Search (48 results, page 3 of 3)

  • × author_ss:"Rousseau, R."
  1. Kretschmer, H.; Rousseau, R.: Author inflation leads to a breakdown of Lotka's law : in and out of context (2001) 0.00
    2.5475924E-4 = product of:
      0.004330907 = sum of:
        0.004330907 = weight(_text_:in in 5205) [ClassicSimilarity], result of:
          0.004330907 = score(doc=5205,freq=4.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.12752387 = fieldWeight in 5205, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5205)
      0.05882353 = coord(1/17)
    
    Abstract
    Fractional counting of authors of multi-authored papers has been shown to lead to a breakdown of Lotka's Law despite its robust character under most circumstances. Kretschmer and Rousseau use the normal count method of full credit for each author on two five-year bibliographies from each of 13 Dutch physics institutes where high co-authorship is a common occurrence. Kolmogorov-Smirnov tests were preformed to see if the Lotka distribution fit the data. All bibliographies up to 40 authors fit acceptably; no bibliography with a paper with over 100 authors fits the distribution. The underlying traditional "success breeds success" mechanism assumes new items on a one by one basis, but Egghe's generalized model would still account for the process. It seems unlikely that Lotka's Law will hold in a high co-authorship environment.
  2. Liang, L.; Rousseau, R.: Yield sequences as journal attractivity indicators : "payback times" for Science and Nature (2008) 0.00
    2.5475924E-4 = product of:
      0.004330907 = sum of:
        0.004330907 = weight(_text_:in in 1737) [ClassicSimilarity], result of:
          0.004330907 = score(doc=1737,freq=4.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.12752387 = fieldWeight in 1737, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1737)
      0.05882353 = coord(1/17)
    
    Abstract
    Purpose - The yield period of a journal is defined as the time needed to accumulate the same number of citations as the number of references included during the period of study. Yield sequences are proposed as journal attractivity indicators describing dynamic characteristics of a journal. This paper aims to investigate their use. Design/methodology/approach - As a case study the yield sequences of the journals Nature and Science from 1955 onward are determined. Similarities and dissimilarities between these sequences are discussed and factors affecting yield periods are determined. Findings - The study finds that yield sequences make dynamic aspects of a journal visible, as reflected through citations. Exceptional circumstances (here the publication of Laemmli's paper in 1970 in the journal Nature) become clearly visible. The average number of references per article, the citation distribution and the size of the database used to collect citations are factors influencing yield sequences. Originality/value - A new dynamic indicator for the study of journals is introduced.
  3. Egghe, L.; Guns, R.; Rousseau, R.: Thoughts on uncitedness : Nobel laureates and Fields medalists as case studies (2011) 0.00
    2.5475924E-4 = product of:
      0.004330907 = sum of:
        0.004330907 = weight(_text_:in in 4994) [ClassicSimilarity], result of:
          0.004330907 = score(doc=4994,freq=4.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.12752387 = fieldWeight in 4994, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4994)
      0.05882353 = coord(1/17)
    
    Abstract
    Contrary to what one might expect, Nobel laureates and Fields medalists have a rather large fraction (10% or more) of uncited publications. This is the case for (in total) 75 examined researchers from the fields of mathematics (Fields medalists), physics, chemistry, and physiology or medicine (Nobel laureates). We study several indicators for these researchers, including the h-index, total number of publications, average number of citations per publication, the number (and fraction) of uncited publications, and their interrelations. The most remarkable result is a positive correlation between the h-index and the number of uncited articles. We also present a Lotkaian model, which partially explains the empirically found regularities.
    Footnote
    Vgl.: Erratum. In: Journal of the American Society for Information Science and Technology. 63(2012) no.2, S.429.
  4. Egghe, L.; Rousseau, R.: ¬The influence of publication delays on the observed aging distribution of scientific literature (2000) 0.00
    2.401893E-4 = product of:
      0.004083218 = sum of:
        0.004083218 = weight(_text_:in in 4385) [ClassicSimilarity], result of:
          0.004083218 = score(doc=4385,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.120230645 = fieldWeight in 4385, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=4385)
      0.05882353 = coord(1/17)
    
    Abstract
    Observed aging curves are influenced by publication delays. In this article, we show how the 'undisturbed' aging function and the publication delay combine to give the observed aging function. This combination is performed by a mathematical operation known as convolution. Examples are given, such as the convolution of 2 Poisson distributions, 2 exponential distributions, a 2 lognormal distributions. A paradox is observed between theory and real data
  5. Rousseau, R.: Informetric laws (2009) 0.00
    2.401893E-4 = product of:
      0.004083218 = sum of:
        0.004083218 = weight(_text_:in in 3795) [ClassicSimilarity], result of:
          0.004083218 = score(doc=3795,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.120230645 = fieldWeight in 3795, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=3795)
      0.05882353 = coord(1/17)
    
    Abstract
    In this entry we formulate the so-called informetric laws, recall their origin, indicate how it can be shown that they are basically equivalent representations of the same regularity, hint at some explanations, such as success-breeds-success or preferential attachment, and describe why they are so ubiquitous.
  6. Egghe, L.; Rousseau, R.: ¬The Hirsch index of a shifted Lotka function and its relation with the impact factor (2012) 0.00
    2.1016564E-4 = product of:
      0.0035728158 = sum of:
        0.0035728158 = weight(_text_:in in 243) [ClassicSimilarity], result of:
          0.0035728158 = score(doc=243,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.10520181 = fieldWeight in 243, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=243)
      0.05882353 = coord(1/17)
    
    Abstract
    Based on earlier results about the shifted Lotka function, we prove an implicit functional relation between the Hirsch index (h-index) and the total number of sources (T). It is shown that the corresponding function, h(T), is concavely increasing. Next, we construct an implicit relation between the h-index and the impact factor IF (an average number of items per source). The corresponding function h(IF) is increasing and we show that if the parameter C in the numerator of the shifted Lotka function is high, then the relation between the h-index and the impact factor is almost linear.
  7. Egghe, L.; Rousseau, R.; Hooydonk, G. van: Methods for accrediting publications to authors or countries : consequences for evaluation studies (2000) 0.00
    1.8014197E-4 = product of:
      0.0030624135 = sum of:
        0.0030624135 = weight(_text_:in in 4384) [ClassicSimilarity], result of:
          0.0030624135 = score(doc=4384,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.09017298 = fieldWeight in 4384, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4384)
      0.05882353 = coord(1/17)
    
    Abstract
    One aim of science evaluation studies is to determine quantitatively the contribution of different players (authors, departments, countries) to the whole system. This information is then used to study the evolution of the system, for instance to gauge the results of special national or international programs. Taking articles as our basic data, we want to determine the exact relative contribution of each coauthor or each country. These numbers are brought together to obtain country scores, or department scores, etc. It turns out, as we will show in this article, that different scoring methods can yield totally different rankings. Conseqeuntly, a ranking between countries, universities, research groups or authors, based on one particular accrediting methods does not contain an absolute truth about their relative importance
  8. Rousseau, R.; Jin, B.: ¬The age-dependent h-type AR**2-index : basic properties and a case study (2008) 0.00
    1.8014197E-4 = product of:
      0.0030624135 = sum of:
        0.0030624135 = weight(_text_:in in 2638) [ClassicSimilarity], result of:
          0.0030624135 = score(doc=2638,freq=2.0), product of:
            0.033961542 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.024967048 = queryNorm
            0.09017298 = fieldWeight in 2638, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2638)
      0.05882353 = coord(1/17)
    
    Abstract
    Hirsch-type indices are studied with special attention to the AR**2-index introduced by Jin. The article consists of two parts: a theoretical part and a practical illustration. In the theoretical part, we recall the definition of the AR**2-index and show that an alternative definition, the so-called AR**2,1, does not have the properties expected for this type of index. A practical example shows the existence of some of these mathematical properties and illustrates the difference between different h-type indices. Clearly the h-index itself is the most robust of all. It is shown that excluding so-called non-WoS source articles may have a significant influence on the R-and, especially, the g-index.