Search (117 results, page 1 of 6)

  • × author_ss:"Thelwall, M."
  1. Levitt, J.M.; Thelwall, M.: Citation levels and collaboration within library and information science (2009) 0.02
    0.023736732 = product of:
      0.10172885 = sum of:
        0.0118387835 = product of:
          0.023677567 = sum of:
            0.023677567 = weight(_text_:bibliothekswesen in 2734) [ClassicSimilarity], result of:
              0.023677567 = score(doc=2734,freq=2.0), product of:
                0.09615103 = queryWeight, product of:
                  4.457672 = idf(docFreq=1392, maxDocs=44218)
                  0.021569785 = queryNorm
                0.24625391 = fieldWeight in 2734, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.457672 = idf(docFreq=1392, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2734)
          0.5 = coord(1/2)
        0.024179846 = weight(_text_:informationswissenschaft in 2734) [ClassicSimilarity], result of:
          0.024179846 = score(doc=2734,freq=2.0), product of:
            0.09716552 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.021569785 = queryNorm
            0.24885213 = fieldWeight in 2734, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2734)
        0.023677567 = weight(_text_:bibliothekswesen in 2734) [ClassicSimilarity], result of:
          0.023677567 = score(doc=2734,freq=2.0), product of:
            0.09615103 = queryWeight, product of:
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.021569785 = queryNorm
            0.24625391 = fieldWeight in 2734, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2734)
        0.023677567 = weight(_text_:bibliothekswesen in 2734) [ClassicSimilarity], result of:
          0.023677567 = score(doc=2734,freq=2.0), product of:
            0.09615103 = queryWeight, product of:
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.021569785 = queryNorm
            0.24625391 = fieldWeight in 2734, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2734)
        0.006614278 = weight(_text_:in in 2734) [ClassicSimilarity], result of:
          0.006614278 = score(doc=2734,freq=18.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.22543246 = fieldWeight in 2734, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2734)
        0.0014085418 = weight(_text_:s in 2734) [ClassicSimilarity], result of:
          0.0014085418 = score(doc=2734,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.060061958 = fieldWeight in 2734, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2734)
        0.010332272 = product of:
          0.020664545 = sum of:
            0.020664545 = weight(_text_:22 in 2734) [ClassicSimilarity], result of:
              0.020664545 = score(doc=2734,freq=4.0), product of:
                0.07553371 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021569785 = queryNorm
                0.27358043 = fieldWeight in 2734, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2734)
          0.5 = coord(1/2)
      0.23333333 = coord(7/30)
    
    Abstract
    Collaboration is a major research policy objective, but does it deliver higher quality research? This study uses citation analysis to examine the Web of Science (WoS) Information Science & Library Science subject category (IS&LS) to ascertain whether, in general, more highly cited articles are more highly collaborative than other articles. It consists of two investigations. The first investigation is a longitudinal comparison of the degree and proportion of collaboration in five strata of citation; it found that collaboration in the highest four citation strata (all in the most highly cited 22%) increased in unison over time, whereas collaboration in the lowest citation strata (un-cited articles) remained low and stable. Given that over 40% of the articles were un-cited, it seems important to take into account the differences found between un-cited articles and relatively highly cited articles when investigating collaboration in IS&LS. The second investigation compares collaboration for 35 influential information scientists; it found that their more highly cited articles on average were not more highly collaborative than their less highly cited articles. In summary, although collaborative research is conducive to high citation in general, collaboration has apparently not tended to be essential to the success of current and former elite information scientists.
    Date
    22. 3.2009 12:43:51
    Field
    Bibliothekswesen
    Informationswissenschaft
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.3, S.434-442
  2. Maflahi, N.; Thelwall, M.: When are readership counts as useful as citation counts? : Scopus versus Mendeley for LIS journals (2016) 0.02
    0.021096075 = product of:
      0.10548037 = sum of:
        0.014206541 = product of:
          0.028413082 = sum of:
            0.028413082 = weight(_text_:bibliothekswesen in 2495) [ClassicSimilarity], result of:
              0.028413082 = score(doc=2495,freq=2.0), product of:
                0.09615103 = queryWeight, product of:
                  4.457672 = idf(docFreq=1392, maxDocs=44218)
                  0.021569785 = queryNorm
                0.2955047 = fieldWeight in 2495, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.457672 = idf(docFreq=1392, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2495)
          0.5 = coord(1/2)
        0.029015815 = weight(_text_:informationswissenschaft in 2495) [ClassicSimilarity], result of:
          0.029015815 = score(doc=2495,freq=2.0), product of:
            0.09716552 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.021569785 = queryNorm
            0.29862255 = fieldWeight in 2495, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.046875 = fieldNorm(doc=2495)
        0.028413082 = weight(_text_:bibliothekswesen in 2495) [ClassicSimilarity], result of:
          0.028413082 = score(doc=2495,freq=2.0), product of:
            0.09615103 = queryWeight, product of:
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.021569785 = queryNorm
            0.2955047 = fieldWeight in 2495, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.046875 = fieldNorm(doc=2495)
        0.028413082 = weight(_text_:bibliothekswesen in 2495) [ClassicSimilarity], result of:
          0.028413082 = score(doc=2495,freq=2.0), product of:
            0.09615103 = queryWeight, product of:
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.021569785 = queryNorm
            0.2955047 = fieldWeight in 2495, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.046875 = fieldNorm(doc=2495)
        0.003741601 = weight(_text_:in in 2495) [ClassicSimilarity], result of:
          0.003741601 = score(doc=2495,freq=4.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.12752387 = fieldWeight in 2495, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2495)
        0.0016902501 = weight(_text_:s in 2495) [ClassicSimilarity], result of:
          0.0016902501 = score(doc=2495,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.072074346 = fieldWeight in 2495, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=2495)
      0.2 = coord(6/30)
    
    Abstract
    In theory, articles can attract readers on the social reference sharing site Mendeley before they can attract citations, so Mendeley altmetrics could provide early indications of article impact. This article investigates the influence of time on the number of Mendeley readers of an article through a theoretical discussion and an investigation into the relationship between counts of readers of, and citations to, 4 general library and information science (LIS) journals. For this discipline, it takes about 7 years for articles to attract as many Scopus citations as Mendeley readers, and after this the Spearman correlation between readers and citers is stable at about 0.6 for all years. This suggests that Mendeley readership counts may be useful impact indicators for both newer and older articles. The lack of dates for individual Mendeley article readers and an unknown bias toward more recent articles mean that readership data should be normalized individually by year, however, before making any comparisons between articles published in different years.
    Field
    Bibliothekswesen
    Informationswissenschaft
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.1, S.191-199
  3. Thelwall, M.; Ruschenburg, T.: Grundlagen und Forschungsfelder der Webometrie (2006) 0.02
    0.018012479 = product of:
      0.090062395 = sum of:
        0.01622127 = weight(_text_:und in 77) [ClassicSimilarity], result of:
          0.01622127 = score(doc=77,freq=6.0), product of:
            0.04780656 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.021569785 = queryNorm
            0.33931053 = fieldWeight in 77, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=77)
        0.038687754 = weight(_text_:informationswissenschaft in 77) [ClassicSimilarity], result of:
          0.038687754 = score(doc=77,freq=2.0), product of:
            0.09716552 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.021569785 = queryNorm
            0.3981634 = fieldWeight in 77, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.0625 = fieldNorm(doc=77)
        0.004988801 = weight(_text_:in in 77) [ClassicSimilarity], result of:
          0.004988801 = score(doc=77,freq=4.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.17003182 = fieldWeight in 77, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=77)
        0.01622127 = weight(_text_:und in 77) [ClassicSimilarity], result of:
          0.01622127 = score(doc=77,freq=6.0), product of:
            0.04780656 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.021569785 = queryNorm
            0.33931053 = fieldWeight in 77, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=77)
        0.002253667 = weight(_text_:s in 77) [ClassicSimilarity], result of:
          0.002253667 = score(doc=77,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.09609913 = fieldWeight in 77, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0625 = fieldNorm(doc=77)
        0.011689632 = product of:
          0.023379264 = sum of:
            0.023379264 = weight(_text_:22 in 77) [ClassicSimilarity], result of:
              0.023379264 = score(doc=77,freq=2.0), product of:
                0.07553371 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021569785 = queryNorm
                0.30952093 = fieldWeight in 77, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=77)
          0.5 = coord(1/2)
      0.2 = coord(6/30)
    
    Abstract
    Die Webometrie ist ein Teilbereich der Informationswissenschaft der zur Zeit auf die Analyse von Linkstrukturen konzentriert ist. Er ist stark von der Zitationsanalyse geprägt, wie der empirische Schwerpunkt auf der Wissenschaftsanalyse zeigt. In diesem Beitrag diskutieren wir die Nutzung linkbasierter Maße in einem breiten informetrischen Kontext und bewerten verschiedene Verfahren, auch im Hinblick auf ihr generelles Potentialfür die Sozialwissenschaften. Dabei wird auch ein allgemeiner Rahmenfür Linkanalysen mit den erforderlichen Arbeitsschritten vorgestellt. Abschließend werden vielversprechende zukünftige Anwendungsfelder der Webometrie benannt, unter besonderer Berücksichtigung der Analyse von Blogs.
    Date
    4.12.2006 12:12:22
    Source
    Information - Wissenschaft und Praxis. 57(2006) H.8, S.401-406
  4. Thelwall, M.; Buckley, K.; Paltoglou, G.: Sentiment in Twitter events (2011) 0.00
    0.001745737 = product of:
      0.01745737 = sum of:
        0.0069998945 = weight(_text_:in in 4345) [ClassicSimilarity], result of:
          0.0069998945 = score(doc=4345,freq=14.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.23857531 = fieldWeight in 4345, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4345)
        0.0016902501 = weight(_text_:s in 4345) [ClassicSimilarity], result of:
          0.0016902501 = score(doc=4345,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.072074346 = fieldWeight in 4345, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=4345)
        0.008767224 = product of:
          0.017534448 = sum of:
            0.017534448 = weight(_text_:22 in 4345) [ClassicSimilarity], result of:
              0.017534448 = score(doc=4345,freq=2.0), product of:
                0.07553371 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021569785 = queryNorm
                0.23214069 = fieldWeight in 4345, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4345)
          0.5 = coord(1/2)
      0.1 = coord(3/30)
    
    Abstract
    The microblogging site Twitter generates a constant stream of communication, some of which concerns events of general interest. An analysis of Twitter may, therefore, give insights into why particular events resonate with the population. This article reports a study of a month of English Twitter posts, assessing whether popular events are typically associated with increases in sentiment strength, as seems intuitively likely. Using the top 30 events, determined by a measure of relative increase in (general) term usage, the results give strong evidence that popular events are normally associated with increases in negative sentiment strength and some evidence that peaks of interest in events have stronger positive sentiment than the time before the peak. It seems that many positive events, such as the Oscars, are capable of generating increased negative sentiment in reaction to them. Nevertheless, the surprisingly small average change in sentiment associated with popular events (typically 1% and only 6% for Tiger Woods' confessions) is consistent with events affording posters opportunities to satisfy pre-existing personal goals more often than eliciting instinctive reactions.
    Date
    22. 1.2011 14:27:06
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.2, S.406-418
  5. Thelwall, M.; Maflahi, N.: Guideline references and academic citations as evidence of the clinical value of health research (2016) 0.00
    0.0016938116 = product of:
      0.016938116 = sum of:
        0.0064806426 = weight(_text_:in in 2856) [ClassicSimilarity], result of:
          0.0064806426 = score(doc=2856,freq=12.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.22087781 = fieldWeight in 2856, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2856)
        0.0016902501 = weight(_text_:s in 2856) [ClassicSimilarity], result of:
          0.0016902501 = score(doc=2856,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.072074346 = fieldWeight in 2856, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=2856)
        0.008767224 = product of:
          0.017534448 = sum of:
            0.017534448 = weight(_text_:22 in 2856) [ClassicSimilarity], result of:
              0.017534448 = score(doc=2856,freq=2.0), product of:
                0.07553371 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021569785 = queryNorm
                0.23214069 = fieldWeight in 2856, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2856)
          0.5 = coord(1/2)
      0.1 = coord(3/30)
    
    Abstract
    This article introduces a new source of evidence of the value of medical-related research: citations from clinical guidelines. These give evidence that research findings have been used to inform the day-to-day practice of medical staff. To identify whether citations from guidelines can give different information from that of traditional citation counts, this article assesses the extent to which references in clinical guidelines tend to be highly cited in the academic literature and highly read in Mendeley. Using evidence from the United Kingdom, references associated with the UK's National Institute of Health and Clinical Excellence (NICE) guidelines tended to be substantially more cited than comparable articles, unless they had been published in the most recent 3 years. Citation counts also seemed to be stronger indicators than Mendeley readership altmetrics. Hence, although presence in guidelines may be particularly useful to highlight the contributions of recently published articles, for older articles citation counts may already be sufficient to recognize their contributions to health in society.
    Date
    19. 3.2016 12:22:00
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.4, S.960-966
  6. Price, L.; Thelwall, M.: ¬The clustering power of low frequency words in academic webs (2005) 0.00
    0.0016102897 = product of:
      0.016102897 = sum of:
        0.0053462577 = weight(_text_:in in 3561) [ClassicSimilarity], result of:
          0.0053462577 = score(doc=3561,freq=6.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.1822149 = fieldWeight in 3561, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3561)
        0.008784681 = product of:
          0.026354041 = sum of:
            0.026354041 = weight(_text_:l in 3561) [ClassicSimilarity], result of:
              0.026354041 = score(doc=3561,freq=2.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.30739886 = fieldWeight in 3561, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3561)
          0.33333334 = coord(1/3)
        0.0019719584 = weight(_text_:s in 3561) [ClassicSimilarity], result of:
          0.0019719584 = score(doc=3561,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.08408674 = fieldWeight in 3561, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3561)
      0.1 = coord(3/30)
    
    Abstract
    The value of low frequency words for subject-based academic Web site clustering is assessed. A new technique is introduced to compare the relative clustering power of different vocabularies. The technique is designed for word frequency tests in large document clustering exercises. Results for the Australian and New Zealand academic Web spaces indicate that low frequency words are useful for clustering academic Web sites along subject lines; removing low frequency words results in sites becoming, an average, less dissimilar to sites from other subjects.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.8, S.883-888
  7. Vaughan, L.; Thelwall, M.: Search engine coverage bias : evidence and possible causes (2004) 0.00
    0.0015135966 = product of:
      0.015135966 = sum of:
        0.005915991 = weight(_text_:in in 2536) [ClassicSimilarity], result of:
          0.005915991 = score(doc=2536,freq=10.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.20163295 = fieldWeight in 2536, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2536)
        0.007529726 = product of:
          0.022589177 = sum of:
            0.022589177 = weight(_text_:l in 2536) [ClassicSimilarity], result of:
              0.022589177 = score(doc=2536,freq=2.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.26348472 = fieldWeight in 2536, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2536)
          0.33333334 = coord(1/3)
        0.0016902501 = weight(_text_:s in 2536) [ClassicSimilarity], result of:
          0.0016902501 = score(doc=2536,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.072074346 = fieldWeight in 2536, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=2536)
      0.1 = coord(3/30)
    
    Abstract
    Commercial search engines are now playing an increasingly important role in Web information dissemination and access. Of particular interest to business and national governments is whether the big engines have coverage biased towards the US or other countries. In our study we tested for national biases in three major search engines and found significant differences in their coverage of commercial Web sites. The US sites were much better covered than the others in the study: sites from China, Taiwan and Singapore. We then examined the possible technical causes of the differences and found that the language of a site does not affect its coverage by search engines. However, the visibility of a site, measured by the number of links to it, affects its chance to be covered by search engines. We conclude that the coverage bias does exist but this is due not to deliberate choices of the search engines but occurs as a natural result of cumulative advantage effects of US sites on the Web. Nevertheless, the bias remains a cause for international concern.
    Source
    Information processing and management. 40(2004) no.4, S.693-708
  8. Didegah, F.; Thelwall, M.: Co-saved, co-tweeted, and co-cited networks (2018) 0.00
    0.0015039981 = product of:
      0.01503998 = sum of:
        0.0045825066 = weight(_text_:in in 4291) [ClassicSimilarity], result of:
          0.0045825066 = score(doc=4291,freq=6.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.1561842 = fieldWeight in 4291, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4291)
        0.0016902501 = weight(_text_:s in 4291) [ClassicSimilarity], result of:
          0.0016902501 = score(doc=4291,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.072074346 = fieldWeight in 4291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=4291)
        0.008767224 = product of:
          0.017534448 = sum of:
            0.017534448 = weight(_text_:22 in 4291) [ClassicSimilarity], result of:
              0.017534448 = score(doc=4291,freq=2.0), product of:
                0.07553371 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021569785 = queryNorm
                0.23214069 = fieldWeight in 4291, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4291)
          0.5 = coord(1/2)
      0.1 = coord(3/30)
    
    Abstract
    Counts of tweets and Mendeley user libraries have been proposed as altmetric alternatives to citation counts for the impact assessment of articles. Although both have been investigated to discover whether they correlate with article citations, it is not known whether users tend to tweet or save (in Mendeley) the same kinds of articles that they cite. In response, this article compares pairs of articles that are tweeted, saved to a Mendeley library, or cited by the same user, but possibly a different user for each source. The study analyzes 1,131,318 articles published in 2012, with minimum tweeted (10), saved to Mendeley (100), and cited (10) thresholds. The results show surprisingly minor overall overlaps between the three phenomena. The importance of journals for Twitter and the presence of many bots at different levels of activity suggest that this site has little value for impact altmetrics. The moderate differences between patterns of saving and citation suggest that Mendeley can be used for some types of impact assessments, but sensitivity is needed for underlying differences.
    Date
    28. 7.2018 10:00:22
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.8, S.959-973
  9. Li, X.; Thelwall, M.; Kousha, K.: ¬The role of arXiv, RePEc, SSRN and PMC in formal scholarly communication (2015) 0.00
    0.0014950562 = product of:
      0.014950562 = sum of:
        0.006236001 = weight(_text_:in in 2593) [ClassicSimilarity], result of:
          0.006236001 = score(doc=2593,freq=16.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.21253976 = fieldWeight in 2593, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2593)
        0.0014085418 = weight(_text_:s in 2593) [ClassicSimilarity], result of:
          0.0014085418 = score(doc=2593,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.060061958 = fieldWeight in 2593, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2593)
        0.0073060202 = product of:
          0.0146120405 = sum of:
            0.0146120405 = weight(_text_:22 in 2593) [ClassicSimilarity], result of:
              0.0146120405 = score(doc=2593,freq=2.0), product of:
                0.07553371 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021569785 = queryNorm
                0.19345059 = fieldWeight in 2593, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2593)
          0.5 = coord(1/2)
      0.1 = coord(3/30)
    
    Abstract
    Purpose The four major Subject Repositories (SRs), arXiv, Research Papers in Economics (RePEc), Social Science Research Network (SSRN) and PubMed Central (PMC), are all important within their disciplines but no previous study has systematically compared how often they are cited in academic publications. In response, the purpose of this paper is to report an analysis of citations to SRs from Scopus publications, 2000-2013. Design/methodology/approach Scopus searches were used to count the number of documents citing the four SRs in each year. A random sample of 384 documents citing the four SRs was then visited to investigate the nature of the citations. Findings Each SR was most cited within its own subject area but attracted substantial citations from other subject areas, suggesting that they are open to interdisciplinary uses. The proportion of documents citing each SR is continuing to increase rapidly, and the SRs all seem to attract substantial numbers of citations from more than one discipline. Research limitations/implications Scopus does not cover all publications, and most citations to documents found in the four SRs presumably cite the published version, when one exists, rather than the repository version. Practical implications SRs are continuing to grow and do not seem to be threatened by institutional repositories and so research managers should encourage their continued use within their core disciplines, including for research that aims at an audience in other disciplines. Originality/value This is the first simultaneous analysis of Scopus citations to the four most popular SRs.
    Date
    20. 1.2015 18:30:22
    Object
    Research Papers in Economics
    Source
    Aslib journal of information management. 67(2015) no.6, S.614-635
  10. Thelwall, M.; Kousha, K.; Abdoli, M.; Stuart, E.; Makita, M.; Wilson, P.; Levitt, J.: Why are coauthored academic articles more cited : higher quality or larger audience? (2023) 0.00
    0.0014547808 = product of:
      0.014547808 = sum of:
        0.005833246 = weight(_text_:in in 995) [ClassicSimilarity], result of:
          0.005833246 = score(doc=995,freq=14.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.19881277 = fieldWeight in 995, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=995)
        0.0014085418 = weight(_text_:s in 995) [ClassicSimilarity], result of:
          0.0014085418 = score(doc=995,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.060061958 = fieldWeight in 995, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=995)
        0.0073060202 = product of:
          0.0146120405 = sum of:
            0.0146120405 = weight(_text_:22 in 995) [ClassicSimilarity], result of:
              0.0146120405 = score(doc=995,freq=2.0), product of:
                0.07553371 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021569785 = queryNorm
                0.19345059 = fieldWeight in 995, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=995)
          0.5 = coord(1/2)
      0.1 = coord(3/30)
    
    Abstract
    Collaboration is encouraged because it is believed to improve academic research, supported by indirect evidence in the form of more coauthored articles being more cited. Nevertheless, this might not reflect quality but increased self-citations or the "audience effect": citations from increased awareness through multiple author networks. We address this with the first science wide investigation into whether author numbers associate with journal article quality, using expert peer quality judgments for 122,331 articles from the 2014-20 UK national assessment. Spearman correlations between author numbers and quality scores show moderately strong positive associations (0.2-0.4) in the health, life, and physical sciences, but weak or no positive associations in engineering and social sciences, with weak negative/positive or no associations in various arts and humanities, and a possible negative association for decision sciences. This gives the first systematic evidence that greater numbers of authors associates with higher quality journal articles in the majority of academia outside the arts and humanities, at least for the UK. Positive associations between team size and citation counts in areas with little association between team size and quality also show that audience effects or other nonquality factors account for the higher citation rates of coauthored articles in some fields.
    Date
    22. 6.2023 18:11:50
    Source
    Journal of the Association for Information Science and Technology. 74(2023) no.7, S.791-810
  11. Thelwall, M.; Buckley, K.; Paltoglou, G.; Cai, D.; Kappas, A.: Sentiment strength detection in short informal text (2010) 0.00
    0.0014227992 = product of:
      0.014227992 = sum of:
        0.004929992 = weight(_text_:in in 4200) [ClassicSimilarity], result of:
          0.004929992 = score(doc=4200,freq=10.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.16802745 = fieldWeight in 4200, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4200)
        0.001991979 = weight(_text_:s in 4200) [ClassicSimilarity], result of:
          0.001991979 = score(doc=4200,freq=4.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.08494043 = fieldWeight in 4200, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4200)
        0.0073060202 = product of:
          0.0146120405 = sum of:
            0.0146120405 = weight(_text_:22 in 4200) [ClassicSimilarity], result of:
              0.0146120405 = score(doc=4200,freq=2.0), product of:
                0.07553371 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021569785 = queryNorm
                0.19345059 = fieldWeight in 4200, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4200)
          0.5 = coord(1/2)
      0.1 = coord(3/30)
    
    Abstract
    A huge number of informal messages are posted every day in social network sites, blogs, and discussion forums. Emotions seem to be frequently important in these texts for expressing friendship, showing social support or as part of online arguments. Algorithms to identify sentiment and sentiment strength are needed to help understand the role of emotion in this informal communication and also to identify inappropriate or anomalous affective utterances, potentially associated with threatening behavior to the self or others. Nevertheless, existing sentiment detection algorithms tend to be commercially oriented, designed to identify opinions about products rather than user behaviors. This article partly fills this gap with a new algorithm, SentiStrength, to extract sentiment strength from informal English text, using new methods to exploit the de facto grammars and spelling styles of cyberspace. Applied to MySpace comments and with a lookup table of term sentiment strengths optimized by machine learning, SentiStrength is able to predict positive emotion with 60.6% accuracy and negative emotion with 72.8% accuracy, both based upon strength scales of 1-5. The former, but not the latter, is better than baseline and a wide range of general machine learning approaches.
    Date
    22. 1.2011 14:29:23
    Footnote
    Vgl. auch das Erratum in: Journal of the American Society for Information Science and Technology. 62(2011) no.2, S.419
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.12, S.2544-2558
  12. Thelwall, M.; Sud, P.: Mendeley readership counts : an investigation of temporal and disciplinary differences (2016) 0.00
    0.0014199076 = product of:
      0.014199075 = sum of:
        0.003741601 = weight(_text_:in in 3211) [ClassicSimilarity], result of:
          0.003741601 = score(doc=3211,freq=4.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.12752387 = fieldWeight in 3211, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3211)
        0.0016902501 = weight(_text_:s in 3211) [ClassicSimilarity], result of:
          0.0016902501 = score(doc=3211,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.072074346 = fieldWeight in 3211, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=3211)
        0.008767224 = product of:
          0.017534448 = sum of:
            0.017534448 = weight(_text_:22 in 3211) [ClassicSimilarity], result of:
              0.017534448 = score(doc=3211,freq=2.0), product of:
                0.07553371 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021569785 = queryNorm
                0.23214069 = fieldWeight in 3211, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3211)
          0.5 = coord(1/2)
      0.1 = coord(3/30)
    
    Abstract
    Scientists and managers using citation-based indicators to help evaluate research cannot evaluate recent articles because of the time needed for citations to accrue. Reading occurs before citing, however, and so it makes sense to count readers rather than citations for recent publications. To assess this, Mendeley readers and citations were obtained for articles from 2004 to late 2014 in five broad categories (agriculture, business, decision science, pharmacy, and the social sciences) and 50 subcategories. In these areas, citation counts tended to increase with every extra year since publication, and readership counts tended to increase faster initially but then stabilize after about 5 years. The correlation between citations and readers was also higher for longer time periods, stabilizing after about 5 years. Although there were substantial differences between broad fields and smaller differences between subfields, the results confirm the value of Mendeley reader counts as early scientific impact indicators.
    Date
    16.11.2016 11:07:22
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.12, S.3036-3050
  13. Thelwall, M.; Vaughan, L.; Björneborn, L.: Webometrics (2004) 0.00
    0.0014101164 = product of:
      0.014101164 = sum of:
        0.0038187557 = weight(_text_:in in 4279) [ClassicSimilarity], result of:
          0.0038187557 = score(doc=4279,freq=6.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.1301535 = fieldWeight in 4279, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4279)
        0.008873867 = product of:
          0.0266216 = sum of:
            0.0266216 = weight(_text_:l in 4279) [ClassicSimilarity], result of:
              0.0266216 = score(doc=4279,freq=4.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.31051973 = fieldWeight in 4279, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4279)
          0.33333334 = coord(1/3)
        0.0014085418 = weight(_text_:s in 4279) [ClassicSimilarity], result of:
          0.0014085418 = score(doc=4279,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.060061958 = fieldWeight in 4279, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4279)
      0.1 = coord(3/30)
    
    Abstract
    Webometrics, the quantitative study of Web-related phenomena, emerged from the realization that methods originally designed for bibliometric analysis of scientific journal article citation patterns could be applied to the Web, with commercial search engines providing the raw data. Almind and Ingwersen (1997) defined the field and gave it its name. Other pioneers included Rodriguez Gairin (1997) and Aguillo (1998). Larson (1996) undertook exploratory link structure analysis, as did Rousseau (1997). Webometrics encompasses research from fields beyond information science such as communication studies, statistical physics, and computer science. In this review we concentrate on link analysis, but also cover other aspects of webometrics, including Web log fle analysis. One theme that runs through this chapter is the messiness of Web data and the need for data cleansing heuristics. The uncontrolled Web creates numerous problems in the interpretation of results, for instance, from the automatic creation or replication of links. The loose connection between top-level domain specifications (e.g., com, edu, and org) and their actual content is also a frustrating problem. For example, many .com sites contain noncommercial content, although com is ostensibly the main commercial top-level domain. Indeed, a skeptical researcher could claim that obstacles of this kind are so great that all Web analyses lack value. As will be seen, one response to this view, a view shared by critics of evaluative bibliometrics, is to demonstrate that Web data correlate significantly with some non-Web data in order to prove that the Web data are not wholly random. A practical response has been to develop increasingly sophisticated data cleansing techniques and multiple data analysis methods.
    Source
    Annual review of information science and technology. 39(2005), S.81-138
  14. Vaughan, L.; Thelwall, M.: ¬A modelling approach to uncover hyperlink patterns : the case of Canadian universities (2005) 0.00
    0.0013843302 = product of:
      0.013843302 = sum of:
        0.0030866629 = weight(_text_:in in 1014) [ClassicSimilarity], result of:
          0.0030866629 = score(doc=1014,freq=2.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.10520181 = fieldWeight in 1014, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1014)
        0.008784681 = product of:
          0.026354041 = sum of:
            0.026354041 = weight(_text_:l in 1014) [ClassicSimilarity], result of:
              0.026354041 = score(doc=1014,freq=2.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.30739886 = fieldWeight in 1014, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1014)
          0.33333334 = coord(1/3)
        0.0019719584 = weight(_text_:s in 1014) [ClassicSimilarity], result of:
          0.0019719584 = score(doc=1014,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.08408674 = fieldWeight in 1014, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1014)
      0.1 = coord(3/30)
    
    Abstract
    Hyperlink patterns between Canadian university Web sites were analyzed by a mathematical modeling approach. A multiple regression model was developed which shows that faculty quality and the language of the university are important predictors for links to a university Web site. Higher faculty quality means more links. French universities received lower numbers of links to their Web sites than comparable English universities. Analysis of interlinking between pairs of universities also showed that English universities are advantaged. Universities are more likely to link to each other when the geographical distance between them is less than 3000 km, possibly reflecting the east vs. west divide that exists in Canadian society.
    Source
    Information processing and management. 41(2005) no.2, S.347-360
  15. Thelwall, M.; Price, L.: Language evolution and the spread of ideas on the Web : a procedure for identifying emergent hybrid word (2006) 0.00
    0.0013802482 = product of:
      0.013802482 = sum of:
        0.0045825066 = weight(_text_:in in 5896) [ClassicSimilarity], result of:
          0.0045825066 = score(doc=5896,freq=6.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.1561842 = fieldWeight in 5896, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5896)
        0.007529726 = product of:
          0.022589177 = sum of:
            0.022589177 = weight(_text_:l in 5896) [ClassicSimilarity], result of:
              0.022589177 = score(doc=5896,freq=2.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.26348472 = fieldWeight in 5896, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5896)
          0.33333334 = coord(1/3)
        0.0016902501 = weight(_text_:s in 5896) [ClassicSimilarity], result of:
          0.0016902501 = score(doc=5896,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.072074346 = fieldWeight in 5896, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=5896)
      0.1 = coord(3/30)
    
    Abstract
    Word usage is of interest to linguists for its own sake as well as to social scientists and others who seek to track the spread of ideas, for example, in public debates over political decisions. The historical evolution of language can be analyzed with the tools of corpus linguistics through evolving corpora and the Web. But word usage statistics can only be gathered for known words. In this article, techniques are described and tested for identifying new words from the Web, focusing on the case when the words are related to a topic and have a hybrid form with a common sequence of letters. The results highlight the need to employ a combination of search techniques and show the wide potential of hybrid word family investigations in linguistics and social science.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.10, S.1326-1337
  16. Thelwall, M.; Thelwall, S.: ¬A thematic analysis of highly retweeted early COVID-19 tweets : consensus, information, dissent and lockdown life (2020) 0.00
    0.0013707519 = product of:
      0.013707519 = sum of:
        0.004409519 = weight(_text_:in in 178) [ClassicSimilarity], result of:
          0.004409519 = score(doc=178,freq=8.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.15028831 = fieldWeight in 178, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=178)
        0.001991979 = weight(_text_:s in 178) [ClassicSimilarity], result of:
          0.001991979 = score(doc=178,freq=4.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.08494043 = fieldWeight in 178, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=178)
        0.0073060202 = product of:
          0.0146120405 = sum of:
            0.0146120405 = weight(_text_:22 in 178) [ClassicSimilarity], result of:
              0.0146120405 = score(doc=178,freq=2.0), product of:
                0.07553371 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021569785 = queryNorm
                0.19345059 = fieldWeight in 178, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=178)
          0.5 = coord(1/2)
      0.1 = coord(3/30)
    
    Abstract
    Purpose Public attitudes towards COVID-19 and social distancing are critical in reducing its spread. It is therefore important to understand public reactions and information dissemination in all major forms, including on social media. This article investigates important issues reflected on Twitter in the early stages of the public reaction to COVID-19. Design/methodology/approach A thematic analysis of the most retweeted English-language tweets mentioning COVID-19 during March 10-29, 2020. Findings The main themes identified for the 87 qualifying tweets accounting for 14 million retweets were: lockdown life; attitude towards social restrictions; politics; safety messages; people with COVID-19; support for key workers; work; and COVID-19 facts/news. Research limitations/implications Twitter played many positive roles, mainly through unofficial tweets. Users shared social distancing information, helped build support for social distancing, criticised government responses, expressed support for key workers and helped each other cope with social isolation. A few popular tweets not supporting social distancing show that government messages sometimes failed. Practical implications Public health campaigns in future may consider encouraging grass roots social web activity to support campaign goals. At a methodological level, analysing retweet counts emphasised politics and ignored practical implementation issues. Originality/value This is the first qualitative analysis of general COVID-19-related retweeting.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 72(2020) no.6, S.945-962
  17. Kousha, K.; Thelwall, M.: How is science cited on the Web? : a classification of google unique Web citations (2007) 0.00
    0.0013644554 = product of:
      0.013644554 = sum of:
        0.004929992 = weight(_text_:in in 586) [ClassicSimilarity], result of:
          0.004929992 = score(doc=586,freq=10.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.16802745 = fieldWeight in 586, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=586)
        0.0014085418 = weight(_text_:s in 586) [ClassicSimilarity], result of:
          0.0014085418 = score(doc=586,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.060061958 = fieldWeight in 586, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=586)
        0.0073060202 = product of:
          0.0146120405 = sum of:
            0.0146120405 = weight(_text_:22 in 586) [ClassicSimilarity], result of:
              0.0146120405 = score(doc=586,freq=2.0), product of:
                0.07553371 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021569785 = queryNorm
                0.19345059 = fieldWeight in 586, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=586)
          0.5 = coord(1/2)
      0.1 = coord(3/30)
    
    Abstract
    Although the analysis of citations in the scholarly literature is now an established and relatively well understood part of information science, not enough is known about citations that can be found on the Web. In particular, are there new Web types, and if so, are these trivial or potentially useful for studying or evaluating research communication? We sought evidence based upon a sample of 1,577 Web citations of the URLs or titles of research articles in 64 open-access journals from biology, physics, chemistry, and computing. Only 25% represented intellectual impact, from references of Web documents (23%) and other informal scholarly sources (2%). Many of the Web/URL citations were created for general or subject-specific navigation (45%) or for self-publicity (22%). Additional analyses revealed significant disciplinary differences in the types of Google unique Web/URL citations as well as some characteristics of scientific open-access publishing on the Web. We conclude that the Web provides access to a new and different type of citation information, one that may therefore enable us to measure different aspects of research, and the research process in particular; but to obtain good information, the different types should be separated.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.11, S.1631-1644
  18. Thelwall, M.; Vaughan, L.: New versions of PageRank employing alternative Web document models (2004) 0.00
    0.0012961577 = product of:
      0.012961577 = sum of:
        0.003741601 = weight(_text_:in in 674) [ClassicSimilarity], result of:
          0.003741601 = score(doc=674,freq=4.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.12752387 = fieldWeight in 674, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=674)
        0.007529726 = product of:
          0.022589177 = sum of:
            0.022589177 = weight(_text_:l in 674) [ClassicSimilarity], result of:
              0.022589177 = score(doc=674,freq=2.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.26348472 = fieldWeight in 674, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.046875 = fieldNorm(doc=674)
          0.33333334 = coord(1/3)
        0.0016902501 = weight(_text_:s in 674) [ClassicSimilarity], result of:
          0.0016902501 = score(doc=674,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.072074346 = fieldWeight in 674, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=674)
      0.1 = coord(3/30)
    
    Abstract
    Introduces several new versions of PageRank (the link based Web page ranking algorithm), based on an information science perspective on the concept of the Web document. Although the Web page is the typical indivisible unit of information in search engine results and most Web information retrieval algorithms, other research has suggested that aggregating pages based on directories and domains gives promising alternatives, particularly when Web links are the object of study. The new algorithms introduced based on these alternatives were used to rank four sets of Web pages. The ranking results were compared with human subjects' rankings. The results of the tests were somewhat inconclusive: the new approach worked well for the set that includes pages from different Web sites; however, it does not work well in ranking pages that are from the same site. It seems that the new algorithms may be effective for some tasks but not for others, especially when only low numbers of links are involved or the pages to be ranked are from the same site or directory.
    Source
    Aslib proceedings. 56(2004) no.1, S.24-33
  19. Thelwall, M.; Binns, R.; Harries, G.; Page-Kennedy, T.; Price, L.; Wilkinson, D.: Custom interfaces for advanced queries in search engines (2001) 0.00
    0.0012613306 = product of:
      0.012613306 = sum of:
        0.004929992 = weight(_text_:in in 697) [ClassicSimilarity], result of:
          0.004929992 = score(doc=697,freq=10.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.16802745 = fieldWeight in 697, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=697)
        0.006274772 = product of:
          0.018824315 = sum of:
            0.018824315 = weight(_text_:l in 697) [ClassicSimilarity], result of:
              0.018824315 = score(doc=697,freq=2.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.2195706 = fieldWeight in 697, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=697)
          0.33333334 = coord(1/3)
        0.0014085418 = weight(_text_:s in 697) [ClassicSimilarity], result of:
          0.0014085418 = score(doc=697,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.060061958 = fieldWeight in 697, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=697)
      0.1 = coord(3/30)
    
    Abstract
    Those seeking information from the Internet often start from a search engine, using either its organised directory structure or its text query facility. In response to the difficulty in identifying the most relevant pages for some information needs, many search engines offer Boolean text matching and some, including Google, AltaVista and HotBot, offer the facility to integrate additional information into a more advanced request. Amongst web users, however, it is known that the employment of complex enquiries is far from universal, with very short queries being the norm. It is demonstrated that the gap between the provision of advanced search facilities and their use can be bridged, for specific information needs, by the construction of a simple interface in the form of a website that automatically formulates the necessary requests. It is argued that this kind of resource, perhaps employing additional knowledge domain specific information, is one that could be useful for websites or portals of common interest groups. The approach is illustrated by a website that enables a user to search the individual websites of university level institutions in European Union associated countries.
    Source
    Aslib proceedings. 53(2001) no.10, S.413-422
  20. Thelwall, M.: Are Mendeley reader counts high enough for research evaluations when articles are published? (2017) 0.00
    0.0012533319 = product of:
      0.012533318 = sum of:
        0.0038187557 = weight(_text_:in in 3806) [ClassicSimilarity], result of:
          0.0038187557 = score(doc=3806,freq=6.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.1301535 = fieldWeight in 3806, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3806)
        0.0014085418 = weight(_text_:s in 3806) [ClassicSimilarity], result of:
          0.0014085418 = score(doc=3806,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.060061958 = fieldWeight in 3806, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3806)
        0.0073060202 = product of:
          0.0146120405 = sum of:
            0.0146120405 = weight(_text_:22 in 3806) [ClassicSimilarity], result of:
              0.0146120405 = score(doc=3806,freq=2.0), product of:
                0.07553371 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021569785 = queryNorm
                0.19345059 = fieldWeight in 3806, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3806)
          0.5 = coord(1/2)
      0.1 = coord(3/30)
    
    Abstract
    Purpose Mendeley reader counts have been proposed as early indicators for the impact of academic publications. The purpose of this paper is to assess whether there are enough Mendeley readers for research evaluation purposes during the month when an article is first published. Design/methodology/approach Average Mendeley reader counts were compared to the average Scopus citation counts for 104,520 articles from ten disciplines during the second half of 2016. Findings Articles attracted, on average, between 0.1 and 0.8 Mendeley readers per article in the month in which they first appeared in Scopus. This is about ten times more than the average Scopus citation count. Research limitations/implications Other disciplines may use Mendeley more or less than the ten investigated here. The results are dependent on Scopus's indexing practices, and Mendeley reader counts can be manipulated and have national and seniority biases. Practical implications Mendeley reader counts during the month of publication are more powerful than Scopus citations for comparing the average impacts of groups of documents but are not high enough to differentiate between the impacts of typical individual articles. Originality/value This is the first multi-disciplinary and systematic analysis of Mendeley reader counts from the publication month of an article.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 69(2017) no.2, S.174-183