Search (104 results, page 6 of 6)

  • × theme_ss:"Inhaltsanalyse"
  1. Hjoerland, B.: Subject (of documents) (2016) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 3182) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=3182,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 3182, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3182)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    This article presents and discusses the concept "subject" or subject matter (of documents) as it has been examined in library and information science (LIS) for more than 100 years. Different theoretical positions are outlined and it is found that the most important distinction is between document-oriented views versus request-oriented views. The document-oriented view conceive subject as something inherent in documents, whereas the request-oriented view (or the policy based view) understand subject as an attribution made to documents in order to facilitate certain uses of them. Related concepts such as concepts, aboutness, topic, isness and ofness are also briefly presented. The conclusion is that the most fruitful way of defining "subject" (of a document) is the documents informative or epistemological potentials, that is, the documents potentials of informing users and advance the development of knowledge.
  2. Hauser, E.; Tennis, J.T.: Episemantics: aboutness as aroundness (2019) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 5640) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=5640,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 5640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5640)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Aboutness ranks amongst our field's greatest bugbears. What is a work about? How can this be known? This mirrors debates within the philosophy of language, where the concept of representation has similarly evaded satisfactory definition. This paper proposes that we abandon the strong sense of the word aboutness, which seems to promise some inherent relationship between work and subject, or, in philosophical terms, between word and world. Instead, we seek an etymological reset to the older sense of aboutness as "in the vicinity, nearby; in some place or various places nearby; all over a surface." To distinguish this sense in the context of information studies, we introduce the term episemantics. The authors have each independently applied this term in slightly different contexts and scales (Hauser 2018a; Tennis 2016), and this article presents a unified definition of the term and guidelines for applying it at the scale of both words and works. The resulting weak concept of aboutness is pragmatic, in Star's sense of a focus on consequences over antecedents, while reserving space for the critique and improvement of aboutness determinations within various contexts and research programs. The paper finishes with a discussion of the implication of the concept of episemantics and methodological possibilities it offers for knowledge organization research and practice. We draw inspiration from Melvil Dewey's use of physical aroundness in his first classification system and ask how aroundness might be more effectively operationalized in digital environments.
  3. Sigel, A.: How can user-oriented depth analysis be constructively guided? (2000) 0.00
    1.6278966E-4 = product of:
      0.0024418447 = sum of:
        0.0024418447 = product of:
          0.0048836893 = sum of:
            0.0048836893 = weight(_text_:information in 133) [ClassicSimilarity], result of:
              0.0048836893 = score(doc=133,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.0960027 = fieldWeight in 133, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=133)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    It is vital for library and information science to understand the subject indexing process thoroughly. However, document analysis, the first and most important step in indexing, has not received sufficient attention. As this is an exceptionally hard problem, we still do not dispose of a sound indexing theory. Therefore we have difficulties in teaching indexing and in explaining why a given subject representation is "better" than another. Technological advancements have not helped to close this fundamental gap. To proceed, we should ask the right questions instead. Several types of indexer inconsistencies can be explained as acceptable, yet different conceptualizations which resulting of the variety of groups dealing with a problem from their respective viewpoints. Multiple indexed documents are regarded as the normal case. Intersubjectively replicable indexing results are often questionable or do not constitute interesting cases of indexing at all. In the context of my ongoing dissertation in which I intend to develop an enhanced indexing theory by investigating improvements within a social sciences domain, this paper explains user-oriented selective depth analysis and why I chose that configuration. Strongly influenced by Mai's dissertation, I also communicate my first insights concerning current indexing theories. I agree that I cannot ignore epistemological stances and philosophical issues in language and meaning related to indexing and accept the openness of the interpretive nature of the indexing process. Although I present arguments against the employment of an indexing language as well, it is still indispensable in situations which demand easier access and control by devices. Despite the enormous difficulties the user-oriented and selective depth analysis poses, I argue that it is both feasible and useful if one achieves careful guidance of the possible interpretations. There is some hope because the number of useful interpretations is limited: Every summary is tailored to a purpose, audience and situation. Domain, discourse and social practice entail additional constraints. A pluralistic method mix that focusses on ecologically valid, holistic contexts and employs qualitative methods is recommended. Domain analysis urgently has to be made more practical and applicable. Only then we will be able to investigate empirically domains in order to identify their structures shaped by the corresponding discourse communities. We plan to represent the recognized problem structures and indexing questions of relevance to a small domain in formal, ontological computer models -- if we can find such stable knowledge structures. This would allow us to tailor dynamically summaries for user communities. For practical purposes we suggest to assume a less demanding position than Hjorland's "totality of the epistemological potential". It is sufficent that we identify and represent iteratively the information needs of today's user groups in interactive knowledge-based systems. The best way to formalize such knowledge gained about discourse communities is however unknown. Indexers should stay in direct contact with the community they serve or be part of it to ensure agreement with their viewpoints. Checklist/request-oriented indexing could be very helpful but it remains to be demonstrated how well it will be applicable in the social sciences. A frame-based representation or at least a sophisticated grouping of terms could help to express relational knowledge structures. There remains much work to do since in practice no one has shown yet how such an improved indexing system would work and if the indexing results were really "better".
  4. Fairthorne, R.A.: Temporal structure in bibliographic classification (1985) 0.00
    9.8665434E-5 = product of:
      0.0014799815 = sum of:
        0.0014799815 = product of:
          0.002959963 = sum of:
            0.002959963 = weight(_text_:information in 3651) [ClassicSimilarity], result of:
              0.002959963 = score(doc=3651,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.058186423 = fieldWeight in 3651, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3651)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The fan of past documents may be seen across time as a philosophical "wake," translated documents as a sideways relationship and future documents as another fan spreading forward from a given document (p. 365). The "overlap of reading histories can be used to detect common interests among readers," (p. 365) and readers may be classified accordingly. Finally, Fairthorne rejects the notion of a "general" classification, which he regards as a mirage, to be replaced by a citation-type network to identify classes. An interesting feature of his work lies in his linkage between old and new documents via a bibliographic method-citations, authors' names, imprints, style, and vocabulary - rather than topical (subject) terms. This is an indirect method of creating classes. The subject (aboutness) is conceived as a finite, common sharing of knowledge over time (past, present, and future) as opposed to the more common hierarchy of topics in an infinite schema assumed to be universally useful. Fairthorne, a mathematician by training, is a prolific writer an the foundations of classification and information. His professional career includes work with the Royal Engineers Chemical Warfare Section and the Royal Aircraft Establishment (RAE). He was the founder of the Computing Unit which became the RAE Mathematics Department.

Languages

  • e 81
  • d 23

Types

  • a 87
  • m 9
  • x 5
  • el 3
  • d 2
  • s 1
  • More… Less…