Search (75 results, page 2 of 4)

  • × theme_ss:"Klassifikationssysteme im Online-Retrieval"
  1. Ferris, A.M.: Results of an expanded survey on the use of Classification Web : they will use it, if you buy it! (2009) 0.02
    0.016609183 = product of:
      0.08304591 = sum of:
        0.08304591 = weight(_text_:web in 2991) [ClassicSimilarity], result of:
          0.08304591 = score(doc=2991,freq=10.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.5643819 = fieldWeight in 2991, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2991)
      0.2 = coord(1/5)
    
    Abstract
    This paper presents the results of a survey examining the extent to which working catalogers use Classification Web, the Library of Congress' online resource for subject heading and classification documentation. An earlier survey analyzed Class Web's usefulness on an institutional level. This broader survey expands on that analysis and provides information on such questions as: what types of institutions subscribe to Class Web; what are the reasons for using Class Web when performing original or copy cataloging; and what other resources do catalogers use for classification/subject heading analysis?
    Object
    Classification Web
  2. Peereboom, M.: Dwerg tussen reuzen? : het Nederlandse basisclassificatie Web (1997) 0.01
    0.014855704 = product of:
      0.07427852 = sum of:
        0.07427852 = weight(_text_:web in 515) [ClassicSimilarity], result of:
          0.07427852 = score(doc=515,freq=8.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.50479853 = fieldWeight in 515, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=515)
      0.2 = coord(1/5)
    
    Abstract
    Developments in electronic communication technology have meda online databases a normal part of library collections. To provide users with direct access to Internet resources the Dutch Royal Library has cooperated with several university libraries in the Netherlands to develop the Nederlandse Basisclassificatie Web. Subject specialists select sources, add English summaries and NBW code, and input them to the online database. A Web desk and training workshops have been provided to assist users, and improvements to the system will simplify search procedures
    Footnote
    Übers. d. Titels: A dwarf amongst giants?: the Dutch Basic classification of Web resources
  3. Quick Guide to Publishing a Classification Scheme on the Semantic Web (2008) 0.01
    0.014855704 = product of:
      0.07427852 = sum of:
        0.07427852 = weight(_text_:web in 3061) [ClassicSimilarity], result of:
          0.07427852 = score(doc=3061,freq=8.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.50479853 = fieldWeight in 3061, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3061)
      0.2 = coord(1/5)
    
    Abstract
    This document describes in brief how to express the content and structure of a classification scheme, and metadata about a classification scheme, in RDF using the SKOS vocabulary. RDF allows data to be linked to and/or merged with other RDF data by semantic web applications. The Semantic Web, which is based on the Resource Description Framework (RDF), provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries. Publishing classifications schemes in SKOS will unify the great many of existing classification efforts in the framework of the Semantic Web.
  4. National Seminar on Classification in the Digital Environment : Papers contributed to the National Seminar an Classification in the Digital Environment, Bangalore, 9-11 August 2001 (2001) 0.01
    0.014448739 = product of:
      0.036121845 = sum of:
        0.030013055 = weight(_text_:web in 2047) [ClassicSimilarity], result of:
          0.030013055 = score(doc=2047,freq=16.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.2039694 = fieldWeight in 2047, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.015625 = fieldNorm(doc=2047)
        0.00610879 = product of:
          0.01221758 = sum of:
            0.01221758 = weight(_text_:22 in 2047) [ClassicSimilarity], result of:
              0.01221758 = score(doc=2047,freq=2.0), product of:
                0.1578902 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045087915 = queryNorm
                0.07738023 = fieldWeight in 2047, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=2047)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Date
    2. 1.2004 10:35:22
    Footnote
    Rez. in: Knowledge organization 30(2003) no.1, S.40-42 (J.-E. Mai): "Introduction: This is a collection of papers presented at the National Seminar an Classification in the Digital Environment held in Bangalore, India, an August 9-11 2001. The collection contains 18 papers dealing with various issues related to knowledge organization and classification theory. The issue of transferring the knowledge, traditions, and theories of bibliographic classification to the digital environment is an important one, and I was excited to learn that proceedings from this seminar were available. Many of us experience frustration an a daily basis due to poorly constructed Web search mechanisms and Web directories. As a community devoted to making information easily accessible we have something to offer the Web community and a seminar an the topic was indeed much needed. Below are brief summaries of the 18 papers presented at the seminar. The order of the summaries follows the order of the papers in the proceedings. The titles of the paper are given in parentheses after the author's name. AHUJA and WESLEY (From "Subject" to "Need": Shift in Approach to Classifying Information an the Internet/Web) argue that traditional bibliographic classification systems fall in the digital environment. One problem is that bibliographic classification systems have been developed to organize library books an shelves and as such are unidimensional and tied to the paper-based environment. Another problem is that they are "subject" oriented in the sense that they assume a relatively stable universe of knowledge containing basic and fixed compartments of knowledge that can be identified and represented. Ahuja and Wesley suggest that classification in the digital environment should be need-oriented instead of subjectoriented ("One important link that binds knowledge and human being is his societal need. ... Hence, it will be ideal to organise knowledge based upon need instead of subject." (p. 10)).
    SELVI (Knowledge Classification of Digital Information Materials with Special Reference to Clustering Technique) finds that it is essential to classify digital material since the amount of material that is becoming available is growing. Selvi suggests using automated classification to "group together those digital information materials or documents that are "most similar" (p. 65). This can be attained by using Cluster analysis methods. PRADHAN and THULASI (A Study of the Use of Classification and Indexing Systems by Web Resource Directories) compare and contrast the classificatory structures of Google, Yahoo, and Looksmart's directories and compare the directories to Dewey Decimal Classification, Library of Congress Classification and Colon Classification's classificatory structures. They find differentes between the directories' and the bibliographic classification systems' classificatory structures and principles. These differentes stem from the fact that bibliographic classification systems are used to "classify academic resources for the research community" (p. 83) and directories "aim to categorize a wider breath of information groups, entertainment, recreation, govt. information, commercial information" (p. 83). NEELAMEGHAN (Hierarchy, Hierarchical Relation and Hierarchical Arrangement) reviews the concept of hierarchy and the formation of hierarchical structures across a variety of domains. NEELAMEGHAN and PRADAD (Digitized Schemes for Subject Classification and Thesauri: Complementary Roles) demonstrate how thesaural relationships (NT, BT, and RT) can be applied to a classification scheme, the Colon Classification in this Gase. NEELAMEGHAN and ASUNDI (Metadata Framework for Describing Embodied Knowledge and Subject Content) propose to use the Generalized Facet Structure framework which is based an Ranganathan's General Theory of Knowledge Classification as a framework for describing the content of documents in a metadata element set for the representation of web documents. CHUDAMANI (Classified Catalogue as a Tool for Subject Based Information Retrieval in both Traditional and Electronic Library Environment) explains why the classified catalogue is superior to the alphabetic cata logue and argues that the same is true in the digital environment.
    Discussion The proceedings of the National Seminar an Classification in the Digital Environment give some insights. However, the depth of analysis and discussion is very uneven across the papers. Some of the papers have substantive research content while others appear to be notes used in the oral presentation. The treatments of the topics are very general in nature. Some papers have a very limited list of references while others have no bibliography. No index has been provided. The transfer of bibliographic knowledge organization theory to the digital environment is an important topic. However, as the papers at this conference have shown, it is also a difficult task. Of the 18 papers presented at this seminar an classification in the digital environment, only 4-5 papers actually deal directly with this important topic. The remaining papers deal with issues that are more or less relevant to classification in the digital environment without explicitly discussing the relation. The reason could be that the authors take up issues in knowledge organization that still need to be investigated and clarified before their application in the digital environment can be considered. Nonetheless, one wishes that the knowledge organization community would discuss the application of classification theory in the digital environment in greater detail. It is obvious from the comparisons of the classificatory structures of bibliographic classification systems and Web directories that these are different and that they probably should be different, since they serve different purposes. Interesting questions in the transformation of bibliographic classification theories to the digital environment are: "Given the existing principles in bibliographic knowledge organization, what are the optimum principles for organization of information, irrespectively of context?" and "What are the fundamental theoretical and practical principles for the construction of Web directories?" Unfortunately, the papers presented at this seminar do not attempt to answer or discuss these questions."
  5. Poynder, R.: Web research engines? (1996) 0.01
    0.014236443 = product of:
      0.07118221 = sum of:
        0.07118221 = weight(_text_:web in 5698) [ClassicSimilarity], result of:
          0.07118221 = score(doc=5698,freq=10.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.48375595 = fieldWeight in 5698, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=5698)
      0.2 = coord(1/5)
    
    Abstract
    Describes the shortcomings of search engines for the WWW comparing their current capabilities to those of the first generation CD-ROM products. Some allow phrase searching and most are improving their Boolean searching. Few allow truncation, wild cards or nested logic. They are stateless, losing previous search criteria. Unlike the indexing and classification systems for today's CD-ROMs, those for Web pages are random, unstructured and of variable quality. Considers that at best Web search engines can only offer free text searching. Discusses whether automatic data classification systems such as Infoseek Ultra can overcome the haphazard nature of the Web with neural network technology, and whether Boolean search techniques may be redundant when replaced by technology such as the Euroferret search engine. However, artificial intelligence is rarely successful on huge, varied databases. Relevance ranking and automatic query expansion still use the same simple inverted indexes. Most Web search engines do nothing more than word counting. Further complications arise with foreign languages
  6. Hanke, M.: Bibliothekarische Klassifikationssysteme im semantischen Web : zu Chancen und Problemen von Linked-data-Repräsentationen ausgewählter Klassifikationssysteme (2014) 0.01
    0.014236443 = product of:
      0.07118221 = sum of:
        0.07118221 = weight(_text_:web in 2463) [ClassicSimilarity], result of:
          0.07118221 = score(doc=2463,freq=10.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.48375595 = fieldWeight in 2463, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2463)
      0.2 = coord(1/5)
    
    Abstract
    Pflege und Anwendung von Klassifikationssystemen für Informationsressourcen sind traditionell eine Kernkompetenz von Bibliotheken. Diese Systeme sind häufig historisch gewachsen und die Veröffentlichung verschiedener Systeme ist in der Vergangenheit typischerweise durch gedruckte Regelwerke oder proprietäre Datenbanken erfolgt. Die Technologien des semantischen Web erlauben es, Klassifikationssysteme in einer standardisierten und maschinenlesbaren Weise zu repräsentieren, sowie als Linked (Open) Data für die Nachnutzung zugänglich zu machen. Anhand ausgewählter Beispiele von Klassifikationssystemen, die bereits als Linked (Open) Data publiziert wurden, werden in diesem Artikel zentrale semantische und technische Fragen erörtert, sowie mögliche Einsatzgebiete und Chancen dargestellt. So kann beispielsweise die für die Maschinenlesbarkeit erforderliche starke Strukturierung von Daten im semantischen Web zum besseren Verständnis der Klassifikationssysteme beitragen und möglicherweise positive Impulse für ihre Weiterentwicklung liefern. Für das semantische Web aufbereitete Repräsentationen von Klassifikationssystemen können unter anderem zur Kataloganreicherung oder für die anwendungsbezogene Erstellung von Konkordanzen zwischen verschiedenen Klassifikations- bzw. Begriffssystemen genutzt werden..
    Theme
    Semantic Web
  7. Lin, Z.Y.: Classification practice and implications for subject directories of the Chinese language Web-based digital library (2000) 0.01
    0.0127334595 = product of:
      0.0636673 = sum of:
        0.0636673 = weight(_text_:web in 3438) [ClassicSimilarity], result of:
          0.0636673 = score(doc=3438,freq=2.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.43268442 = fieldWeight in 3438, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.09375 = fieldNorm(doc=3438)
      0.2 = coord(1/5)
    
  8. Saeed, H.; Chaudry, A.S.: Potential of bibliographic tools to organize knowledge on the Internet : the use of Dewey Decimal classification scheme for organizing Web-based information resources (2001) 0.01
    0.0127334595 = product of:
      0.0636673 = sum of:
        0.0636673 = weight(_text_:web in 6739) [ClassicSimilarity], result of:
          0.0636673 = score(doc=6739,freq=8.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.43268442 = fieldWeight in 6739, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=6739)
      0.2 = coord(1/5)
    
    Abstract
    Possibilities are being explored to use traditional bibliographic tools, like Dewey Decimal Classification (DDC), Library of Congress Classification (LCC), Library of Congress Subject Headings (LCSH), and Universal Decimal Classification (UDC), to improve the organization of information resources on the Internet. The most recent edition of DDC, with its enhanced features, has greater potential than other traditional approaches. A review of selected Web sites that use DDC to organize Web resources indicates, however, that the full potential of the DDC scheme for this purpose has not been realized. While the review found that the DDC classification structure was more effective when compared with other knowledge organization systems, we conclude that DDC needs to be further enhanced to make it more suitable for this application. As widely reported in the professional literature, OCLC has conducted research on the potential of DDC for organizing Web resources. Such research, however, is experimental and should be supplemented by empirical studies with user participation.
  9. Dumais, S.; Chen, H.: Hierarchical classification of Web content (2000) 0.01
    0.0127334595 = product of:
      0.0636673 = sum of:
        0.0636673 = weight(_text_:web in 492) [ClassicSimilarity], result of:
          0.0636673 = score(doc=492,freq=2.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.43268442 = fieldWeight in 492, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.09375 = fieldNorm(doc=492)
      0.2 = coord(1/5)
    
  10. Koch, T.; Golub, K.; Ardö, A.: Users browsing behaviour in a DDC-based Web service : a log analysis (2006) 0.01
    0.0127334595 = product of:
      0.0636673 = sum of:
        0.0636673 = weight(_text_:web in 2234) [ClassicSimilarity], result of:
          0.0636673 = score(doc=2234,freq=8.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.43268442 = fieldWeight in 2234, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2234)
      0.2 = coord(1/5)
    
    Abstract
    This study explores the navigation behaviour of all users of a large web service, Renardus, using web log analysis. Renardus provides integrated searching and browsing access to quality-controlled web resources from major individual subject gateway services. The main navigation feature is subject browsing through the Dewey Decimal Classification (DDC) based on mapping of classes of resources from the distributed gateways to the DDC structure. Among the more surprising results are the hugely dominant share of browsing activities, the good use of browsing support features like the graphical fish-eye overviews, rather long and varied navigation sequences, as well as extensive hierarchical directory-style browsing through the large DDC system.
  11. Slavic, A.: Classification revisited : a web of knowledge (2011) 0.01
    0.011863702 = product of:
      0.05931851 = sum of:
        0.05931851 = weight(_text_:web in 12) [ClassicSimilarity], result of:
          0.05931851 = score(doc=12,freq=10.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.40312994 = fieldWeight in 12, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=12)
      0.2 = coord(1/5)
    
    Abstract
    The vision of the semantic web is gradually unfolding and taking shape through a web of linked data, a part of which is built by capturing semantics stored in existing knowledge organization systems (KOS), subject metadata and resource metadata. The content of vast bibliographic collections is currently categorized by some widely used bibliographic classification and we may soon see them being mined for information and linked in a meaningful way across the web. Bibliographic classifications are designed for knowledge mediation, which offers both a rich terminology and different ways in which concepts can be categorized and related to each other in the universe of knowledge. From 1990 to 2010 they have been used in various resource discovery services on the web, and they continue to be used to support information integration in a number of international digital library projects. In this chapter we will revisit some of the ways in which universal classifications, as language-independent concept schemes, can assist humans and computers in structuring and presenting information and formulating queries. Most importantly, we will highlight issues important to understanding bibliographic classifications, identifying both their unused potential and their technical limitations.
  12. Allen, R.B.: ¬Two digital library interfaces that exploit hierarchical structure (1995) 0.01
    0.011735525 = product of:
      0.058677625 = sum of:
        0.058677625 = weight(_text_:wide in 2416) [ClassicSimilarity], result of:
          0.058677625 = score(doc=2416,freq=2.0), product of:
            0.19977365 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.045087915 = queryNorm
            0.29372054 = fieldWeight in 2416, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=2416)
      0.2 = coord(1/5)
    
    Abstract
    Two library classification system interfaces have been implemented for navigating and searching large collections of document and book records. One interface allows the user to browse book records organized by the DDC hierarchy. A Book Shelf display reflects the facet position in the classification hierarchy during browsing, and it dynamically updates to reflect search hits and attribute selections. The other interface provides access to records describing computer science documents classified by the ACM Computing Reviews (CR) system. The CR classification system is a type of faceted classification in which documents can appear at several points in the hierarchy. These two interfaces demonstrate that classification structure can be effectively utilized for organizing digital libraries and, potentiall, collections of Internet-wide information services
  13. Vizine-Goetz, D.: NetLab / OCLC collaboration seeks to improve Web searching (1999) 0.01
    0.010611217 = product of:
      0.053056084 = sum of:
        0.053056084 = weight(_text_:web in 4180) [ClassicSimilarity], result of:
          0.053056084 = score(doc=4180,freq=2.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.36057037 = fieldWeight in 4180, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.078125 = fieldNorm(doc=4180)
      0.2 = coord(1/5)
    
  14. XFML Core - eXchangeable Faceted Metadata Language (2003) 0.01
    0.010611217 = product of:
      0.053056084 = sum of:
        0.053056084 = weight(_text_:web in 6673) [ClassicSimilarity], result of:
          0.053056084 = score(doc=6673,freq=2.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.36057037 = fieldWeight in 6673, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.078125 = fieldNorm(doc=6673)
      0.2 = coord(1/5)
    
    Abstract
    The specification for XFML, a markup language designed to handle faceted classifications. Browsing the site (http://www.xfml.org/) will reveal news about XFML and links to related software and web sites. XFML is not an officially recognized Internet standard, but is the de facto standard.
  15. Hill, J.S.: Online classification number access : some practical considerations (1984) 0.01
    0.009774065 = product of:
      0.04887032 = sum of:
        0.04887032 = product of:
          0.09774064 = sum of:
            0.09774064 = weight(_text_:22 in 7684) [ClassicSimilarity], result of:
              0.09774064 = score(doc=7684,freq=2.0), product of:
                0.1578902 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045087915 = queryNorm
                0.61904186 = fieldWeight in 7684, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=7684)
          0.5 = coord(1/2)
      0.2 = coord(1/5)
    
    Source
    Journal of academic librarianship. 10(1984), S.17-22
  16. Devadason, F.J.; Intaraksa, N.; Patamawongjariya, P.; Desai, K.: Faceted indexing application for organizing and accessing internet resources (2003) 0.01
    0.009490962 = product of:
      0.047454808 = sum of:
        0.047454808 = weight(_text_:web in 3966) [ClassicSimilarity], result of:
          0.047454808 = score(doc=3966,freq=10.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.32250395 = fieldWeight in 3966, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.03125 = fieldNorm(doc=3966)
      0.2 = coord(1/5)
    
    Abstract
    Organizing and providing access to the resources an the Internet has been a problem area in spite of the availability of sophisticated search engines and other Software tools. There have been several attempts to organize the resources an the WWW. Some of them have tried to use traditional library classification schemes such as the Library of Congress Classification, the Dewey Decimal Classification and others. However there is a need to assign proper subject headings to them and present them in a logical or hierarchical sequence to cater to the need for browsing. This paper attempts to describe an experimental system designed to organize and provide access to web documents using a faceted pre-coordinate indexing system based an the Deep Structure Indexing System (DSIS) derived from POPSI (Postulate based Permuted Subject Indexing) of Bhattacharyya, and the facet analysis and chain indexing System of Ranganathan. A prototype software system has been designed to create a database of records specifying Web documents according to the Dublin Core and input a faceted subject heading according to DSIS. Synonymous terms are added to the standard terms in the heading using appropriate symbols. Once the data are entered along with a description and URL of the Web document, the record is stored in the system. More than one faceted subject heading can be assigned to a record depending an the content of the original document. The system stores the surrogates and keeps the faceted subject headings separately after establishing a link. Search is carried out an index entries derived from the faceted subject heading using chain indexing technique. If a single term is input, the system searches for its presence in the faceted subject headings and displays the subject headings in a sorted sequence reflecting an organizing sequence. If the number of retrieved headings is too large (running into more than a page) then the user has the option of entering another search term to be searched in combination. The system searches subject headings already retrieved and look for those containing the second term. The retrieved faceted subject headings can be displayed and browsed. When the relevant subject heading is selected the system displays the records with their URLs. Using the URL the original document an the web can be accessed. The prototype system developed under Windows NT environment using ASP and web server is under rigorous testing. The database and indexes management routines need further development.
  17. Gnoli, C.; Mei, H.: Freely faceted classification for Web-based information retrieval (2006) 0.01
    0.009003917 = product of:
      0.045019582 = sum of:
        0.045019582 = weight(_text_:web in 534) [ClassicSimilarity], result of:
          0.045019582 = score(doc=534,freq=4.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.3059541 = fieldWeight in 534, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=534)
      0.2 = coord(1/5)
    
    Abstract
    In free classification, each concept is expressed by a constant notation, and classmarks are formed by free combinations of them, allowing the retrieval of records from a database by searching any of the component concepts. A refinement of free classification is freely faceted classification, where notation can include facets, expressing the kind of relations held between the concepts. The Integrative Level Classification project aims at testing free and freely faceted classification by applying them to small bibliographical samples in various domains. A sample, called the Dandelion Bibliography of Facet Analysis, is described here. Experience was gained using this system to classify 300 specialized papers dealing with facet analysis itself recorded on a MySQL database and building a Web interface exploiting freely faceted notation. The interface is written in PHP and uses string functions to process the queries and to yield relevant results selected and ordered according to the principles of integrative levels.
  18. Broughton, V.: Finding Bliss on the Web : some problems of representing faceted terminologies in digital environments 0.01
    0.009003917 = product of:
      0.045019582 = sum of:
        0.045019582 = weight(_text_:web in 3532) [ClassicSimilarity], result of:
          0.045019582 = score(doc=3532,freq=4.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.3059541 = fieldWeight in 3532, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3532)
      0.2 = coord(1/5)
    
    Abstract
    The Bliss Bibliographic Classification is the only example of a fully faceted general classification scheme in the Western world. Although it is the object of much interest as a model for other tools it suffers from the lack of a web presence, and remedying this is an immediate objective for its editors. Understanding how this might be done presents some challenges, as the scheme is semantically very rich and complex in the range and nature of the relationships it contains. The automatic management of these is already in place using local software, but exporting this to a common data format needs careful thought and planning. Various encoding schemes, both for traditional classifications, and for digital materials, represent variously: the concepts; their functional roles; and the relationships between them. Integrating these aspects in a coherent and interchangeable manner appears to be achievable, but the most appropriate format is as yet unclear.
  19. Yu, N.: Readings & Web resources for faceted classification 0.01
    0.009003917 = product of:
      0.045019582 = sum of:
        0.045019582 = weight(_text_:web in 4394) [ClassicSimilarity], result of:
          0.045019582 = score(doc=4394,freq=4.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.3059541 = fieldWeight in 4394, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4394)
      0.2 = coord(1/5)
    
    Abstract
    The term "facet" has been used in various places, while in most cases it is just a buzz word to replace what is indeed "aspect" or "category". The references below either define and explain the original concept of facet or provide guidelines for building 'real' faceted search/browse. I was interested in faceted classification because it seems to be a natural and efficient way for organizing and browsing Web collections. However, to automatically generate facets and their isolates is extremely difficult since it involves concept extraction and concept grouping, both of which are difficult problems by themselves. And it is almost impossible to achieve mutually exclusive and jointly exhaustive 'true' facets without human judgment. Nowadays, faceted search/browse widely exists, implicitly or explicitly, on a majority of retail websites due to the multi-aspects nature of the data. However, it is still rarely seen on any digital library sites. (I could be wrong since I haven't kept myself updated with this field for a while.)
  20. Saeed, H.; Chaudhry, A.S.: Using Dewey decimal classification scheme (DDC) for building taxonomies for knowledge organisation (2002) 0.01
    0.008488974 = product of:
      0.042444866 = sum of:
        0.042444866 = weight(_text_:web in 4461) [ClassicSimilarity], result of:
          0.042444866 = score(doc=4461,freq=2.0), product of:
            0.14714488 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.045087915 = queryNorm
            0.2884563 = fieldWeight in 4461, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=4461)
      0.2 = coord(1/5)
    
    Abstract
    Terms drawn from DDC indexes and IEEE Web Thesaurus were merged with DDC hierarchies to build a taxonomy in the domain of computer science. When displayed as a directory structure using a shareware tool MyInfo, the resultant taxonomy appeared to be a promising tool for categorisation that can facilitate browsing of information resources in an electronic environment.

Years

Languages

  • e 64
  • d 10
  • nl 1
  • More… Less…

Types

  • a 61
  • el 11
  • m 3
  • s 2
  • x 1
  • More… Less…