Search (40 results, page 1 of 2)

  • × language_ss:"e"
  • × theme_ss:"Begriffstheorie"
  1. Machado, L.M.O.; Martínez-Ávila, D.; Simões, M.da Graça de Melo: Concept theory in library and information science : an epistemological analysis (2019) 0.02
    0.022316683 = product of:
      0.08368756 = sum of:
        0.015904883 = product of:
          0.031809766 = sum of:
            0.031809766 = weight(_text_:bibliothekswesen in 5457) [ClassicSimilarity], result of:
              0.031809766 = score(doc=5457,freq=2.0), product of:
                0.12917466 = queryWeight, product of:
                  4.457672 = idf(docFreq=1392, maxDocs=44218)
                  0.028978055 = queryNorm
                0.24625391 = fieldWeight in 5457, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.457672 = idf(docFreq=1392, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5457)
          0.5 = coord(1/2)
        0.032484557 = weight(_text_:informationswissenschaft in 5457) [ClassicSimilarity], result of:
          0.032484557 = score(doc=5457,freq=2.0), product of:
            0.13053758 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.028978055 = queryNorm
            0.24885213 = fieldWeight in 5457, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5457)
        0.031809766 = weight(_text_:bibliothekswesen in 5457) [ClassicSimilarity], result of:
          0.031809766 = score(doc=5457,freq=2.0), product of:
            0.12917466 = queryWeight, product of:
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.028978055 = queryNorm
            0.24625391 = fieldWeight in 5457, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5457)
        0.0034883497 = product of:
          0.0069766995 = sum of:
            0.0069766995 = weight(_text_:information in 5457) [ClassicSimilarity], result of:
              0.0069766995 = score(doc=5457,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13714671 = fieldWeight in 5457, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5457)
          0.5 = coord(1/2)
      0.26666668 = coord(4/15)
    
    Abstract
    Purpose The purpose of this paper is to discuss the literature on concept theory in library and information science (LIS) from an epistemological perspective, ascribing each paper to an epistemological family and discussing their relevance in the context of the knowledge organization (KO) domain. Design/methodology/approach This paper adopts a hermeneutic approach for the analysis of the texts that compose the corpus of study following contingency and categorical analyses. More specifically, the paper works with Bardin's contingency analysis and follows Hjørland's families of epistemologies for the categorization. Findings The analysis corroborates the observations made for the last ten years about the scarcity of studies on concept theory in LIS and KO. However, the study also reveals an epistemological turn on concept theory since 2009 that could be considered a departure from the rationalist views that dominated the field and a continuation of a broader paradigm shift in LIS and KO. All analyzed papers except two follow pragmatist or historicist approaches. Originality/value This paper follows-up and systematizes the contributions to the LIS and KO fields on concept theory mainly during the last decade. The epistemological analysis reveals the dominant views in this paradigm shift and the main authors and trends that are present in the LIS literature on concept theory.
    Field
    Bibliothekswesen
    Informationswissenschaft
  2. Hjoerland, B.: Concept theory (2009) 0.00
    0.0019186425 = product of:
      0.0143898185 = sum of:
        0.007863713 = weight(_text_:und in 3461) [ClassicSimilarity], result of:
          0.007863713 = score(doc=3461,freq=2.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.12243814 = fieldWeight in 3461, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3461)
        0.0065261046 = product of:
          0.013052209 = sum of:
            0.013052209 = weight(_text_:information in 3461) [ClassicSimilarity], result of:
              0.013052209 = score(doc=3461,freq=14.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.256578 = fieldWeight in 3461, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3461)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge organizing systems (e.g., classification systems, thesauri, and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe, evaluate, and use such systems. Based on a post-Kuhnian view of paradigms, this article put forward arguments that the best understanding and classification of theories of concepts is to view and classify them in accordance with epistemological theories (empiricism, rationalism, historicism, and pragmatism). It is also argued that the historicist and pragmatist understandings of concepts are the most fruitful views and that this understanding may be part of a broader paradigm shift that is also beginning to take place in information science. The importance of historicist and pragmatic theories of concepts for information science is outlined.
    Footnote
    Vgl.: Szostak, R.: Comment on Hjørland's concept theory in: Journal of the American Society for Information Science and Technology. 61(2010) no.5, S. 1076-1077 und die Erwiderung darauf von B. Hjoerland (S.1078-1080)
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.8, S.1519-1536
    Theme
    Information
  3. Olson, H.A.: How we construct subjects : a feminist analysis (2007) 0.00
    0.0018783542 = product of:
      0.028175311 = sum of:
        0.028175311 = sum of:
          0.008544678 = weight(_text_:information in 5588) [ClassicSimilarity], result of:
            0.008544678 = score(doc=5588,freq=6.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.16796975 = fieldWeight in 5588, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5588)
          0.019630633 = weight(_text_:22 in 5588) [ClassicSimilarity], result of:
            0.019630633 = score(doc=5588,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.19345059 = fieldWeight in 5588, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5588)
      0.06666667 = coord(1/15)
    
    Abstract
    To organize information, librarians create structures. These structures grow from a logic that goes back at least as far as Aristotle. It is the basis of classification as we practice it, and thesauri and subject headings have developed from it. Feminist critiques of logic suggest that logic is gendered in nature. This article will explore how these critiques play out in contemporary standards for the organization of information. Our widely used classification schemes embody principles such as hierarchical force that conform to traditional/Aristotelian logic. Our subject heading strings follow a linear path of subdivision. Our thesauri break down subjects into discrete concepts. In thesauri and subject heading lists we privilege hierarchical relationships, reflected in the syndetic structure of broader and narrower terms, over all other relationships. Are our classificatory and syndetic structures gendered? Are there other options? Carol Gilligan's In a Different Voice (1982), Women's Ways of Knowing (Belenky, Clinchy, Goldberger, & Tarule, 1986), and more recent related research suggest a different type of structure for women's knowledge grounded in "connected knowing." This article explores current and potential elements of connected knowing in subject access with a focus on the relationships, both paradigmatic and syntagmatic, between concepts.
    Content
    Beitrag in einem Themenheft 'Gender Issues in Information Needs and Services'.
    Date
    11.12.2019 19:00:22
  4. Hjoerland, B.: Are relations in thesauri "context-free, definitional, and true in all possible worlds"? (2015) 0.00
    0.0017062648 = product of:
      0.012796985 = sum of:
        0.007863713 = weight(_text_:und in 2033) [ClassicSimilarity], result of:
          0.007863713 = score(doc=2033,freq=2.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.12243814 = fieldWeight in 2033, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2033)
        0.0049332716 = product of:
          0.009866543 = sum of:
            0.009866543 = weight(_text_:information in 2033) [ClassicSimilarity], result of:
              0.009866543 = score(doc=2033,freq=8.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.19395474 = fieldWeight in 2033, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2033)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    Much of the literature of information science and knowledge organization has accepted and built upon Elaine Svenonius's (2004) claim that "paradigmatic relationships are those that are context-free, definitional, and true in all possible worlds" (p. 583). At the same time, the literature demonstrates a common understanding that paradigmatic relations are the kinds of semantic relations used in thesauri and other knowledge organization systems (including equivalence relations, hierarchical relations, and associative relations). This understanding is problematic and harmful because it directs attention away from the empirical and contextual basis for knowledge-organizing systems. Whether A is a kind of X is certainly not context-free and definitional in empirical sciences or in much everyday information. Semantic relations are theory-dependent and, in biology, for example, a scientific revolution has taken place in which many relations have changed following the new taxonomic paradigm named "cladism." This biological example is not an exception, but the norm. Semantic relations including paradigmatic relations are not a priori but are dependent on subject knowledge, scientific findings, and paradigms. As long as information scientists and knowledge organizers isolate themselves from subject knowledge, knowledge organization cannot possibly progress.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.7, S.1367-1373
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  5. Jouis, C.: Logic of relationships (2002) 0.00
    0.0016375937 = product of:
      0.024563905 = sum of:
        0.024563905 = sum of:
          0.0049332716 = weight(_text_:information in 1204) [ClassicSimilarity], result of:
            0.0049332716 = score(doc=1204,freq=2.0), product of:
              0.050870337 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.028978055 = queryNorm
              0.09697737 = fieldWeight in 1204, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1204)
          0.019630633 = weight(_text_:22 in 1204) [ClassicSimilarity], result of:
            0.019630633 = score(doc=1204,freq=2.0), product of:
              0.101476215 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.028978055 = queryNorm
              0.19345059 = fieldWeight in 1204, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1204)
      0.06666667 = coord(1/15)
    
    Date
    1.12.2002 11:12:22
    Series
    Information science and knowledge management; vol.3
  6. Storms, G.; VanMechelen, I.; DeBoeck, P.: Structural-analysis of the intension and extension of semantic concepts (1994) 0.00
    9.1609627E-4 = product of:
      0.013741443 = sum of:
        0.013741443 = product of:
          0.027482886 = sum of:
            0.027482886 = weight(_text_:22 in 2574) [ClassicSimilarity], result of:
              0.027482886 = score(doc=2574,freq=2.0), product of:
                0.101476215 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028978055 = queryNorm
                0.2708308 = fieldWeight in 2574, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2574)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Date
    22. 7.2000 19:17:40
  7. Bivins, K.T.: Concept formation : the evidence from experimental psychology and linguistics and its relationship to information science (1980) 0.00
    6.8357424E-4 = product of:
      0.010253613 = sum of:
        0.010253613 = product of:
          0.020507226 = sum of:
            0.020507226 = weight(_text_:information in 1319) [ClassicSimilarity], result of:
              0.020507226 = score(doc=1319,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.40312737 = fieldWeight in 1319, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1319)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Theory and application of information research. Proc. of the 2nd Int. Research Forum on Information Science, 3.-6.8.1977, Copenhagen. Ed.: O. Harbo u. L. Kajberg
  8. Thellefsen, M.M.; Thellefsen, T.; Sørensen, B.: Information as signs : a semiotic analysis of the information concept, determining its ontological and epistemological foundations (2018) 0.00
    6.780133E-4 = product of:
      0.010170199 = sum of:
        0.010170199 = product of:
          0.020340398 = sum of:
            0.020340398 = weight(_text_:information in 4241) [ClassicSimilarity], result of:
              0.020340398 = score(doc=4241,freq=34.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.39984792 = fieldWeight in 4241, product of:
                  5.8309517 = tf(freq=34.0), with freq of:
                    34.0 = termFreq=34.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4241)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The purpose of this paper is to formulate an analytical framework for the information concept based on the semiotic theory. Design/methodology/approach The paper is motivated by the apparent controversy that still surrounds the information concept. Information, being a key concept within LIS, suffers from being anchored in various incompatible theories. The paper suggests that information is signs, and it demonstrates how the concept of information can be understood within C.S. Peirce's phenomenologically rooted semiotic. Hence, from there, certain ontological conditions as well epistemological consequences of the information concept can be deduced. Findings The paper argues that an understanding of information, as either objective or subjective/discursive, leads to either objective reductionism and signal processing, that fails to explain how information becomes meaningful at all, or conversely, information is understood only relative to subjective/discursive intentions, agendas, etc. To overcome the limitations of defining information as either objective or subjective/discursive, a semiotic analysis shows that information understood as signs is consistently sensitive to both objective and subjective/discursive features of information. It is consequently argued that information as concept should be defined in relation to ontological conditions having certain epistemological consequences. Originality/value The paper presents an analytical framework, derived from semiotics, that adds to the developments of the philosophical dimensions of information within LIS.
    Theme
    Information
  9. Marradi, A.: ¬The concept of concept : concepts and terms (2012) 0.00
    6.5435446E-4 = product of:
      0.009815317 = sum of:
        0.009815317 = product of:
          0.019630633 = sum of:
            0.019630633 = weight(_text_:22 in 33) [ClassicSimilarity], result of:
              0.019630633 = score(doc=33,freq=2.0), product of:
                0.101476215 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028978055 = queryNorm
                0.19345059 = fieldWeight in 33, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=33)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Date
    22. 1.2012 13:11:25
  10. Besler, G.; Szulc, J.: Gottlob Frege's theory of definition as useful tool for knowledge organization : definition of 'context' - case study (2014) 0.00
    6.5435446E-4 = product of:
      0.009815317 = sum of:
        0.009815317 = product of:
          0.019630633 = sum of:
            0.019630633 = weight(_text_:22 in 1440) [ClassicSimilarity], result of:
              0.019630633 = score(doc=1440,freq=2.0), product of:
                0.101476215 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028978055 = queryNorm
                0.19345059 = fieldWeight in 1440, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1440)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  11. Bonnevie, E.: Dretske's semantic information theory and meta-theories in library and information science (2001) 0.00
    5.929055E-4 = product of:
      0.008893582 = sum of:
        0.008893582 = product of:
          0.017787164 = sum of:
            0.017787164 = weight(_text_:information in 4484) [ClassicSimilarity], result of:
              0.017787164 = score(doc=4484,freq=26.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.34965688 = fieldWeight in 4484, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4484)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    This article presents the semantic information theory, formulated by the philosopher Fred I. Dretske, as a contribution to the discussion of metatheories and their practical implications in the field of library and information science. Dretske's theory is described in Knowledge and the flow of information. It is founded on mathematical communication theory but developed and elaborated into a cognitive, functionalistic theory, is individually oriented, and deals with the content of information. The topics are: the information process from perception to cognition, and how concept formation takes place in terms of digitisation. Other important issues are the concepts of information and knowledge, truth and meaning. Semantic information theory can be used as a frame of reference in order to explain, clarify and refute concepts currently used in library and information science, and as the basis for critical reviews of elements of the cognitive viewpoint in IR, primarily the notion of "potential information". The main contribution of the theory lies in a clarification of concepts, but there are still problems regarding the practical applications. More research is needed to combine philosophical discussions with the practice of information and library science.
    Theme
    Information
  12. Hetzler, B.: Visual analysis and exploration of relationships (2002) 0.00
    5.6391995E-4 = product of:
      0.008458799 = sum of:
        0.008458799 = product of:
          0.016917598 = sum of:
            0.016917598 = weight(_text_:information in 1189) [ClassicSimilarity], result of:
              0.016917598 = score(doc=1189,freq=12.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.3325631 = fieldWeight in 1189, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1189)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Relationships can provide a rich and powerful set of information and can be used to accomplish application goals, such as information retrieval and natural language processing. A growing trend in the information science community is the use of information visualization-taking advantage of people's natural visual capabilities to perceive and understand complex information. This chapter explores how visualization and visual exploration can help users gain insight from known relationships and discover evidence of new relationships not previously anticipated.
    Series
    Information science and knowledge management; vol.3
  13. Khoo, C.; Myaeng, S.H.: Identifying semantic relations in text for information retrieval and information extraction (2002) 0.00
    5.58136E-4 = product of:
      0.0083720395 = sum of:
        0.0083720395 = product of:
          0.016744079 = sum of:
            0.016744079 = weight(_text_:information in 1197) [ClassicSimilarity], result of:
              0.016744079 = score(doc=1197,freq=16.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.3291521 = fieldWeight in 1197, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1197)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Automatic identification of semantic relations in text is a difficult problem, but is important for many applications. It has been used for relation matching in information retrieval to retrieve documents that contain not only the concepts but also the relations between concepts specified in the user's query. It is an integral part of information extraction-extracting from natural language text, facts or pieces of information related to a particular event or topic. Other potential applications are in the construction of relational thesauri (semantic networks of related concepts) and other kinds of knowledge bases, and in natural language processing applications such as machine translation and computer comprehension of text. This chapter examines the main methods used for identifying semantic relations automatically and their application in information retrieval and information extraction.
    Series
    Information science and knowledge management; vol.3
  14. ISO/DIS 5127: Information and documentation - foundation and vocabulary (2013) 0.00
    4.9332716E-4 = product of:
      0.007399907 = sum of:
        0.007399907 = product of:
          0.014799814 = sum of:
            0.014799814 = weight(_text_:information in 6070) [ClassicSimilarity], result of:
              0.014799814 = score(doc=6070,freq=18.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.2909321 = fieldWeight in 6070, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6070)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    This standard provides the basic terms and their definitions in the field of information and documentation for the purpose of promoting and facilitating knowledge sharing and information exchange. This International Standard presents terms and definitions of selected concepts relevant to the field of information and documentation. If a definition is from other standards, the priority of selection is TC46 technical standards, then technical standards in relevant field, and then terminology related standards. The scope of this International Standard corresponds to that of ISO/TC46, Standardization of practices relating to libraries, documentation and information centres, publishing, archives, records management, museum documentation, indexing and abstracting services, and information science. ISO 5127 was prepared by Technical Committee ISO/TC 46, Information and Documentation, WG4, Terminology of information and documentation. This second edition cancels and replaces the first edition (ISO 5127:2001), which has been technically revised to overcome problems in the practical application of ISO 5127:2001 and to take account of the new developments in the field of information and documentation.
  15. ¬The role of formal ontology in the information technology (1995) 0.00
    4.6511332E-4 = product of:
      0.0069766995 = sum of:
        0.0069766995 = product of:
          0.013953399 = sum of:
            0.013953399 = weight(_text_:information in 4746) [ClassicSimilarity], result of:
              0.013953399 = score(doc=4746,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.27429342 = fieldWeight in 4746, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4746)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    A special issue devoted to the role of formal ontology in information technology. Papers were given at the International Workshop on Formal Ontology in Conceptual Analysis and Knowledge Representation, held in Padova, Iatly, Mar 95
  16. Sowa, J.F.: Knowledge representation : logical, philosophical, and computational foundations (2000) 0.00
    4.604387E-4 = product of:
      0.00690658 = sum of:
        0.00690658 = product of:
          0.01381316 = sum of:
            0.01381316 = weight(_text_:information in 4360) [ClassicSimilarity], result of:
              0.01381316 = score(doc=4360,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.27153665 = fieldWeight in 4360, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4360)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Theme
    Information
  17. Evens, M.: Thesaural relations in information retrieval (2002) 0.00
    4.4124527E-4 = product of:
      0.0066186786 = sum of:
        0.0066186786 = product of:
          0.013237357 = sum of:
            0.013237357 = weight(_text_:information in 1201) [ClassicSimilarity], result of:
              0.013237357 = score(doc=1201,freq=10.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.2602176 = fieldWeight in 1201, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1201)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Thesaural relations have long been used in information retrieval to enrich queries; they have sometimes been used to cluster documents as well. Sometimes the first query to an information retrieval system yields no results at all, or, what can be even more disconcerting, many thousands of hits. One solution is to rephrase the query, improving the choice of query terms by using related terms of different types. A collection of related terms is often called a thesaurus. This chapter describes the lexical-semantic relations that have been used in building thesauri and summarizes some of the effects of using these relational thesauri in information retrieval experiments
    Series
    Information science and knowledge management; vol.3
  18. Dahlberg, I.: On the theory of the concept (1979) 0.00
    3.9466174E-4 = product of:
      0.005919926 = sum of:
        0.005919926 = product of:
          0.011839852 = sum of:
            0.011839852 = weight(_text_:information in 1615) [ClassicSimilarity], result of:
              0.011839852 = score(doc=1615,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.23274569 = fieldWeight in 1615, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1615)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Ordering systems for global information networks. Proc. of the 3rd Int. Study Conf. on Classification Research, Bombay 1975
  19. Atran, S.: Basic conceptual domains (1989) 0.00
    3.9466174E-4 = product of:
      0.005919926 = sum of:
        0.005919926 = product of:
          0.011839852 = sum of:
            0.011839852 = weight(_text_:information in 478) [ClassicSimilarity], result of:
              0.011839852 = score(doc=478,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.23274569 = fieldWeight in 478, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.09375 = fieldNorm(doc=478)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Theme
    Information
  20. Dahlberg, I.: Conceptual structures and systematization (1995) 0.00
    3.7209064E-4 = product of:
      0.0055813594 = sum of:
        0.0055813594 = product of:
          0.011162719 = sum of:
            0.011162719 = weight(_text_:information in 3965) [ClassicSimilarity], result of:
              0.011162719 = score(doc=3965,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.21943474 = fieldWeight in 3965, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3965)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Examines the nature of knowledge and the relationship between the transfer of knowledge and information communication. Discusses the 3 kinds of relationships existing between concepts: formal; form-categorical; and material relationships, and characteristics of concepts. Concludes with a discussion of conceptual structures for concept definitions, conceptual systematization , concept systematization and functionality, and the analytical, referent-oriented concept theory
    Source
    International forum on information and documentation. 20(1995) no.3, S.9-24