Search (63 results, page 4 of 4)

  • × theme_ss:"Geschichte der Klassifikationssysteme"
  1. Tennis, J.T.: Never facets alone : the evolving thought and persistent problems in Ranganathan's theories of classification (2017) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 5800) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=5800,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 5800, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5800)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Shiyali Ramamrita Ranganathan's theory of classification spans a number of works over a number of decades. And while he was devoted to solving many problems in the practice of librarianship, and is known as the father of library science in India (Garfield, 1984), his work in classification revolves around one central concern. His classification research addressed the problems that arose from introducing new ideas into a scheme for classification, while maintaining a meaningful hierarchical and systematically arranged order of classes. This is because hierarchical and systematically arranged classes are the defining characteristic of useful classification. To lose this order is to through the addition of new classes is to introduce confusion, if not chaos, and to move toward a useless classification - or at least one that requires complete revision. In the following chapter, I outline the stages, and the elements of those stages, in Ranganathan's thought on classification from 1926-1972, as well as posthumous work that continues his agenda. And while facets figure prominently in all of these stages; but for Ranganathan to achieve his goal, he must continually add to this central feature of his theory of classification. I will close this chapter with an outline of persistent problems that represent research fronts for the field. Chief among these are what to do about scheme change and the open question about the rigor of information modeling in light of semantic web developments.
  2. Hulme, E.W.: Principles of book classification (1985) 0.00
    1.3155391E-4 = product of:
      0.0019733086 = sum of:
        0.0019733086 = product of:
          0.0039466172 = sum of:
            0.0039466172 = weight(_text_:information in 3626) [ClassicSimilarity], result of:
              0.0039466172 = score(doc=3626,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.0775819 = fieldWeight in 3626, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3626)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    One of the earliest works on the theory of classification appeared in a series of six chapters an the "Principles of Book Classification" published between October 1911 and May 1912 in the Library Association Record. In this publication, the author, E. Wyndham Hulme (1859-1954) whose career included twenty-five years as Librarian of the British Patent Office, set forth the fundamentals of classification as manifested in both the classed and the alphabetical catalogs. The work and the ideas contained therein have largely been forgotten. However, one phrase stands out and has been used frequently in the discussions of classification and indexing, particularly in reference to systems such as Library of Congress Classification, Dewey Decimal Classification, and Library of Congress Subject Headings. That phrase is "literary warrant"-meaning that the basis for classification is to be found in the actual published literature rather than abstract philosophical ideas or concepts in the universe of knowledge or the "order of nature and system of the sciences." To the extent that classification and indexing systems should be based upon existing literature rather than the universe of human knowledge, the concept of "literary warrant" defines systems used in library and information services, as distinguished from a purely philosophical classification. Library classification attempts to classify library materials-the records of knowledge-rather than knowledge itself; the establishment of a class or a heading for a subject is based an existing literature treating that subject. The following excerpt contains Hulme's definition of "literary warrant." Hulme first rejects the notion of using "the nature of the subject matter to be divided" as the basis for establishing headings, then he proceeds to propose the use of "literary warrant," that is, "an accurate survey and measurement of classes in literature," as the determinant.
  3. Dewey, M.: Decimal classification and relativ index : introduction (1985) 0.00
    1.3155391E-4 = product of:
      0.0019733086 = sum of:
        0.0019733086 = product of:
          0.0039466172 = sum of:
            0.0039466172 = weight(_text_:information in 3628) [ClassicSimilarity], result of:
              0.0039466172 = score(doc=3628,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.0775819 = fieldWeight in 3628, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3628)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    To those outside the field of library science, the name Melvil Dewey (1851-1931) is virtually synonymous with library classification. To those in the field, Dewey has been recognized as the premier classification maker. His enormously successful system (i.e., successful in terms of the wide adoption of the system around the world for over one hundred years) has now undergone nineteen editions. The Dewey Decimal Classification has been translated into more than twenty languages and is the most widely adopted classification scheme in the world. Even in its earliest manifestations, the Dewey Decimal Classification contained features that anticipated modern classification theory. Among these are the use of mnemonics and the commonly applied standard subdivisions, later called "common isolates" by S. R. Ranganathan (q.v.), which are the mainstays of facet analysis and synthesis. The device of standard subdivisions is an indication of the recognition of common aspects that pervade all subjects. The use of mnemonics, whereby recurring concepts in the scheme are represented by the same notation, for example, geographic concepts and language concepts, eased the transition of the Dewey Decimal Classification from a largely enumerative system to an increasingly faceted one. Another significant feature of the Dewey Decimal Classification is the use of the hierarchical notation based an the arabic numeral system. To a large extent, this feature accounts for the wide use and success of the system in the world across language barriers. With the prospect of increasing online information retrieval, the hierarchical notation will have a significant impact an the effectiveness of the Dewey Decimal Classification as an online retrieval tool. Because the notation is hierarchical, for example, with increasing digits in a number representing narrower subjects and decreasing digits indicating broader subjects, the Dewey Decimal Classification is particularly useful in generic searches for broadening or narrowing search results. In the preface to the second edition of his Decimal Classification Dewey explained the features of his "new" system. The excerpt below presents his ideas and theory concerning the rational basis of his classification, the standard subdivisions, the hierarchical notation based an decimal numbers, the use of mnemonics, the relative index, and relative location. It also reflects Dewey's lifelong interest in simplified spelling.

Languages

  • e 34
  • d 29

Types

  • a 45
  • m 10
  • x 4
  • s 3
  • ? 1
  • d 1
  • el 1
  • More… Less…