Search (153 results, page 8 of 8)

  • × theme_ss:"Retrievalalgorithmen"
  1. Efron, M.; Winget, M.: Query polyrepresentation for ranking retrieval systems without relevance judgments (2010) 0.00
    2.0495258E-4 = product of:
      0.0047139092 = sum of:
        0.0047139092 = product of:
          0.0094278185 = sum of:
            0.0094278185 = weight(_text_:1 in 3469) [ClassicSimilarity], result of:
              0.0094278185 = score(doc=3469,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.16284466 = fieldWeight in 3469, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3469)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Date
    1. 6.2010 9:24:31
  2. Cecchini, R.L.; Lorenzetti, C.M.; Maguitman, A.G.; Brignole, N.B.: Multiobjective evolutionary algorithms for context-based search (2010) 0.00
    2.0495258E-4 = product of:
      0.0047139092 = sum of:
        0.0047139092 = product of:
          0.0094278185 = sum of:
            0.0094278185 = weight(_text_:1 in 3482) [ClassicSimilarity], result of:
              0.0094278185 = score(doc=3482,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.16284466 = fieldWeight in 3482, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3482)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Date
    1. 6.2010 10:42:49
  3. Biskri, I.; Rompré, L.: Using association rules for query reformulation (2012) 0.00
    2.0495258E-4 = product of:
      0.0047139092 = sum of:
        0.0047139092 = product of:
          0.0094278185 = sum of:
            0.0094278185 = weight(_text_:1 in 92) [ClassicSimilarity], result of:
              0.0094278185 = score(doc=92,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.16284466 = fieldWeight in 92, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.046875 = fieldNorm(doc=92)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    In this paper the authors will present research on the combination of two methods of data mining: text classification and maximal association rules. Text classification has been the focus of interest of many researchers for a long time. However, the results take the form of lists of words (classes) that people often do not know what to do with. The use of maximal association rules induced a number of advantages: (1) the detection of dependencies and correlations between the relevant units of information (words) of different classes, (2) the extraction of hidden knowledge, often relevant, from a large volume of data. The authors will show how this combination can improve the process of information retrieval.
  4. Picard, J.; Savoy, J.: Enhancing retrieval with hyperlinks : a general model based on propositional argumentation systems (2003) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 1427) [ClassicSimilarity], result of:
              0.007856515 = score(doc=1427,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 1427, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1427)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    Fast, effective, and adaptable techniques are needed to automatically organize and retrieve information an the ever-increasing World Wide Web. In that respect, different strategies have been suggested to take hypertext links into account. For example, hyperlinks have been used to (1) enhance document representation, (2) improve document ranking by propagating document score, (3) provide an indicator of popularity, and (4) find hubs and authorities for a given topic. Although the TREC experiments have not demonstrated the usefulness of hyperlinks for retrieval, the hypertext structure is nevertheless an essential aspect of the Web, and as such, should not be ignored. The development of abstract models of the IR task was a key factor to the improvement of search engines. However, at this time conceptual tools for modeling the hypertext retrieval task are lacking, making it difficult to compare, improve, and reason an the existing techniques. This article proposes a general model for using hyperlinks based an Probabilistic Argumentation Systems, in which each of the above-mentioned techniques can be stated. This model will allow to discover some inconsistencies in the mentioned techniques, and to take a higher level and systematic approach for using hyperlinks for retrieval.
  5. Shah, B.; Raghavan, V.; Dhatric, P.; Zhao, X.: ¬A cluster-based approach for efficient content-based image retrieval using a similarity-preserving space transformation method (2006) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 6118) [ClassicSimilarity], result of:
              0.007856515 = score(doc=6118,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 6118, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6118)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    The techniques of clustering and space transformation have been successfully used in the past to solve a number of pattern recognition problems. In this article, the authors propose a new approach to content-based image retrieval (CBIR) that uses (a) a newly proposed similarity-preserving space transformation method to transform the original low-level image space into a highlevel vector space that enables efficient query processing, and (b) a clustering scheme that further improves the efficiency of our retrieval system. This combination is unique and the resulting system provides synergistic advantages of using both clustering and space transformation. The proposed space transformation method is shown to preserve the order of the distances in the transformed feature space. This strategy makes this approach to retrieval generic as it can be applied to object types, other than images, and feature spaces more general than metric spaces. The CBIR approach uses the inexpensive "estimated" distance in the transformed space, as opposed to the computationally inefficient "real" distance in the original space, to retrieve the desired results for a given query image. The authors also provide a theoretical analysis of the complexity of their CBIR approach when used for color-based retrieval, which shows that it is computationally more efficient than other comparable approaches. An extensive set of experiments to test the efficiency and effectiveness of the proposed approach has been performed. The results show that the approach offers superior response time (improvement of 1-2 orders of magnitude compared to retrieval approaches that either use pruning techniques like indexing, clustering, etc., or space transformation, but not both) with sufficiently high retrieval accuracy.
  6. Wei, F.; Li, W.; Liu, S.: iRANK: a rank-learn-combine framework for unsupervised ensemble ranking (2010) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 3472) [ClassicSimilarity], result of:
              0.007856515 = score(doc=3472,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 3472, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3472)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Date
    1. 6.2010 10:18:01
  7. Lalmas, M.: XML retrieval (2009) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 4998) [ClassicSimilarity], result of:
              0.007856515 = score(doc=4998,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 4998, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4998)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Isbn
    978-1-59829-786-7
  8. Tsai, C.-F.; Hu, Y.-H.; Chen, Z.-Y.: Factors affecting rocchio-based pseudorelevance feedback in image retrieval (2015) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 1607) [ClassicSimilarity], result of:
              0.007856515 = score(doc=1607,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 1607, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1607)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.40-57
  9. Lee, J.; Min, J.-K.; Oh, A.; Chung, C.-W.: Effective ranking and search techniques for Web resources considering semantic relationships (2014) 0.00
    1.707938E-4 = product of:
      0.0039282576 = sum of:
        0.0039282576 = product of:
          0.007856515 = sum of:
            0.007856515 = weight(_text_:1 in 2670) [ClassicSimilarity], result of:
              0.007856515 = score(doc=2670,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.13570388 = fieldWeight in 2670, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2670)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Source
    Information processing and management. 50(2014) no.1, S.132-155
  10. Cross-language information retrieval (1998) 0.00
    1.5748115E-4 = product of:
      0.0036220662 = sum of:
        0.0036220662 = product of:
          0.0072441325 = sum of:
            0.0072441325 = weight(_text_:international in 6299) [ClassicSimilarity], result of:
              0.0072441325 = score(doc=6299,freq=2.0), product of:
                0.078619614 = queryWeight, product of:
                  3.33588 = idf(docFreq=4276, maxDocs=44218)
                  0.023567878 = queryNorm
                0.09214154 = fieldWeight in 6299, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.33588 = idf(docFreq=4276, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=6299)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Series
    The Kluwer International series on information retrieval
  11. Efthimiadis, E.N.: Interactive query expansion : a user-based evaluation in a relevance feedback environment (2000) 0.00
    1.3663506E-4 = product of:
      0.0031426062 = sum of:
        0.0031426062 = product of:
          0.0062852125 = sum of:
            0.0062852125 = weight(_text_:1 in 5701) [ClassicSimilarity], result of:
              0.0062852125 = score(doc=5701,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.1085631 = fieldWeight in 5701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5701)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    A user-centered investigation of interactive query expansion within the context of a relevance feedback system is presented in this article. Data were collected from 25 searches using the INSPEC database. The data collection mechanisms included questionnaires, transaction logs, and relevance evaluations. The results discuss issues that relate to query expansion, retrieval effectiveness, the correspondence of the on-line-to-off-line relevance judgments, and the selection of terms for query expansion by users (interactive query expansion). The main conclusions drawn from the results of the study are that: (1) one-third of the terms presented to users in a list of candidate terms for query expansion was identified by the users as potentially useful for query expansion. (2) These terms were mainly judged as either variant expressions (synonyms) or alternative (related) terms to the initial query terms. However, a substantial portion of the selected terms were identified as representing new ideas. (3) The relationships identified between the five best terms selected by the users for query expansion and the initial query terms were that: (a) 34% of the query expansion terms have no relationship or other type of correspondence with a query term; (b) 66% of the remaining query expansion terms have a relationship to the query terms. These relationships were: narrower term (46%), broader term (3%), related term (17%). (4) The results provide evidence for the effectiveness of interactive query expansion. The initial search produced on average three highly relevant documents; the query expansion search produced on average nine further highly relevant documents. The conclusions highlight the need for more research on: interactive query expansion, the comparative evaluation of automatic vs. interactive query expansion, the study of weighted Webbased or Web-accessible retrieval systems in operational environments, and for user studies in searching ranked retrieval systems in general
  12. Wills, R.S.: Google's PageRank : the math behind the search engine (2006) 0.00
    1.3663506E-4 = product of:
      0.0031426062 = sum of:
        0.0031426062 = product of:
          0.0062852125 = sum of:
            0.0062852125 = weight(_text_:1 in 5954) [ClassicSimilarity], result of:
              0.0062852125 = score(doc=5954,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.1085631 = fieldWeight in 5954, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5954)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Abstract
    Approximately 91 million American adults use the Internet on a typical day The number-one Internet activity is reading and writing e-mail. Search engine use is next in line and continues to increase in popularity. In fact, survey findings indicate that nearly 60 million American adults use search engines on a given day. Even though there are many Internet search engines, Google, Yahoo!, and MSN receive over 81% of all search requests. Despite claims that the quality of search provided by Yahoo! and MSN now equals that of Google, Google continues to thrive as the search engine of choice, receiving over 46% of all search requests, nearly double the volume of Yahoo! and over four times that of MSN. I use Google's search engine on a daily basis and rarely request information from other search engines. One day, I decided to visit the homepages of Google. Yahoo!, and MSN to compare the quality of search results. Coffee was on my mind that day, so I entered the simple query "coffee" in the search box at each homepage. Table 1 shows the top ten (unsponsored) results returned by each search engine. Although ordered differently, two webpages, www.peets.com and www.coffeegeek.com, appear in all three top ten lists. In addition, each pairing of top ten lists has two additional results in common. Depending on the information I hoped to obtain about coffee by using the search engines, I could argue that any one of the three returned better results: however, I was not looking for a particular webpage, so all three listings of search results seemed of equal quality. Thus, I plan to continue using Google. My decision is indicative of the problem Yahoo!, MSN, and other search engine companies face in the quest to obtain a larger percentage of Internet search volume. Search engine users are loyal to one or a few search engines and are generally happy with search results. Thus, as long as Google continues to provide results deemed high in quality, Google likely will remain the top search engine. But what set Google apart from its competitors in the first place? The answer is PageRank. In this article I explain this simple mathematical algorithm that revolutionized Web search.
  13. Henzinger, M.R.: Hyperlink analysis for the Web (2001) 0.00
    1.3663506E-4 = product of:
      0.0031426062 = sum of:
        0.0031426062 = product of:
          0.0062852125 = sum of:
            0.0062852125 = weight(_text_:1 in 8) [ClassicSimilarity], result of:
              0.0062852125 = score(doc=8,freq=2.0), product of:
                0.057894554 = queryWeight, product of:
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.023567878 = queryNorm
                0.1085631 = fieldWeight in 8, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4565027 = idf(docFreq=10304, maxDocs=44218)
                  0.03125 = fieldNorm(doc=8)
          0.5 = coord(1/2)
      0.04347826 = coord(1/23)
    
    Source
    IEEE Internet computing. 5(2001) no.1, S.45-50

Years

Languages

  • e 111
  • d 39
  • m 1
  • pt 1
  • sp 1
  • More… Less…

Types

  • a 135
  • m 8
  • x 7
  • s 3
  • r 2
  • el 1
  • p 1
  • More… Less…