Search (19 results, page 1 of 1)

  • × author_ss:"Egghe, L."
  • × theme_ss:"Informetrie"
  1. Egghe, L.; Rousseau, R.: Introduction to informetrics : quantitative methods in library, documentation and information science (1990) 0.13
    0.12747595 = product of:
      0.36649334 = sum of:
        0.0839101 = weight(_text_:allgemeines in 1515) [ClassicSimilarity], result of:
          0.0839101 = score(doc=1515,freq=4.0), product of:
            0.13446471 = queryWeight, product of:
              5.705423 = idf(docFreq=399, maxDocs=44218)
              0.023567878 = queryNorm
            0.62403065 = fieldWeight in 1515, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.705423 = idf(docFreq=399, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1515)
        0.055722013 = weight(_text_:buch in 1515) [ClassicSimilarity], result of:
          0.055722013 = score(doc=1515,freq=4.0), product of:
            0.109575786 = queryWeight, product of:
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.023567878 = queryNorm
            0.5085249 = fieldWeight in 1515, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.64937 = idf(docFreq=1149, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1515)
        0.012662571 = weight(_text_:und in 1515) [ClassicSimilarity], result of:
          0.012662571 = score(doc=1515,freq=4.0), product of:
            0.052235067 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.023567878 = queryNorm
            0.24241515 = fieldWeight in 1515, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1515)
        0.036219276 = product of:
          0.07243855 = sum of:
            0.07243855 = weight(_text_:bibliothekswesen in 1515) [ClassicSimilarity], result of:
              0.07243855 = score(doc=1515,freq=8.0), product of:
                0.10505787 = queryWeight, product of:
                  4.457672 = idf(docFreq=1392, maxDocs=44218)
                  0.023567878 = queryNorm
                0.68951094 = fieldWeight in 1515, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  4.457672 = idf(docFreq=1392, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1515)
          0.5 = coord(1/2)
        0.052308373 = weight(_text_:informationswissenschaft in 1515) [ClassicSimilarity], result of:
          0.052308373 = score(doc=1515,freq=4.0), product of:
            0.10616633 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.023567878 = queryNorm
            0.4927021 = fieldWeight in 1515, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1515)
        0.07243855 = weight(_text_:bibliothekswesen in 1515) [ClassicSimilarity], result of:
          0.07243855 = score(doc=1515,freq=8.0), product of:
            0.10505787 = queryWeight, product of:
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.023567878 = queryNorm
            0.68951094 = fieldWeight in 1515, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1515)
        0.011277375 = product of:
          0.02255475 = sum of:
            0.02255475 = weight(_text_:29 in 1515) [ClassicSimilarity], result of:
              0.02255475 = score(doc=1515,freq=2.0), product of:
                0.08290443 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.023567878 = queryNorm
                0.27205724 = fieldWeight in 1515, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1515)
          0.5 = coord(1/2)
        0.04195505 = product of:
          0.0839101 = sum of:
            0.0839101 = weight(_text_:allgemeines in 1515) [ClassicSimilarity], result of:
              0.0839101 = score(doc=1515,freq=4.0), product of:
                0.13446471 = queryWeight, product of:
                  5.705423 = idf(docFreq=399, maxDocs=44218)
                  0.023567878 = queryNorm
                0.62403065 = fieldWeight in 1515, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.705423 = idf(docFreq=399, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1515)
          0.5 = coord(1/2)
      0.3478261 = coord(8/23)
    
    Classification
    AN 70400 Allgemeines / Buch- und Bibliothekswesen, Informationswissenschaft / Bibliothekswesen / Bibliotheksverwaltung / Bibliotheksanalyse, -statistik
    Date
    29. 2.2008 19:02:46
    RVK
    AN 70400 Allgemeines / Buch- und Bibliothekswesen, Informationswissenschaft / Bibliothekswesen / Bibliotheksverwaltung / Bibliotheksanalyse, -statistik
  2. Egghe, L.: Empirical and combinatorial study of country occurrences in multi-authored papers (2006) 0.00
    0.0012647192 = product of:
      0.01454427 = sum of:
        0.0051164515 = weight(_text_:und in 81) [ClassicSimilarity], result of:
          0.0051164515 = score(doc=81,freq=2.0), product of:
            0.052235067 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.023567878 = queryNorm
            0.09795051 = fieldWeight in 81, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.03125 = fieldNorm(doc=81)
        0.0094278185 = product of:
          0.018855637 = sum of:
            0.018855637 = weight(_text_:1 in 81) [ClassicSimilarity], result of:
              0.018855637 = score(doc=81,freq=18.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.32568932 = fieldWeight in 81, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.03125 = fieldNorm(doc=81)
          0.5 = coord(1/2)
      0.08695652 = coord(2/23)
    
    Abstract
    Papers written by several authors can be classified according to the countries of the author affiliations. The empirical part of this paper consists of two datasets. One dataset consists of 1,035 papers retrieved via the search "pedagog*" in the years 2004 and 2005 (up to October) in Academic Search Elite which is a case where phi(m) = the number of papers with m =1, 2,3 ... authors is decreasing, hence most of the papers have a low number of authors. Here we find that #, m = the number of times a country occurs j times in a m-authored paper, j =1, ..., m-1 is decreasing and that # m, m is much higher than all the other #j, m values. The other dataset consists of 3,271 papers retrieved via the search "enzyme" in the year 2005 (up to October) in the same database which is a case of a non-decreasing phi(m): most papers have 3 or 4 authors and we even find many papers with a much higher number of authors. In this case we show again that # m, m is much higher than the other #j, m values but that #j, m is not decreasing anymore in j =1, ..., m-1, although #1, m is (apart from # m, m) the largest number amongst the #j,m. The combinatorial part gives a proof of the fact that #j,m decreases for j = 1, m-1, supposing that all cases are equally possible. This shows that the first dataset is more conform with this model than the second dataset. Explanations for these findings are given. From the data we also find the (we think: new) distribution of number of papers with n =1, 2,3,... countries (i.e. where there are n different countries involved amongst the m (a n) authors of a paper): a fast decreasing function e.g. as a power law with a very large Lotka exponent.
    Source
    Information - Wissenschaft und Praxis. 57(2006) H.8, S.427-432
  3. Egghe, L.: ¬A noninformetric analysis of the relationship between citation age and journal productivity (2001) 0.00
    0.0012504549 = product of:
      0.028760463 = sum of:
        0.028760463 = sum of:
          0.0094278185 = weight(_text_:1 in 5685) [ClassicSimilarity], result of:
            0.0094278185 = score(doc=5685,freq=2.0), product of:
              0.057894554 = queryWeight, product of:
                2.4565027 = idf(docFreq=10304, maxDocs=44218)
                0.023567878 = queryNorm
              0.16284466 = fieldWeight in 5685, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.4565027 = idf(docFreq=10304, maxDocs=44218)
                0.046875 = fieldNorm(doc=5685)
          0.019332644 = weight(_text_:29 in 5685) [ClassicSimilarity], result of:
            0.019332644 = score(doc=5685,freq=2.0), product of:
              0.08290443 = queryWeight, product of:
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.023567878 = queryNorm
              0.23319192 = fieldWeight in 5685, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.046875 = fieldNorm(doc=5685)
      0.04347826 = coord(1/23)
    
    Abstract
    A problem, raised by Wallace (JASIS, 37,136-145,1986), on the relation between the journal's median citation age and its number of articles is studied. Leaving open the problem as such, we give a statistical explanation of this relationship, when replacing "median" by "mean" in Wallace's problem. The cloud of points, found by Wallace, is explained in this sense that the points are scattered over the area in first quadrant, limited by a curve of the form y=1 + E/x**2 where E is a constant. This curve is obtained by using the Central Limit Theorem in statistics and, hence, has no intrinsic informetric foundation. The article closes with some reflections on explanations of regularities in informetrics, based on statistical, probabilistic or informetric results, or on a combination thereof
    Date
    29. 9.2001 13:59:34
  4. Egghe, L.: Untangling Herdan's law and Heaps' law : mathematical and informetric arguments (2007) 0.00
    0.0011835359 = product of:
      0.027221326 = sum of:
        0.027221326 = sum of:
          0.011110791 = weight(_text_:1 in 271) [ClassicSimilarity], result of:
            0.011110791 = score(doc=271,freq=4.0), product of:
              0.057894554 = queryWeight, product of:
                2.4565027 = idf(docFreq=10304, maxDocs=44218)
                0.023567878 = queryNorm
              0.19191428 = fieldWeight in 271, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                2.4565027 = idf(docFreq=10304, maxDocs=44218)
                0.0390625 = fieldNorm(doc=271)
          0.016110536 = weight(_text_:29 in 271) [ClassicSimilarity], result of:
            0.016110536 = score(doc=271,freq=2.0), product of:
              0.08290443 = queryWeight, product of:
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.023567878 = queryNorm
              0.19432661 = fieldWeight in 271, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.0390625 = fieldNorm(doc=271)
      0.04347826 = coord(1/23)
    
    Abstract
    Herdan's law in linguistics and Heaps' law in information retrieval are different formulations of the same phenomenon. Stated briefly and in linguistic terms they state that vocabularies' sizes are concave increasing power laws of texts' sizes. This study investigates these laws from a purely mathematical and informetric point of view. A general informetric argument shows that the problem of proving these laws is, in fact, ill-posed. Using the more general terminology of sources and items, the author shows by presenting exact formulas from Lotkaian informetrics that the total number T of sources is not only a function of the total number A of items, but is also a function of several parameters (e.g., the parameters occurring in Lotka's law). Consequently, it is shown that a fixed T(or A) value can lead to different possible A (respectively, T) values. Limiting the T(A)-variability to increasing samples (e.g., in a text as done in linguistics) the author then shows, in a purely mathematical way, that for large sample sizes T~ A**phi, where phi is a constant, phi < 1 but close to 1, hence roughly, Heaps' or Herdan's law can be proved without using any linguistic or informetric argument. The author also shows that for smaller samples, a is not a constant but essentially decreases as confirmed by practical examples. Finally, an exact informetric argument on random sampling in the items shows that, in most cases, T= T(A) is a concavely increasing function, in accordance with practical examples.
    Date
    29. 4.2007 19:51:08
  5. Egghe, L.: Influence of adding or deleting items and sources on the h-index (2010) 0.00
    4.2027488E-4 = product of:
      0.009666322 = sum of:
        0.009666322 = product of:
          0.019332644 = sum of:
            0.019332644 = weight(_text_:29 in 3336) [ClassicSimilarity], result of:
              0.019332644 = score(doc=3336,freq=2.0), product of:
                0.08290443 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.023567878 = queryNorm
                0.23319192 = fieldWeight in 3336, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3336)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Date
    31. 5.2010 15:02:29
  6. Egghe, L.; Rousseau, R.: Averaging and globalising quotients of informetric and scientometric data (1996) 0.00
    4.1649418E-4 = product of:
      0.009579366 = sum of:
        0.009579366 = product of:
          0.019158732 = sum of:
            0.019158732 = weight(_text_:22 in 7659) [ClassicSimilarity], result of:
              0.019158732 = score(doc=7659,freq=2.0), product of:
                0.08253069 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.023567878 = queryNorm
                0.23214069 = fieldWeight in 7659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=7659)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Source
    Journal of information science. 22(1996) no.3, S.165-170
  7. Egghe, L.; Liang, L.; Rousseau, R.: Fundamental properties of rhythm sequences (2008) 0.00
    4.1415304E-4 = product of:
      0.00952552 = sum of:
        0.00952552 = product of:
          0.01905104 = sum of:
            0.01905104 = weight(_text_:1 in 1965) [ClassicSimilarity], result of:
              0.01905104 = score(doc=1965,freq=6.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.32906446 = fieldWeight in 1965, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1965)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    Fundamental mathematical properties of rhythm sequences are studied. In particular, a set of three axioms for valid rhythm indicators is proposed, and it is shown that the R-indicator satisfies only two out of three but that the R-indicator satisfies all three. This fills a critical, logical gap in the study of these indicator sequences. Matrices leading to a constant R-sequence are called baseline matrices. They are characterized as matrices with constant w-year diachronous impact factors. The relation with classical impact factors is clarified. Using regression analysis matrices with a rhythm sequence that is on average equal to 1 (smaller than 1, larger than 1) are characterized.
  8. Egghe, L.: ¬The Hirsch index and related impact measures (2010) 0.00
    4.0990516E-4 = product of:
      0.0094278185 = sum of:
        0.0094278185 = product of:
          0.018855637 = sum of:
            0.018855637 = weight(_text_:1 in 1597) [ClassicSimilarity], result of:
              0.018855637 = score(doc=1597,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.32568932 = fieldWeight in 1597, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1597)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Source
    Annual review of information science and technology. 44(2010) no.1, S.65-114
  9. Egghe, L.; Rousseau, R.; Hooydonk, G. van: Methods for accrediting publications to authors or countries : consequences for evaluation studies (2000) 0.00
    3.779547E-4 = product of:
      0.008692958 = sum of:
        0.008692958 = product of:
          0.017385917 = sum of:
            0.017385917 = weight(_text_:international in 4384) [ClassicSimilarity], result of:
              0.017385917 = score(doc=4384,freq=2.0), product of:
                0.078619614 = queryWeight, product of:
                  3.33588 = idf(docFreq=4276, maxDocs=44218)
                  0.023567878 = queryNorm
                0.22113968 = fieldWeight in 4384, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.33588 = idf(docFreq=4276, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4384)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    One aim of science evaluation studies is to determine quantitatively the contribution of different players (authors, departments, countries) to the whole system. This information is then used to study the evolution of the system, for instance to gauge the results of special national or international programs. Taking articles as our basic data, we want to determine the exact relative contribution of each coauthor or each country. These numbers are brought together to obtain country scores, or department scores, etc. It turns out, as we will show in this article, that different scoring methods can yield totally different rankings. Conseqeuntly, a ranking between countries, universities, research groups or authors, based on one particular accrediting methods does not contain an absolute truth about their relative importance
  10. Egghe, L.: Theory of the topical coverage of multiple databases (2013) 0.00
    3.381545E-4 = product of:
      0.0077775535 = sum of:
        0.0077775535 = product of:
          0.015555107 = sum of:
            0.015555107 = weight(_text_:1 in 526) [ClassicSimilarity], result of:
              0.015555107 = score(doc=526,freq=4.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.26867998 = fieldWeight in 526, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=526)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    We present a model that describes which fraction of the literature on a certain topic we will find when we use n (n = 1, 2, .) databases. It is a generalization of the theory of discovering usability problems. We prove that, in all practical cases, this fraction is a concave function of n, the number of used databases, thereby explaining some graphs that exist in the literature. We also study limiting features of this fraction for n very high and we characterize the case that we find all literature on a certain topic for n high enough.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.1, S.126-131
  11. Rousseau, R.; Egghe, L.; Guns, R.: Becoming metric-wise : a bibliometric guide for researchers (2018) 0.00
    3.149623E-4 = product of:
      0.0072441325 = sum of:
        0.0072441325 = product of:
          0.014488265 = sum of:
            0.014488265 = weight(_text_:international in 5226) [ClassicSimilarity], result of:
              0.014488265 = score(doc=5226,freq=2.0), product of:
                0.078619614 = queryWeight, product of:
                  3.33588 = idf(docFreq=4276, maxDocs=44218)
                  0.023567878 = queryNorm
                0.18428308 = fieldWeight in 5226, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.33588 = idf(docFreq=4276, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5226)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    Aims to inform researchers about metrics so that they become aware of the evaluative techniques being applied to their scientific output. Understanding these concepts will help them during their funding initiatives, and in hiring and tenure. The book not only describes what indicators do (or are designed to do, which is not always the same thing), but also gives precise mathematical formulae so that indicators can be properly understood and evaluated. Metrics have become a critical issue in science, with widespread international discussion taking place on the subject across scientific journals and organizations. As researchers should know the publication-citation context, the mathematical formulae of indicators being used by evaluating committees and their consequences, and how such indicators might be misused, this book provides an ideal tome on the topic. Provides researchers with a detailed understanding of bibliometric indicators and their applications. Empowers researchers looking to understand the indicators relevant to their work and careers. Presents an informed and rounded picture of bibliometrics, including the strengths and shortcomings of particular indicators. Supplies the mathematics behind bibliometric indicators so they can be properly understood. Written by authors with longstanding expertise who are considered global leaders in the field of bibliometrics
  12. Egghe, L.; Ravichandra Rao, I.K.: ¬The influence of the broadness of a query of a topic on its h-index : models and examples of the h-index of n-grams (2008) 0.00
    2.958236E-4 = product of:
      0.0068039424 = sum of:
        0.0068039424 = product of:
          0.013607885 = sum of:
            0.013607885 = weight(_text_:1 in 2009) [ClassicSimilarity], result of:
              0.013607885 = score(doc=2009,freq=6.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.23504603 = fieldWeight in 2009, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2009)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    The article studies the influence of the query formulation of a topic on its h-index. In order to generate pure random sets of documents, we used N-grams (N variable) to measure this influence: strings of zeros, truncated at the end. The used databases are WoS and Scopus. The formula h=T**1/alpha, proved in Egghe and Rousseau (2006) where T is the number of retrieved documents and is Lotka's exponent, is confirmed being a concavely increasing function of T. We also give a formula for the relation between h and N the length of the N-gram: h=D10**(-N/alpha) where D is a constant, a convexly decreasing function, which is found in our experiments. Nonlinear regression on h=T**1/alpha gives an estimation of , which can then be used to estimate the h-index of the entire database (Web of Science [WoS] and Scopus): h=S**1/alpha, , where S is the total number of documents in the database.
  13. Egghe, L.; Guns, R.: Applications of the generalized law of Benford to informetric data (2012) 0.00
    2.8984674E-4 = product of:
      0.0066664745 = sum of:
        0.0066664745 = product of:
          0.013332949 = sum of:
            0.013332949 = weight(_text_:1 in 376) [ClassicSimilarity], result of:
              0.013332949 = score(doc=376,freq=4.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.23029712 = fieldWeight in 376, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.046875 = fieldNorm(doc=376)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    In a previous work (Egghe, 2011), the first author showed that Benford's law (describing the logarithmic distribution of the numbers 1, 2, ... , 9 as first digits of data in decimal form) is related to the classical law of Zipf with exponent 1. The work of Campanario and Coslado (2011), however, shows that Benford's law does not always fit practical data in a statistical sense. In this article, we use a generalization of Benford's law related to the general law of Zipf with exponent ? > 0. Using data from Campanario and Coslado, we apply nonlinear least squares to determine the optimal ? and show that this generalized law of Benford fits the data better than the classical law of Benford.
  14. Egghe, L.: Mathematical theories of citation (1998) 0.00
    2.7327013E-4 = product of:
      0.0062852125 = sum of:
        0.0062852125 = product of:
          0.012570425 = sum of:
            0.012570425 = weight(_text_:1 in 5125) [ClassicSimilarity], result of:
              0.012570425 = score(doc=5125,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.2171262 = fieldWeight in 5125, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5125)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Source
    Scientometrics. 43(1998) no.1, S.57-62
  15. Egghe, L.: ¬The influence of transformations on the h-index and the g-index (2008) 0.00
    2.3911135E-4 = product of:
      0.005499561 = sum of:
        0.005499561 = product of:
          0.010999122 = sum of:
            0.010999122 = weight(_text_:1 in 1881) [ClassicSimilarity], result of:
              0.010999122 = score(doc=1881,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.18998542 = fieldWeight in 1881, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1881)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Date
    1. 6.2008 12:58:41
  16. Egghe, L.; Ravichandra Rao, I.K.: Duality revisited : construction of fractional frequency distributions based on two dual Lotka laws (2002) 0.00
    2.0495258E-4 = product of:
      0.0047139092 = sum of:
        0.0047139092 = product of:
          0.0094278185 = sum of:
            0.0094278185 = weight(_text_:1 in 1006) [ClassicSimilarity], result of:
              0.0094278185 = score(doc=1006,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.16284466 = fieldWeight in 1006, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1006)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Date
    1. 6.2008 12:50:46
  17. Egghe, L.: Relations between the continuous and the discrete Lotka power function (2005) 0.00
    2.0495258E-4 = product of:
      0.0047139092 = sum of:
        0.0047139092 = product of:
          0.0094278185 = sum of:
            0.0094278185 = weight(_text_:1 in 3464) [ClassicSimilarity], result of:
              0.0094278185 = score(doc=3464,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.16284466 = fieldWeight in 3464, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3464)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    The discrete Lotka power function describes the number of sources (e.g., authors) with n = 1, 2, 3, ... items (e.g., publications). As in econometrics, informetrics theory requires functions of a continuous variable j, replacing the discrete variable n. Now j represents item densities instead of number of items. The continuous Lotka power function describes the density of sources with item density j. The discrete Lotka function one obtains from data, obtained empirically; the continuous Lotka function is the one needed when one wants to apply Lotkaian informetrics, i.e., to determine properties that can be derived from the (continuous) model. It is, hence, important to know the relations between the two models. We show that the exponents of the discrete Lotka function (if not too high, i.e., within limits encountered in practice) and of the continuous Lotka function are approximately the same. This is important to know in applying theoretical results (from the continuous model), derived from practical data.
  18. Egghe, L.; Ravichandra Rao, I.K.: Study of different h-indices for groups of authors (2008) 0.00
    2.0495258E-4 = product of:
      0.0047139092 = sum of:
        0.0047139092 = product of:
          0.0094278185 = sum of:
            0.0094278185 = weight(_text_:1 in 1878) [ClassicSimilarity], result of:
              0.0094278185 = score(doc=1878,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.16284466 = fieldWeight in 1878, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1878)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Date
    1. 6.2008 12:49:57
  19. Egghe, L.: Mathematical study of h-index sequences (2009) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 4217) [ClassicSimilarity], result of:
              0.007856515 = score(doc=4217,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 4217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4217)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    This paper studies mathematical properties of h-index sequences as developed by Liang [Liang, L. (2006). h-Index sequence and h-index matrix: Constructions and applications. Scientometrics, 69(1), 153-159]. For practical reasons, Liming studies such sequences where the time goes backwards while it is more logical to use the time going forward (real career periods). Both type of h-index sequences are studied here and their interrelations are revealed. We show cases where these sequences are convex, linear and concave. We also show that, when one of the sequences is convex then the other one is concave, showing that the reverse-time sequence, in general, cannot be used to derive similar properties of the (difficult to obtain) forward time sequence. We show that both sequences are the same if and only if the author produces the same number of papers per year. If the author produces an increasing number of papers per year, then Liang's h-sequences are above the "normal" ones. All these results are also valid for g- and R-sequences. The results are confirmed by the h-, g- and R-sequences (forward and reverse time) of the author.