zum Semantic Web entwickelt und eingesetzt werden. Diese werden überwiegend vom World Wide Web Consortium (W3C) [35] definiert. Abschließend folgen einige Bemerkungen zur weiteren Entwicklung des Semantic Web.
    Source
    Semantic Web: Wege zur vernetzten Wissensgesellschaft. Hrsg.: T. Pellegrini, u. A. Blumauer
    Theme
    Semantic Web
  4. Spinning the Semantic Web : bringing the World Wide Web to its full potential (2003) 0.08
    0.0775236 = product of:
      0.19380899 = sum of:
        0.09049376 = weight(_text_:wide in 1981) [ClassicSimilarity], result of:
          0.09049376 = score(doc=1981,freq=14.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.45331508 = fieldWeight in 1981, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1981)
        0.10331523 = weight(_text_:web in 1981) [ClassicSimilarity], result of:
          0.10331523 = score(doc=1981,freq=62.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.70264983 = fieldWeight in 1981, product of:
              7.8740077 = tf(freq=62.0), with freq of:
                62.0 = termFreq=62.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1981)
      0.4 = coord(2/5)
    
    Abstract
    As the World Wide Web continues to expand, it becomes increasingly difficult for users to obtain information efficiently. Because most search engines read format languages such as HTML or SGML, search results reflect formatting tags more than actual page content, which is expressed in natural language. Spinning the Semantic Web describes an exciting new type of hierarchy and standardization that will replace the current "Web of links" with a "Web of meaning." Using a flexible set of languages and tools, the Semantic Web will make all available information - display elements, metadata, services, images, and especially content - accessible. The result will be an immense repository of information accessible for a wide range of new applications. This first handbook for the Semantic Web covers, among other topics, software agents that can negotiate and collect information, markup languages that can tag many more types of information in a document, and knowledge systems that enable machines to read Web pages and determine their reliability. The truly interdisciplinary Semantic Web combines aspects of artificial intelligence, markup languages, natural language processing, information retrieval, knowledge representation, intelligent agents, and databases.
    Content
    Inhalt: Tim Bemers-Lee: The Original Dream - Re-enter Machines - Where Are We Now? - The World Wide Web Consortium - Where Is the Web Going Next? / Dieter Fensel, James Hendler, Henry Lieberman, and Wolfgang Wahlster: Why Is There a Need for the Semantic Web and What Will It Provide? - How the Semantic Web Will Be Possible / Jeff Heflin, James Hendler, and Sean Luke: SHOE: A Blueprint for the Semantic Web / Deborah L. McGuinness, Richard Fikes, Lynn Andrea Stein, and James Hendler: DAML-ONT: An Ontology Language for the Semantic Web / Michel Klein, Jeen Broekstra, Dieter Fensel, Frank van Harmelen, and Ian Horrocks: Ontologies and Schema Languages on the Web / Borys Omelayenko, Monica Crubezy, Dieter Fensel, Richard Benjamins, Bob Wielinga, Enrico Motta, Mark Musen, and Ying Ding: UPML: The Language and Tool Support for Making the Semantic Web Alive / Deborah L. McGuinness: Ontologies Come of Age / Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen: Sesame: An Architecture for Storing and Querying RDF Data and Schema Information / Rob Jasper and Mike Uschold: Enabling Task-Centered Knowledge Support through Semantic Markup / Yolanda Gil: Knowledge Mobility: Semantics for the Web as a White Knight for Knowledge-Based Systems / Sanjeev Thacker, Amit Sheth, and Shuchi Patel: Complex Relationships for the Semantic Web / Alexander Maedche, Steffen Staab, Nenad Stojanovic, Rudi Studer, and York Sure: SEmantic portAL: The SEAL Approach / Ora Lassila and Mark Adler: Semantic Gadgets: Ubiquitous Computing Meets the Semantic Web / Christopher Frye, Mike Plusch, and Henry Lieberman: Static and Dynamic Semantics of the Web / Masahiro Hori: Semantic Annotation for Web Content Adaptation / Austin Tate, Jeff Dalton, John Levine, and Alex Nixon: Task-Achieving Agents on the World Wide Web
    LCSH
    Semantic Web
    World Wide Web
    RSWK
    Semantic Web
    Subject
    Semantic Web
    Semantic Web
    World Wide Web
    Theme
    Semantic Web
  5. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part 2. (2010) 0.08
    0.07623146 = product of:
      0.19057864 = sum of:
        0.069101356 = weight(_text_:wide in 4706) [ClassicSimilarity], result of:
          0.069101356 = score(doc=4706,freq=4.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.34615302 = fieldWeight in 4706, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4706)
        0.12147728 = weight(_text_:web in 4706) [ClassicSimilarity], result of:
          0.12147728 = score(doc=4706,freq=42.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.8261705 = fieldWeight in 4706, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4706)
      0.4 = coord(2/5)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
    RSWK
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Subject
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Theme
    Semantic Web
  6. Münch, V.: Bald soll das Web vernünftig antworten können (2002) 0.07
    0.072828405 = product of:
      0.182071 = sum of:
        0.078179255 = weight(_text_:wide in 2553) [ClassicSimilarity], result of:
          0.078179255 = score(doc=2553,freq=2.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.3916274 = fieldWeight in 2553, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0625 = fieldNorm(doc=2553)
        0.103891745 = weight(_text_:web in 2553) [ClassicSimilarity], result of:
          0.103891745 = score(doc=2553,freq=12.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.70657074 = fieldWeight in 2553, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=2553)
      0.4 = coord(2/5)
    
    Abstract
    Über hundert Teilnehmerinnen und Teilnehmer informierten sich beim 9. AIKSymposium "Semantic Web" Mitte April über laufende Forschungs- und Entwicklungsarbeiten zur maschinellen Interpretation von Web-Inhalten. Die Informatik-Forschung will mit diesem Ansatz die Informationsbeschaffung aus dem World Wide Web automatisieren.
    Footnote
    Bericht vom 9. AIK-Symposium "Semantic Web", April 2002
    Theme
    Semantic Web
  7. Berners-Lee, T.; Hendler, J.; Lassila, O.: Mein Computer versteht mich (2001) 0.07
    0.06520261 = product of:
      0.16300651 = sum of:
        0.078179255 = weight(_text_:wide in 4550) [ClassicSimilarity], result of:
          0.078179255 = score(doc=4550,freq=2.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.3916274 = fieldWeight in 4550, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0625 = fieldNorm(doc=4550)
        0.08482725 = weight(_text_:web in 4550) [ClassicSimilarity], result of:
          0.08482725 = score(doc=4550,freq=8.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.5769126 = fieldWeight in 4550, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=4550)
      0.4 = coord(2/5)
    
    Abstract
    Was wäre, wenn der Computer den Inhalt einer Seite aus dem World Wide Web nicht nur anzeigen, sondern auch seine Bedeutung erfassen würde? Er könnte ungeahnte Dinge für seinen Benutzer tun - und das vielleicht schon bald, wenn das semantische Netz etabliert ist
    Footnote
    Dt. Übersetzung von: The Semantic Web: a new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. In: Scientific American. 284(2001) no.5, S.34-43.
    Theme
    Semantic Web
  8. Resource Description Framework (RDF) (2004) 0.07
    0.06520261 = product of:
      0.16300651 = sum of:
        0.078179255 = weight(_text_:wide in 3063) [ClassicSimilarity], result of:
          0.078179255 = score(doc=3063,freq=2.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.3916274 = fieldWeight in 3063, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0625 = fieldNorm(doc=3063)
        0.08482725 = weight(_text_:web in 3063) [ClassicSimilarity], result of:
          0.08482725 = score(doc=3063,freq=8.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.5769126 = fieldWeight in 3063, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=3063)
      0.4 = coord(2/5)
    
    Abstract
    The Resource Description Framework (RDF) integrates a variety of applications from library catalogs and world-wide directories to syndication and aggregation of news, software, and content to personal collections of music, photos, and events using XML as an interchange syntax. The RDF specifications provide a lightweight ontology system to support the exchange of knowledge on the Web. The W3C Semantic Web Activity Statement explains W3C's plans for RDF, including the RDF Core WG, Web Ontology and the RDF Interest Group.
    Theme
    Semantic Web
  9. Matthews, B.M.: Integration via meaning : using the Semantic Web to deliver Web services (2002) 0.06
    0.06369088 = product of:
      0.15922719 = sum of:
        0.05863444 = weight(_text_:wide in 3609) [ClassicSimilarity], result of:
          0.05863444 = score(doc=3609,freq=2.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.29372054 = fieldWeight in 3609, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=3609)
        0.100592755 = weight(_text_:web in 3609) [ClassicSimilarity], result of:
          0.100592755 = score(doc=3609,freq=20.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.6841342 = fieldWeight in 3609, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3609)
      0.4 = coord(2/5)
    
    Abstract
    The major developments ofthe World-Wide Web (WWW) in the last two years have been Web Services and the Semantic Web. The former allows the construction of distributed systems across the WWW by providing a lightweight middleware architecture. The latter provides an infrastructure for accessing resources an the WWW via their relationships with respect to conceptual descriptions. In this paper, I shall review the progress undertaken in each of these two areas. Further, I shall argue that in order for the aims of both the Semantic Web and the Web Services activities to be successful, then the Web Service architecture needs to be augmented by concepts and tools of the Semantic Web. This infrastructure will allow resource discovery, brokering and access to be enabled in a standardised, integrated and interoperable manner. Finally, I survey the CLRC Information Technology R&D programme to show how it is contributing to the development of this future infrastructure.
    Theme
    Semantic Web
  10. Harper, C.A.; Tillett, B.B.: Library of Congress controlled vocabularies and their application to the Semantic Web (2006) 0.06
    0.061626043 = product of:
      0.1540651 = sum of:
        0.05863444 = weight(_text_:wide in 242) [ClassicSimilarity], result of:
          0.05863444 = score(doc=242,freq=2.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.29372054 = fieldWeight in 242, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=242)
        0.09543066 = weight(_text_:web in 242) [ClassicSimilarity], result of:
          0.09543066 = score(doc=242,freq=18.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.64902663 = fieldWeight in 242, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=242)
      0.4 = coord(2/5)
    
    Abstract
    This article discusses how various controlled vocabularies, classification schemes and thesauri can serve as some of the building blocks of the Semantic Web. These vocabularies have been developed over the course of decades, and can be put to great use in the development of robust web services and Semantic Web technologies. The article covers how initial collaboration between the Semantic Web, Library and Metadata communities are creating partnerships to complete work in this area. It then discusses some cores principles of authority control before talking more specifically about subject and genre vocabularies and name authority. It is hoped that future systems for internationally shared authority data will link the world's authority data from trusted sources to benefit users worldwide. Finally, the article looks at how encoding and markup of vocabularies can help ensure compatibility with the current and future state of Semantic Web development and provides examples of how this work can help improve the findability and navigation of information on the World Wide Web.
    Footnote
    Simultaneously published as Knitting the Semantic Web
    Theme
    Semantic Web
  11. ¬The Semantic Web - ISWC 2010 : 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part I. (2010) 0.06
    0.060985167 = product of:
      0.15246291 = sum of:
        0.055281084 = weight(_text_:wide in 4707) [ClassicSimilarity], result of:
          0.055281084 = score(doc=4707,freq=4.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.2769224 = fieldWeight in 4707, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=4707)
        0.097181834 = weight(_text_:web in 4707) [ClassicSimilarity], result of:
          0.097181834 = score(doc=4707,freq=42.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.6609364 = fieldWeight in 4707, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=4707)
      0.4 = coord(2/5)
    
    Abstract
    The two-volume set LNCS 6496 and 6497 constitutes the refereed proceedings of the 9th International Semantic Web Conference, ISWC 2010, held in Shanghai, China, during November 7-11, 2010. Part I contains 51 papers out of 578 submissions to the research track. Part II contains 18 papers out of 66 submissions to the semantic Web in-use track, 6 papers out of 26 submissions to the doctoral consortium track, and also 4 invited talks. Each submitted paper were carefully reviewed. The International Semantic Web Conferences (ISWC) constitute the major international venue where the latest research results and technical innovations on all aspects of the Semantic Web are presented. ISWC brings together researchers, practitioners, and users from the areas of artificial intelligence, databases, social networks, distributed computing, Web engineering, information systems, natural language processing, soft computing, and human computer interaction to discuss the major challenges and proposed solutions, the success stories and failures, as well the visions that can advance research and drive innovation in the Semantic Web.
    RSWK
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Subject
    Semantic Web / Kongress / Schanghai <2010>
    Semantic Web / Ontologie <Wissensverarbeitung> / Kongress / Schanghai <2010>
    Semantic Web / Datenverwaltung / Wissensmanagement / Kongress / Schanghai <2010>
    Semantic Web / Anwendungssystem / Kongress / Schanghai <2010>
    Semantic Web / World Wide Web 2.0 / Kongress / Schanghai <2010>
    Theme
    Semantic Web
  12. Bechhofer, S.; Harmelen, F. van; Hendler, J.; Horrocks, I.; McGuinness, D.L.; Patel-Schneider, P.F.; Stein, L.A.: OWL Web Ontology Language Reference (2004) 0.06
    0.06055665 = product of:
      0.15139163 = sum of:
        0.06840685 = weight(_text_:wide in 4684) [ClassicSimilarity], result of:
          0.06840685 = score(doc=4684,freq=2.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.342674 = fieldWeight in 4684, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4684)
        0.08298478 = weight(_text_:web in 4684) [ClassicSimilarity], result of:
          0.08298478 = score(doc=4684,freq=10.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.5643819 = fieldWeight in 4684, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4684)
      0.4 = coord(2/5)
    
    Abstract
    The Web Ontology Language OWL is a semantic markup language for publishing and sharing ontologies on the World Wide Web. OWL is developed as a vocabulary extension of RDF (the Resource Description Framework) and is derived from the DAML+OIL Web Ontology Language. This document contains a structured informal description of the full set of OWL language constructs and is meant to serve as a reference for OWL users who want to construct OWL ontologies.
    Theme
    Semantic Web
  13. Gibbins, N.; Shadbolt, N.: Resource Description Framework (RDF) (2009) 0.06
    0.06055665 = product of:
      0.15139163 = sum of:
        0.06840685 = weight(_text_:wide in 4695) [ClassicSimilarity], result of:
          0.06840685 = score(doc=4695,freq=2.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.342674 = fieldWeight in 4695, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4695)
        0.08298478 = weight(_text_:web in 4695) [ClassicSimilarity], result of:
          0.08298478 = score(doc=4695,freq=10.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.5643819 = fieldWeight in 4695, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4695)
      0.4 = coord(2/5)
    
    Abstract
    The Resource Description Framework (RDF) is the standard knowledge representation language for the Semantic Web, an evolution of the World Wide Web that aims to provide a well-founded infrastructure for publishing, sharing and querying structured data. This entry provides an introduction to RDF and its related vocabulary definition language RDF Schema, and explains its relationship with the OWL Web Ontology Language. Finally, it provides an overview of the historical development of RDF and related languages for Web metadata.
    Theme
    Semantic Web
  14. Zumstein, P.: ¬Die Rolle des Semantic Web für Bibliotheken : Linked Open Data und mehr: Welche Strategien können hier die Bibliotheken in die Zukunft führen? (2012) 0.06
    0.06055665 = product of:
      0.15139163 = sum of:
        0.06840685 = weight(_text_:wide in 2450) [ClassicSimilarity], result of:
          0.06840685 = score(doc=2450,freq=2.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.342674 = fieldWeight in 2450, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2450)
        0.08298478 = weight(_text_:web in 2450) [ClassicSimilarity], result of:
          0.08298478 = score(doc=2450,freq=10.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.5643819 = fieldWeight in 2450, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2450)
      0.4 = coord(2/5)
    
    Abstract
    Das Semantic Web ist die Vision einer Erweiterung des World Wide Webs, so dass die Daten nicht nur für Menschen leicht verständlich dargestellt werden, sondern auch von Maschinen verwertbar sind. Mit einer entsprechenden Ausgestaltung von Links zwischen einzelnen Webressourcen wäre das Web als riesige, globale Datenbank nutzbar. Darin könnten dann Softwareagenten für uns auch komplexe Fragestellungen und Planungen bearbeiten. In dieser Arbeit soll gezeigt werden, dass jede Bibliothek interessante Daten für das Semantic Web hat und umgekehrt von ihm profitieren kann. Ein Schwerpunkt liegt auf möglichen Anwendungsszenarien mit dem speziellen Fokus beim Bibliothekswesen.
    Theme
    Semantic Web
  15. Wright, H.: Semantic Web and ontologies (2018) 0.06
    0.06055665 = product of:
      0.15139163 = sum of:
        0.06840685 = weight(_text_:wide in 80) [ClassicSimilarity], result of:
          0.06840685 = score(doc=80,freq=2.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.342674 = fieldWeight in 80, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.0546875 = fieldNorm(doc=80)
        0.08298478 = weight(_text_:web in 80) [ClassicSimilarity], result of:
          0.08298478 = score(doc=80,freq=10.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.5643819 = fieldWeight in 80, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=80)
      0.4 = coord(2/5)
    
    Abstract
    The Semantic Web and ontologies can help archaeologists combine and share data, making it more open and useful. Archaeologists create diverse types of data, using a wide variety of technologies and methodologies. Like all research domains, these data are increasingly digital. The creation of data that are now openly and persistently available from disparate sources has also inspired efforts to bring archaeological resources together and make them more interoperable. This allows functionality such as federated cross-search across different datasets, and the mapping of heterogeneous data to authoritative structures to build a single data source. Ontologies provide the structure and relationships for Semantic Web data, and have been developed for use in cultural heritage applications generally, and archaeology specifically. A variety of online resources for archaeology now incorporate Semantic Web principles and technologies.
    Theme
    Semantic Web
  16. Wang, H.; Liu, Q.; Penin, T.; Fu, L.; Zhang, L.; Tran, T.; Yu, Y.; Pan, Y.: Semplore: a scalable IR approach to search the Web of Data (2009) 0.06
    0.059442934 = product of:
      0.14860733 = sum of:
        0.05863444 = weight(_text_:wide in 1638) [ClassicSimilarity], result of:
          0.05863444 = score(doc=1638,freq=2.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.29372054 = fieldWeight in 1638, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=1638)
        0.08997289 = weight(_text_:web in 1638) [ClassicSimilarity], result of:
          0.08997289 = score(doc=1638,freq=16.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.6119082 = fieldWeight in 1638, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=1638)
      0.4 = coord(2/5)
    
    Abstract
    The Web of Data keeps growing rapidly. However, the full exploitation of this large amount of structured data faces numerous challenges like usability, scalability, imprecise information needs and data change. We present Semplore, an IR-based system that aims at addressing these issues. Semplore supports intuitive faceted search and complex queries both on text and structured data. It combines imprecise keyword search and precise structured query in a unified ranking scheme. Scalable query processing is supported by leveraging inverted indexes traditionally used in IR systems. This is combined with a novel block-based index structure to support efficient index update when data changes. The experimental results show that Semplore is an efficient and effective system for searching the Web of Data and can be used as a basic infrastructure for Web-scale Semantic Web search engines.
    Source
    Web semantics: science, services and agents on the World Wide Web. 7(2009) no.3, S.177-188
    Theme
    Semantic Web
  17. Hüsken, P.: Informationssuche im Semantic Web : Methoden des Information Retrieval für die Wissensrepräsentation (2006) 0.06
    0.059442934 = product of:
      0.14860733 = sum of:
        0.05863444 = weight(_text_:wide in 4332) [ClassicSimilarity], result of:
          0.05863444 = score(doc=4332,freq=2.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.29372054 = fieldWeight in 4332, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=4332)
        0.08997289 = weight(_text_:web in 4332) [ClassicSimilarity], result of:
          0.08997289 = score(doc=4332,freq=16.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.6119082 = fieldWeight in 4332, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4332)
      0.4 = coord(2/5)
    
    Abstract
    Das Semantic Web bezeichnet ein erweitertes World Wide Web (WWW), das die Bedeutung von präsentierten Inhalten in neuen standardisierten Sprachen wie RDF Schema und OWL modelliert. Diese Arbeit befasst sich mit dem Aspekt des Information Retrieval, d.h. es wird untersucht, in wie weit Methoden der Informationssuche sich auf modelliertes Wissen übertragen lassen. Die kennzeichnenden Merkmale von IR-Systemen wie vage Anfragen sowie die Unterstützung unsicheren Wissens werden im Kontext des Semantic Web behandelt. Im Fokus steht die Suche nach Fakten innerhalb einer Wissensdomäne, die entweder explizit modelliert sind oder implizit durch die Anwendung von Inferenz abgeleitet werden können. Aufbauend auf der an der Universität Duisburg-Essen entwickelten Retrievalmaschine PIRE wird die Anwendung unsicherer Inferenz mit probabilistischer Prädikatenlogik (pDatalog) implementiert.
    Footnote
    Zugl.: Dortmund, Univ., Dipl.-Arb., 2006 u.d.T.: Hüsken, Peter: Information-Retrieval im Semantic-Web.
    RSWK
    Information Retrieval / Semantic Web
    Subject
    Information Retrieval / Semantic Web
    Theme
    Semantic Web
  18. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.06
    0.059319146 = product of:
      0.14829786 = sum of:
        0.048370946 = weight(_text_:wide in 4515) [ClassicSimilarity], result of:
          0.048370946 = score(doc=4515,freq=4.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.2423071 = fieldWeight in 4515, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
        0.09992692 = weight(_text_:web in 4515) [ClassicSimilarity], result of:
          0.09992692 = score(doc=4515,freq=58.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.67960584 = fieldWeight in 4515, product of:
              7.615773 = tf(freq=58.0), with freq of:
                58.0 = termFreq=58.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
      0.4 = coord(2/5)
    
    Abstract
    The main purpose of this book is to sum up the vital and highly topical research issue of knowledge representation on the Web and to discuss novel solutions by combining benefits of folksonomies and Web 2.0 approaches with ontologies and semantic technologies. This book contains an overview of knowledge representation approaches in past, present and future, introduction to ontologies, Web indexing and in first case the novel approaches of developing ontologies. This title combines aspects of knowledge representation for both the Semantic Web (ontologies) and the Web 2.0 (folksonomies). Currently there is no monographic book which provides a combined overview over these topics. focus on the topic of using knowledge representation methods for document indexing purposes. For this purpose, considerations from classical librarian interests in knowledge representation (thesauri, classification schemes etc.) are included, which are not part of most other books which have a stronger background in computer science.
    Footnote
    Rez. in: iwp 62(2011) H.4, S.205-206 (C. Carstens): "Welche Arten der Wissensrepräsentation existieren im Web, wie ausgeprägt sind semantische Strukturen in diesem Kontext, und wie können soziale Aktivitäten im Sinne des Web 2.0 zur Strukturierung von Wissen im Web beitragen? Diesen Fragen widmet sich Wellers Buch mit dem Titel Knowledge Representation in the Social Semantic Web. Der Begriff Social Semantic Web spielt einerseits auf die semantische Strukturierung von Daten im Sinne des Semantic Web an und deutet andererseits auf die zunehmend kollaborative Inhaltserstellung im Social Web hin. Weller greift die Entwicklungen in diesen beiden Bereichen auf und beleuchtet die Möglichkeiten und Herausforderungen, die aus der Kombination der Aktivitäten im Semantic Web und im Social Web entstehen. Der Fokus des Buches liegt dabei primär auf den konzeptuellen Herausforderungen, die sich in diesem Kontext ergeben. So strebt die originäre Vision des Semantic Web die Annotation aller Webinhalte mit ausdrucksstarken, hochformalisierten Ontologien an. Im Social Web hingegen werden große Mengen an Daten von Nutzern erstellt, die häufig mithilfe von unkontrollierten Tags in Folksonomies annotiert werden. Weller sieht in derartigen kollaborativ erstellten Inhalten und Annotationen großes Potenzial für die semantische Indexierung, eine wichtige Voraussetzung für das Retrieval im Web. Das Hauptinteresse des Buches besteht daher darin, eine Brücke zwischen den Wissensrepräsentations-Methoden im Social Web und im Semantic Web zu schlagen. Um dieser Fragestellung nachzugehen, gliedert sich das Buch in drei Teile. . . .
    Insgesamt besticht das Buch insbesondere durch seine breite Sichtweise, die Aktualität und die Fülle an Referenzen. Es ist somit sowohl als Überblickswerk geeignet, das umfassend über aktuelle Entwicklungen und Trends der Wissensrepräsentation im Semantic und Social Web informiert, als auch als Lektüre für Experten, für die es vor allem als kontextualisierte und sehr aktuelle Sammlung von Referenzen eine wertvolle Ressource darstellt." Weitere Rez. in: Journal of Documentation. 67(2011), no.5, S.896-899 (P. Rafferty)
    LCSH
    Semantic Web
    Object
    Web 2.0
    RSWK
    Semantic Web
    World Wide Web 2.0
    Subject
    Semantic Web
    World Wide Web 2.0
    Semantic Web
    Theme
    Semantic Web
  19. Blumauer, A.; Pellegrini, T.: Semantic Web Revisited : Eine kurze Einführung in das Social Semantic Web (2009) 0.06
    0.057780545 = product of:
      0.14445136 = sum of:
        0.12308633 = weight(_text_:web in 4855) [ClassicSimilarity], result of:
          0.12308633 = score(doc=4855,freq=22.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.8371137 = fieldWeight in 4855, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4855)
        0.021365028 = product of:
          0.042730056 = sum of:
            0.042730056 = weight(_text_:22 in 4855) [ClassicSimilarity], result of:
              0.042730056 = score(doc=4855,freq=2.0), product of:
                0.15777399 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04505473 = queryNorm
                0.2708308 = fieldWeight in 4855, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4855)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Während in den vergangenen Monaten Themen wie Web 2.0 und Social Software ein erstaunliches Konjunkturhoch erlebt haben, vollzieht sich weitgehend abseits der öffentlichen Wahrnehmung eine technologische Komplementärinnovation. Die wachsende Adaption semantischer Technologien zu Zwecken der strukturierten Erschließung von "Web 2.0 Content", aber auch der Einsatz von Social Software zur kollaborativen Anreicherung von Web Content mit maschinenlesbaren Metadaten sind Ausdruck eines Trends in Richtung "Social Semantic Web". Bezeichnendes Merkmal dieser Entwicklung ist die voranschreitende Konvergenz zwischen Social Software und Semantic Web Technologien. Dieser Beitrag hat das Ziel ein allgemeines Bewusstsein und Verständnis dieser Entwicklung zu schaffen und nähert sich dem Phänomen aus einer nichttechnischen Perspektive.
    Object
    Web 2.0
    Pages
    S.3-22
    Source
    Social Semantic Web: Web 2.0, was nun? Hrsg.: A. Blumauer u. T. Pellegrini
    Theme
    Semantic Web
  20. Feigenbaum, L.; Herman, I.; Hongsermeier, T.; Neumann, E.; Stephens, S.: ¬The Semantic Web in action (2007) 0.06
    0.057666995 = product of:
      0.14416748 = sum of:
        0.06770523 = weight(_text_:wide in 3000) [ClassicSimilarity], result of:
          0.06770523 = score(doc=3000,freq=6.0), product of:
            0.19962662 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.04505473 = queryNorm
            0.3391593 = fieldWeight in 3000, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.03125 = fieldNorm(doc=3000)
        0.076462254 = weight(_text_:web in 3000) [ClassicSimilarity], result of:
          0.076462254 = score(doc=3000,freq=26.0), product of:
            0.14703658 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.04505473 = queryNorm
            0.520022 = fieldWeight in 3000, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=3000)
      0.4 = coord(2/5)
    
    Abstract
    Six years ago in this magazine, Tim Berners-Lee, James Hendler and Ora Lassila unveiled a nascent vision of the Semantic Web: a highly interconnected network of data that could be easily accessed and understood by any desktop or handheld machine. They painted a future of intelligent software agents that would head out on the World Wide Web and automatically book flights and hotels for our trips, update our medical records and give us a single, customized answer to a particular question without our having to search for information or pore through results. They also presented the young technologies that would make this vision come true: a common language for representing data that could be understood by all kinds of software agents; ontologies--sets of statements--that translate information from disparate databases into common terms; and rules that allow software agents to reason about the information described in those terms. The data format, ontologies and reasoning software would operate like one big application on the World Wide Web, analyzing all the raw data stored in online databases as well as all the data about the text, images, video and communications the Web contained. Like the Web itself, the Semantic Web would grow in a grassroots fashion, only this time aided by working groups within the World Wide Web Consortium, which helps to advance the global medium. Since then skeptics have said the Semantic Web would be too difficult for people to understand or exploit. Not so. The enabling technologies have come of age. A vibrant community of early adopters has agreed on standards that have steadily made the Semantic Web practical to use. Large companies have major projects under way that will greatly improve the efficiencies of in-house operations and of scientific research. Other firms are using the Semantic Web to enhance business-to-business interactions and to build the hidden data-processing structures, or back ends, behind new consumer services. And like an iceberg, the tip of this large body of work is emerging in direct consumer applications, too.
    Content
    Vgl. auch unter: http://thefigtrees.net/lee/sw/sciam/semantic-web-in-action#single-page.
    Theme
    Semantic Web

Years

Languages

  • e 255
  • d 87
  • f 1
  • More… Less…

Types

  • a 213
  • el 89
  • m 56
  • s 23
  • x 14
  • n 11
  • r 5
  • More… Less…

Subjects

Classifications