Search (9 results, page 1 of 1)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"n"
  1. ISO 25964 Thesauri and interoperability with other vocabularies (2008) 0.00
    0.0010703423 = product of:
      0.008027567 = sum of:
        0.004718228 = weight(_text_:und in 1169) [ClassicSimilarity], result of:
          0.004718228 = score(doc=1169,freq=2.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.07346288 = fieldWeight in 1169, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1169)
        0.0033093393 = product of:
          0.0066186786 = sum of:
            0.0066186786 = weight(_text_:information in 1169) [ClassicSimilarity], result of:
              0.0066186786 = score(doc=1169,freq=10.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.1301088 = fieldWeight in 1169, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1169)
          0.5 = coord(1/2)
      0.13333334 = coord(2/15)
    
    Abstract
    T.1: Today's thesauri are mostly electronic tools, having moved on from the paper-based era when thesaurus standards were first developed. They are built and maintained with the support of software and need to integrate with other software, such as search engines and content management systems. Whereas in the past thesauri were designed for information professionals trained in indexing and searching, today there is a demand for vocabularies that untrained users will find to be intuitive. ISO 25964 makes the transition needed for the world of electronic information management. However, part 1 retains the assumption that human intellect is usually involved in the selection of indexing terms and in the selection of search terms. If both the indexer and the searcher are guided to choose the same term for the same concept, then relevant documents will be retrieved. This is the main principle underlying thesaurus design, even though a thesaurus built for human users may also be applied in situations where computers make the choices. Efficient exchange of data is a vital component of thesaurus management and exploitation. Hence the inclusion in this standard of recommendations for exchange formats and protocols. Adoption of these will facilitate interoperability between thesaurus management systems and the other computer applications, such as indexing and retrieval systems, that will utilize the data. Thesauri are typically used in post-coordinate retrieval systems, but may also be applied to hierarchical directories, pre-coordinate indexes and classification systems. Increasingly, thesaurus applications need to mesh with others, such as automatic categorization schemes, free-text search systems, etc. Part 2 of ISO 25964 describes additional types of structured vocabulary and gives recommendations to enable interoperation of the vocabularies at all stages of the information storage and retrieval process.
    T.2: The ability to identify and locate relevant information among vast collections and other resources is a major and pressing challenge today. Several different types of vocabulary are in use for this purpose. Some of the most widely used vocabularies were designed a hundred years ago and have been evolving steadily. A different generation of vocabularies is now emerging, designed to exploit the electronic media more effectively. A good understanding of the previous generation is still essential for effective access to collections indexed with them. An important object of ISO 25964 as a whole is to support data exchange and other forms of interoperability in circumstances in which more than one structured vocabulary is applied within one retrieval system or network. Sometimes one vocabulary has to be mapped to another, and it is important to understand both the potential and the limitations of such mappings. In other systems, a thesaurus is mapped to a classification scheme, or an ontology to a thesaurus. Comprehensive interoperability needs to cover the whole range of vocabulary types, whether young or old. Concepts in different vocabularies are related only in that they have the same or similar meaning. However, the meaning can be found in a number of different aspects within each particular type of structured vocabulary: - within terms or captions selected in different languages; - in the notation assigned indicating a place within a larger hierarchy; - in the definition, scope notes, history notes and other notes that explain the significance of that concept; and - in explicit relationships to other concepts or entities within the same vocabulary. In order to create mappings from one structured vocabulary to another it is first necessary to understand, within the context of each different type of structured vocabulary, the significance and relative importance of each of the different elements in defining the meaning of that particular concept. ISO 25964-1 describes the key characteristics of thesauri along with additional advice on best practice. ISO 25964-2 focuses on other types of vocabulary and does not attempt to cover all aspects of good practice. It concentrates on those aspects which need to be understood if one of the vocabularies is to work effectively alongside one or more of the others. Recognizing that a new standard cannot be applied to some existing vocabularies, this part of ISO 25964 provides informative description alongside the recommendations, the aim of which is to enable users and system developers to interpret and implement the existing vocabularies effectively. The remainder of ISO 25964-2 deals with the principles and practicalities of establishing mappings between vocabularies.
    Issue
    Pt.1: Thesauri for information retrieval - Pt.2: Interoperability with other vocabularies.
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  2. OWL Web Ontology Language Test Cases (2004) 0.00
    0.0010469672 = product of:
      0.015704507 = sum of:
        0.015704507 = product of:
          0.031409014 = sum of:
            0.031409014 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.031409014 = score(doc=4685,freq=2.0), product of:
                0.101476215 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.028978055 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Date
    14. 8.2011 13:33:22
  3. Köstlbacher, A. (Übers.): OWL Web Ontology Language Überblick (2004) 0.00
    8.896776E-4 = product of:
      0.013345163 = sum of:
        0.013345163 = weight(_text_:und in 4681) [ClassicSimilarity], result of:
          0.013345163 = score(doc=4681,freq=4.0), product of:
            0.06422601 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.028978055 = queryNorm
            0.20778441 = fieldWeight in 4681, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=4681)
      0.06666667 = coord(1/15)
    
    Abstract
    Die OWL Web Ontology Language wurde entwickelt, um es Anwendungen zu ermöglichen den Inhalt von Informationen zu verarbeiten anstatt die Informationen dem Anwender nur zu präsentieren. OWL erleichtert durch zusätzliches Vokabular in Verbindung mit formaler Semantik stärkere Interpretationsmöglichkeiten von Web Inhalten als dies XML, RDF und RDFS ermöglichen. OWL besteht aus drei Untersprachen mit steigender Ausdrucksmächtigkeit: OWL Lite, OWL DL and OWL Full. Dieses Dokument wurde für Leser erstellt, die einen ersten Eindruck von den Möglichkeiten bekommen möchten, die OWL bietet. Es stellt eine Einführung in OWL anhand der Beschreibung der Merkmale der drei Untersprachen von OWL dar. Kenntnisse von RDF Schema sind hilfreich für das Verständnis, aber nicht unbedingt erforderlich. Nach der Lektüre dieses Dokuments können sich interessierte Leser für detailliertere Beschreibungen und ausführliche Beispiele der Merkmale von OWL dem OWL Guide zuwenden. Die normative formale Definition von OWL findet sich unter OWL Semantics and Abstract Syntax.
  4. ISO/IEC FCD 13250: Topic maps. Information technology (1999) 0.00
    5.2621565E-4 = product of:
      0.0078932345 = sum of:
        0.0078932345 = product of:
          0.015786469 = sum of:
            0.015786469 = weight(_text_:information in 319) [ClassicSimilarity], result of:
              0.015786469 = score(doc=319,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.3103276 = fieldWeight in 319, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.125 = fieldNorm(doc=319)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
  5. ISO/DIS 5127: Information and documentation - foundation and vocabulary (2013) 0.00
    4.9332716E-4 = product of:
      0.007399907 = sum of:
        0.007399907 = product of:
          0.014799814 = sum of:
            0.014799814 = weight(_text_:information in 6070) [ClassicSimilarity], result of:
              0.014799814 = score(doc=6070,freq=18.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.2909321 = fieldWeight in 6070, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6070)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    This standard provides the basic terms and their definitions in the field of information and documentation for the purpose of promoting and facilitating knowledge sharing and information exchange. This International Standard presents terms and definitions of selected concepts relevant to the field of information and documentation. If a definition is from other standards, the priority of selection is TC46 technical standards, then technical standards in relevant field, and then terminology related standards. The scope of this International Standard corresponds to that of ISO/TC46, Standardization of practices relating to libraries, documentation and information centres, publishing, archives, records management, museum documentation, indexing and abstracting services, and information science. ISO 5127 was prepared by Technical Committee ISO/TC 46, Information and Documentation, WG4, Terminology of information and documentation. This second edition cancels and replaces the first edition (ISO 5127:2001), which has been technically revised to overcome problems in the practical application of ISO 5127:2001 and to take account of the new developments in the field of information and documentation.
  6. Pepper, S.; Moore, G.; TopicMaps.Org Authoring Group: XML Topic Maps (XTM) 1.0 : TopicMaps.Org Specification (2001) 0.00
    2.79068E-4 = product of:
      0.0041860198 = sum of:
        0.0041860198 = product of:
          0.0083720395 = sum of:
            0.0083720395 = weight(_text_:information in 1623) [ClassicSimilarity], result of:
              0.0083720395 = score(doc=1623,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.16457605 = fieldWeight in 1623, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1623)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    This specification provides a model and grammar for representing the structure of information resources used to define topics, and the associations (relationships) between topics. Names, resources, and relationships are said to be characteristics of abstract subjects, which are called topics. Topics have their characteristics within scopes: i.e. the limited contexts within which the names and resources are regarded as their name, resource, and relationship characteristics. One or more interrelated documents employing this grammar is called a topic map.TopicMaps.Org is an independent consortium of parties developing the applicability of the topic map paradigm [ISO13250] to the World Wide Web by leveraging the XML family of specifications. This specification describes version 1.0 of XML Topic Maps (XTM) 1.0 [XTM], an abstract model and XML grammar for interchanging Web-based topic maps, written by the members of the TopicMaps.Org Authoring Group. More information on XTM and TopicMaps.Org is available at http://www.topicmaps.org/about.html. All versions of the XTM Specification are permanently licensed to the public, as provided by the Charter of TopicMaps.Org.
  7. OWL Web Ontology Language Overview (2004) 0.00
    2.79068E-4 = product of:
      0.0041860198 = sum of:
        0.0041860198 = product of:
          0.0083720395 = sum of:
            0.0083720395 = weight(_text_:information in 4682) [ClassicSimilarity], result of:
              0.0083720395 = score(doc=4682,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.16457605 = fieldWeight in 4682, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4682)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The OWL Web Ontology Language is designed for use by applications that need to process the content of information instead of just presenting information to humans. OWL facilitates greater machine interpretability of Web content than that supported by XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary along with a formal semantics. OWL has three increasingly-expressive sublanguages: OWL Lite, OWL DL, and OWL Full. This document is written for readers who want a first impression of the capabilities of OWL. It provides an introduction to OWL by informally describing the features of each of the sublanguages of OWL. Some knowledge of RDF Schema is useful for understanding this document, but not essential. After this document, interested readers may turn to the OWL Guide for more detailed descriptions and extensive examples on the features of OWL. The normative formal definition of OWL can be found in the OWL Semantics and Abstract Syntax.
  8. OWL 2 Web Ontology Language Document Overview (2009) 0.00
    2.3021935E-4 = product of:
      0.00345329 = sum of:
        0.00345329 = product of:
          0.00690658 = sum of:
            0.00690658 = weight(_text_:information in 3060) [ClassicSimilarity], result of:
              0.00690658 = score(doc=3060,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13576832 = fieldWeight in 3060, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3060)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The OWL 2 Web Ontology Language, informally OWL 2, is an ontology language for the Semantic Web with formally defined meaning. OWL 2 ontologies provide classes, properties, individuals, and data values and are stored as Semantic Web documents. OWL 2 ontologies can be used along with information written in RDF, and OWL 2 ontologies themselves are primarily exchanged as RDF documents. This document serves as an introduction to OWL 2 and the various other OWL 2 documents. It describes the syntaxes for OWL 2, the different kinds of semantics, the available profiles (sub-languages), and the relationship between OWL 1 and OWL 2.
  9. OWL Web Ontology Language Guide (2004) 0.00
    1.6444239E-4 = product of:
      0.0024666358 = sum of:
        0.0024666358 = product of:
          0.0049332716 = sum of:
            0.0049332716 = weight(_text_:information in 4687) [ClassicSimilarity], result of:
              0.0049332716 = score(doc=4687,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.09697737 = fieldWeight in 4687, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4687)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    The World Wide Web as it is currently constituted resembles a poorly mapped geography. Our insight into the documents and capabilities available are based on keyword searches, abetted by clever use of document connectivity and usage patterns. The sheer mass of this data is unmanageable without powerful tool support. In order to map this terrain more precisely, computational agents require machine-readable descriptions of the content and capabilities of Web accessible resources. These descriptions must be in addition to the human-readable versions of that information. The OWL Web Ontology Language is intended to provide a language that can be used to describe the classes and relations between them that are inherent in Web documents and applications. This document demonstrates the use of the OWL language to - formalize a domain by defining classes and properties of those classes, - define individuals and assert properties about them, and - reason about these classes and individuals to the degree permitted by the formal semantics of the OWL language. The sections are organized to present an incremental definition of a set of classes, properties and individuals, beginning with the fundamentals and proceeding to more complex language components.