Search (51 results, page 1 of 3)

  • × year_i:[2000 TO 2010}
  • × author_ss:"Thelwall, M."
  1. Levitt, J.M.; Thelwall, M.: Citation levels and collaboration within library and information science (2009) 0.02
    0.023736732 = product of:
      0.10172885 = sum of:
        0.0118387835 = product of:
          0.023677567 = sum of:
            0.023677567 = weight(_text_:bibliothekswesen in 2734) [ClassicSimilarity], result of:
              0.023677567 = score(doc=2734,freq=2.0), product of:
                0.09615103 = queryWeight, product of:
                  4.457672 = idf(docFreq=1392, maxDocs=44218)
                  0.021569785 = queryNorm
                0.24625391 = fieldWeight in 2734, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.457672 = idf(docFreq=1392, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2734)
          0.5 = coord(1/2)
        0.024179846 = weight(_text_:informationswissenschaft in 2734) [ClassicSimilarity], result of:
          0.024179846 = score(doc=2734,freq=2.0), product of:
            0.09716552 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.021569785 = queryNorm
            0.24885213 = fieldWeight in 2734, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2734)
        0.023677567 = weight(_text_:bibliothekswesen in 2734) [ClassicSimilarity], result of:
          0.023677567 = score(doc=2734,freq=2.0), product of:
            0.09615103 = queryWeight, product of:
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.021569785 = queryNorm
            0.24625391 = fieldWeight in 2734, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2734)
        0.023677567 = weight(_text_:bibliothekswesen in 2734) [ClassicSimilarity], result of:
          0.023677567 = score(doc=2734,freq=2.0), product of:
            0.09615103 = queryWeight, product of:
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.021569785 = queryNorm
            0.24625391 = fieldWeight in 2734, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.457672 = idf(docFreq=1392, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2734)
        0.006614278 = weight(_text_:in in 2734) [ClassicSimilarity], result of:
          0.006614278 = score(doc=2734,freq=18.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.22543246 = fieldWeight in 2734, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2734)
        0.0014085418 = weight(_text_:s in 2734) [ClassicSimilarity], result of:
          0.0014085418 = score(doc=2734,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.060061958 = fieldWeight in 2734, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2734)
        0.010332272 = product of:
          0.020664545 = sum of:
            0.020664545 = weight(_text_:22 in 2734) [ClassicSimilarity], result of:
              0.020664545 = score(doc=2734,freq=4.0), product of:
                0.07553371 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021569785 = queryNorm
                0.27358043 = fieldWeight in 2734, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2734)
          0.5 = coord(1/2)
      0.23333333 = coord(7/30)
    
    Abstract
    Collaboration is a major research policy objective, but does it deliver higher quality research? This study uses citation analysis to examine the Web of Science (WoS) Information Science & Library Science subject category (IS&LS) to ascertain whether, in general, more highly cited articles are more highly collaborative than other articles. It consists of two investigations. The first investigation is a longitudinal comparison of the degree and proportion of collaboration in five strata of citation; it found that collaboration in the highest four citation strata (all in the most highly cited 22%) increased in unison over time, whereas collaboration in the lowest citation strata (un-cited articles) remained low and stable. Given that over 40% of the articles were un-cited, it seems important to take into account the differences found between un-cited articles and relatively highly cited articles when investigating collaboration in IS&LS. The second investigation compares collaboration for 35 influential information scientists; it found that their more highly cited articles on average were not more highly collaborative than their less highly cited articles. In summary, although collaborative research is conducive to high citation in general, collaboration has apparently not tended to be essential to the success of current and former elite information scientists.
    Date
    22. 3.2009 12:43:51
    Field
    Bibliothekswesen
    Informationswissenschaft
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.3, S.434-442
  2. Thelwall, M.; Ruschenburg, T.: Grundlagen und Forschungsfelder der Webometrie (2006) 0.02
    0.018012479 = product of:
      0.090062395 = sum of:
        0.01622127 = weight(_text_:und in 77) [ClassicSimilarity], result of:
          0.01622127 = score(doc=77,freq=6.0), product of:
            0.04780656 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.021569785 = queryNorm
            0.33931053 = fieldWeight in 77, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=77)
        0.038687754 = weight(_text_:informationswissenschaft in 77) [ClassicSimilarity], result of:
          0.038687754 = score(doc=77,freq=2.0), product of:
            0.09716552 = queryWeight, product of:
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.021569785 = queryNorm
            0.3981634 = fieldWeight in 77, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.504705 = idf(docFreq=1328, maxDocs=44218)
              0.0625 = fieldNorm(doc=77)
        0.004988801 = weight(_text_:in in 77) [ClassicSimilarity], result of:
          0.004988801 = score(doc=77,freq=4.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.17003182 = fieldWeight in 77, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=77)
        0.01622127 = weight(_text_:und in 77) [ClassicSimilarity], result of:
          0.01622127 = score(doc=77,freq=6.0), product of:
            0.04780656 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.021569785 = queryNorm
            0.33931053 = fieldWeight in 77, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=77)
        0.002253667 = weight(_text_:s in 77) [ClassicSimilarity], result of:
          0.002253667 = score(doc=77,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.09609913 = fieldWeight in 77, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0625 = fieldNorm(doc=77)
        0.011689632 = product of:
          0.023379264 = sum of:
            0.023379264 = weight(_text_:22 in 77) [ClassicSimilarity], result of:
              0.023379264 = score(doc=77,freq=2.0), product of:
                0.07553371 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021569785 = queryNorm
                0.30952093 = fieldWeight in 77, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=77)
          0.5 = coord(1/2)
      0.2 = coord(6/30)
    
    Abstract
    Die Webometrie ist ein Teilbereich der Informationswissenschaft der zur Zeit auf die Analyse von Linkstrukturen konzentriert ist. Er ist stark von der Zitationsanalyse geprägt, wie der empirische Schwerpunkt auf der Wissenschaftsanalyse zeigt. In diesem Beitrag diskutieren wir die Nutzung linkbasierter Maße in einem breiten informetrischen Kontext und bewerten verschiedene Verfahren, auch im Hinblick auf ihr generelles Potentialfür die Sozialwissenschaften. Dabei wird auch ein allgemeiner Rahmenfür Linkanalysen mit den erforderlichen Arbeitsschritten vorgestellt. Abschließend werden vielversprechende zukünftige Anwendungsfelder der Webometrie benannt, unter besonderer Berücksichtigung der Analyse von Blogs.
    Date
    4.12.2006 12:12:22
    Source
    Information - Wissenschaft und Praxis. 57(2006) H.8, S.401-406
  3. Price, L.; Thelwall, M.: ¬The clustering power of low frequency words in academic webs (2005) 0.00
    0.0016102897 = product of:
      0.016102897 = sum of:
        0.0053462577 = weight(_text_:in in 3561) [ClassicSimilarity], result of:
          0.0053462577 = score(doc=3561,freq=6.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.1822149 = fieldWeight in 3561, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3561)
        0.008784681 = product of:
          0.026354041 = sum of:
            0.026354041 = weight(_text_:l in 3561) [ClassicSimilarity], result of:
              0.026354041 = score(doc=3561,freq=2.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.30739886 = fieldWeight in 3561, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3561)
          0.33333334 = coord(1/3)
        0.0019719584 = weight(_text_:s in 3561) [ClassicSimilarity], result of:
          0.0019719584 = score(doc=3561,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.08408674 = fieldWeight in 3561, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3561)
      0.1 = coord(3/30)
    
    Abstract
    The value of low frequency words for subject-based academic Web site clustering is assessed. A new technique is introduced to compare the relative clustering power of different vocabularies. The technique is designed for word frequency tests in large document clustering exercises. Results for the Australian and New Zealand academic Web spaces indicate that low frequency words are useful for clustering academic Web sites along subject lines; removing low frequency words results in sites becoming, an average, less dissimilar to sites from other subjects.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.8, S.883-888
  4. Vaughan, L.; Thelwall, M.: Search engine coverage bias : evidence and possible causes (2004) 0.00
    0.0015135966 = product of:
      0.015135966 = sum of:
        0.005915991 = weight(_text_:in in 2536) [ClassicSimilarity], result of:
          0.005915991 = score(doc=2536,freq=10.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.20163295 = fieldWeight in 2536, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2536)
        0.007529726 = product of:
          0.022589177 = sum of:
            0.022589177 = weight(_text_:l in 2536) [ClassicSimilarity], result of:
              0.022589177 = score(doc=2536,freq=2.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.26348472 = fieldWeight in 2536, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2536)
          0.33333334 = coord(1/3)
        0.0016902501 = weight(_text_:s in 2536) [ClassicSimilarity], result of:
          0.0016902501 = score(doc=2536,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.072074346 = fieldWeight in 2536, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=2536)
      0.1 = coord(3/30)
    
    Abstract
    Commercial search engines are now playing an increasingly important role in Web information dissemination and access. Of particular interest to business and national governments is whether the big engines have coverage biased towards the US or other countries. In our study we tested for national biases in three major search engines and found significant differences in their coverage of commercial Web sites. The US sites were much better covered than the others in the study: sites from China, Taiwan and Singapore. We then examined the possible technical causes of the differences and found that the language of a site does not affect its coverage by search engines. However, the visibility of a site, measured by the number of links to it, affects its chance to be covered by search engines. We conclude that the coverage bias does exist but this is due not to deliberate choices of the search engines but occurs as a natural result of cumulative advantage effects of US sites on the Web. Nevertheless, the bias remains a cause for international concern.
    Source
    Information processing and management. 40(2004) no.4, S.693-708
  5. Thelwall, M.; Vaughan, L.; Björneborn, L.: Webometrics (2004) 0.00
    0.0014101164 = product of:
      0.014101164 = sum of:
        0.0038187557 = weight(_text_:in in 4279) [ClassicSimilarity], result of:
          0.0038187557 = score(doc=4279,freq=6.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.1301535 = fieldWeight in 4279, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4279)
        0.008873867 = product of:
          0.0266216 = sum of:
            0.0266216 = weight(_text_:l in 4279) [ClassicSimilarity], result of:
              0.0266216 = score(doc=4279,freq=4.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.31051973 = fieldWeight in 4279, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4279)
          0.33333334 = coord(1/3)
        0.0014085418 = weight(_text_:s in 4279) [ClassicSimilarity], result of:
          0.0014085418 = score(doc=4279,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.060061958 = fieldWeight in 4279, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4279)
      0.1 = coord(3/30)
    
    Abstract
    Webometrics, the quantitative study of Web-related phenomena, emerged from the realization that methods originally designed for bibliometric analysis of scientific journal article citation patterns could be applied to the Web, with commercial search engines providing the raw data. Almind and Ingwersen (1997) defined the field and gave it its name. Other pioneers included Rodriguez Gairin (1997) and Aguillo (1998). Larson (1996) undertook exploratory link structure analysis, as did Rousseau (1997). Webometrics encompasses research from fields beyond information science such as communication studies, statistical physics, and computer science. In this review we concentrate on link analysis, but also cover other aspects of webometrics, including Web log fle analysis. One theme that runs through this chapter is the messiness of Web data and the need for data cleansing heuristics. The uncontrolled Web creates numerous problems in the interpretation of results, for instance, from the automatic creation or replication of links. The loose connection between top-level domain specifications (e.g., com, edu, and org) and their actual content is also a frustrating problem. For example, many .com sites contain noncommercial content, although com is ostensibly the main commercial top-level domain. Indeed, a skeptical researcher could claim that obstacles of this kind are so great that all Web analyses lack value. As will be seen, one response to this view, a view shared by critics of evaluative bibliometrics, is to demonstrate that Web data correlate significantly with some non-Web data in order to prove that the Web data are not wholly random. A practical response has been to develop increasingly sophisticated data cleansing techniques and multiple data analysis methods.
    Source
    Annual review of information science and technology. 39(2005), S.81-138
  6. Vaughan, L.; Thelwall, M.: ¬A modelling approach to uncover hyperlink patterns : the case of Canadian universities (2005) 0.00
    0.0013843302 = product of:
      0.013843302 = sum of:
        0.0030866629 = weight(_text_:in in 1014) [ClassicSimilarity], result of:
          0.0030866629 = score(doc=1014,freq=2.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.10520181 = fieldWeight in 1014, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1014)
        0.008784681 = product of:
          0.026354041 = sum of:
            0.026354041 = weight(_text_:l in 1014) [ClassicSimilarity], result of:
              0.026354041 = score(doc=1014,freq=2.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.30739886 = fieldWeight in 1014, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1014)
          0.33333334 = coord(1/3)
        0.0019719584 = weight(_text_:s in 1014) [ClassicSimilarity], result of:
          0.0019719584 = score(doc=1014,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.08408674 = fieldWeight in 1014, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1014)
      0.1 = coord(3/30)
    
    Abstract
    Hyperlink patterns between Canadian university Web sites were analyzed by a mathematical modeling approach. A multiple regression model was developed which shows that faculty quality and the language of the university are important predictors for links to a university Web site. Higher faculty quality means more links. French universities received lower numbers of links to their Web sites than comparable English universities. Analysis of interlinking between pairs of universities also showed that English universities are advantaged. Universities are more likely to link to each other when the geographical distance between them is less than 3000 km, possibly reflecting the east vs. west divide that exists in Canadian society.
    Source
    Information processing and management. 41(2005) no.2, S.347-360
  7. Thelwall, M.; Price, L.: Language evolution and the spread of ideas on the Web : a procedure for identifying emergent hybrid word (2006) 0.00
    0.0013802482 = product of:
      0.013802482 = sum of:
        0.0045825066 = weight(_text_:in in 5896) [ClassicSimilarity], result of:
          0.0045825066 = score(doc=5896,freq=6.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.1561842 = fieldWeight in 5896, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5896)
        0.007529726 = product of:
          0.022589177 = sum of:
            0.022589177 = weight(_text_:l in 5896) [ClassicSimilarity], result of:
              0.022589177 = score(doc=5896,freq=2.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.26348472 = fieldWeight in 5896, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5896)
          0.33333334 = coord(1/3)
        0.0016902501 = weight(_text_:s in 5896) [ClassicSimilarity], result of:
          0.0016902501 = score(doc=5896,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.072074346 = fieldWeight in 5896, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=5896)
      0.1 = coord(3/30)
    
    Abstract
    Word usage is of interest to linguists for its own sake as well as to social scientists and others who seek to track the spread of ideas, for example, in public debates over political decisions. The historical evolution of language can be analyzed with the tools of corpus linguistics through evolving corpora and the Web. But word usage statistics can only be gathered for known words. In this article, techniques are described and tested for identifying new words from the Web, focusing on the case when the words are related to a topic and have a hybrid form with a common sequence of letters. The results highlight the need to employ a combination of search techniques and show the wide potential of hybrid word family investigations in linguistics and social science.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.10, S.1326-1337
  8. Kousha, K.; Thelwall, M.: How is science cited on the Web? : a classification of google unique Web citations (2007) 0.00
    0.0013644554 = product of:
      0.013644554 = sum of:
        0.004929992 = weight(_text_:in in 586) [ClassicSimilarity], result of:
          0.004929992 = score(doc=586,freq=10.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.16802745 = fieldWeight in 586, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=586)
        0.0014085418 = weight(_text_:s in 586) [ClassicSimilarity], result of:
          0.0014085418 = score(doc=586,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.060061958 = fieldWeight in 586, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=586)
        0.0073060202 = product of:
          0.0146120405 = sum of:
            0.0146120405 = weight(_text_:22 in 586) [ClassicSimilarity], result of:
              0.0146120405 = score(doc=586,freq=2.0), product of:
                0.07553371 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.021569785 = queryNorm
                0.19345059 = fieldWeight in 586, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=586)
          0.5 = coord(1/2)
      0.1 = coord(3/30)
    
    Abstract
    Although the analysis of citations in the scholarly literature is now an established and relatively well understood part of information science, not enough is known about citations that can be found on the Web. In particular, are there new Web types, and if so, are these trivial or potentially useful for studying or evaluating research communication? We sought evidence based upon a sample of 1,577 Web citations of the URLs or titles of research articles in 64 open-access journals from biology, physics, chemistry, and computing. Only 25% represented intellectual impact, from references of Web documents (23%) and other informal scholarly sources (2%). Many of the Web/URL citations were created for general or subject-specific navigation (45%) or for self-publicity (22%). Additional analyses revealed significant disciplinary differences in the types of Google unique Web/URL citations as well as some characteristics of scientific open-access publishing on the Web. We conclude that the Web provides access to a new and different type of citation information, one that may therefore enable us to measure different aspects of research, and the research process in particular; but to obtain good information, the different types should be separated.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.11, S.1631-1644
  9. Thelwall, M.; Vaughan, L.: New versions of PageRank employing alternative Web document models (2004) 0.00
    0.0012961577 = product of:
      0.012961577 = sum of:
        0.003741601 = weight(_text_:in in 674) [ClassicSimilarity], result of:
          0.003741601 = score(doc=674,freq=4.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.12752387 = fieldWeight in 674, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=674)
        0.007529726 = product of:
          0.022589177 = sum of:
            0.022589177 = weight(_text_:l in 674) [ClassicSimilarity], result of:
              0.022589177 = score(doc=674,freq=2.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.26348472 = fieldWeight in 674, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.046875 = fieldNorm(doc=674)
          0.33333334 = coord(1/3)
        0.0016902501 = weight(_text_:s in 674) [ClassicSimilarity], result of:
          0.0016902501 = score(doc=674,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.072074346 = fieldWeight in 674, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=674)
      0.1 = coord(3/30)
    
    Abstract
    Introduces several new versions of PageRank (the link based Web page ranking algorithm), based on an information science perspective on the concept of the Web document. Although the Web page is the typical indivisible unit of information in search engine results and most Web information retrieval algorithms, other research has suggested that aggregating pages based on directories and domains gives promising alternatives, particularly when Web links are the object of study. The new algorithms introduced based on these alternatives were used to rank four sets of Web pages. The ranking results were compared with human subjects' rankings. The results of the tests were somewhat inconclusive: the new approach worked well for the set that includes pages from different Web sites; however, it does not work well in ranking pages that are from the same site. It seems that the new algorithms may be effective for some tasks but not for others, especially when only low numbers of links are involved or the pages to be ranked are from the same site or directory.
    Source
    Aslib proceedings. 56(2004) no.1, S.24-33
  10. Thelwall, M.; Binns, R.; Harries, G.; Page-Kennedy, T.; Price, L.; Wilkinson, D.: Custom interfaces for advanced queries in search engines (2001) 0.00
    0.0012613306 = product of:
      0.012613306 = sum of:
        0.004929992 = weight(_text_:in in 697) [ClassicSimilarity], result of:
          0.004929992 = score(doc=697,freq=10.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.16802745 = fieldWeight in 697, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=697)
        0.006274772 = product of:
          0.018824315 = sum of:
            0.018824315 = weight(_text_:l in 697) [ClassicSimilarity], result of:
              0.018824315 = score(doc=697,freq=2.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.2195706 = fieldWeight in 697, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=697)
          0.33333334 = coord(1/3)
        0.0014085418 = weight(_text_:s in 697) [ClassicSimilarity], result of:
          0.0014085418 = score(doc=697,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.060061958 = fieldWeight in 697, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=697)
      0.1 = coord(3/30)
    
    Abstract
    Those seeking information from the Internet often start from a search engine, using either its organised directory structure or its text query facility. In response to the difficulty in identifying the most relevant pages for some information needs, many search engines offer Boolean text matching and some, including Google, AltaVista and HotBot, offer the facility to integrate additional information into a more advanced request. Amongst web users, however, it is known that the employment of complex enquiries is far from universal, with very short queries being the norm. It is demonstrated that the gap between the provision of advanced search facilities and their use can be bridged, for specific information needs, by the construction of a simple interface in the form of a website that automatically formulates the necessary requests. It is argued that this kind of resource, perhaps employing additional knowledge domain specific information, is one that could be useful for websites or portals of common interest groups. The approach is illustrated by a website that enables a user to search the individual websites of university level institutions in European Union associated countries.
    Source
    Aslib proceedings. 53(2001) no.10, S.413-422
  11. Harries, G.; Wilkinson, D.; Price, L.; Fairclough, R.; Thelwall, M.: Hyperlinks as a data source for science mapping : making sense of it all (2005) 0.00
    0.0012293302 = product of:
      0.018439952 = sum of:
        0.015059452 = product of:
          0.045178354 = sum of:
            0.045178354 = weight(_text_:l in 4654) [ClassicSimilarity], result of:
              0.045178354 = score(doc=4654,freq=2.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.52696943 = fieldWeight in 4654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4654)
          0.33333334 = coord(1/3)
        0.0033805002 = weight(_text_:s in 4654) [ClassicSimilarity], result of:
          0.0033805002 = score(doc=4654,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.14414869 = fieldWeight in 4654, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.09375 = fieldNorm(doc=4654)
      0.06666667 = coord(2/30)
    
    Source
    Journal of information science. 30(2005) no.5, S.436-
  12. Shifman, L.; Thelwall, M.: Assessing global diffusion with Web memetics : the spread and evolution of a popular joke (2009) 0.00
    0.0011865686 = product of:
      0.011865687 = sum of:
        0.0026457112 = weight(_text_:in in 3303) [ClassicSimilarity], result of:
          0.0026457112 = score(doc=3303,freq=2.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.09017298 = fieldWeight in 3303, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3303)
        0.007529726 = product of:
          0.022589177 = sum of:
            0.022589177 = weight(_text_:l in 3303) [ClassicSimilarity], result of:
              0.022589177 = score(doc=3303,freq=2.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.26348472 = fieldWeight in 3303, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3303)
          0.33333334 = coord(1/3)
        0.0016902501 = weight(_text_:s in 3303) [ClassicSimilarity], result of:
          0.0016902501 = score(doc=3303,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.072074346 = fieldWeight in 3303, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=3303)
      0.1 = coord(3/30)
    
    Abstract
    Memes are small units of culture, analogous to genes, which flow from person to person by copying or imitation. More than any previous medium, the Internet has the technical capabilities for global meme diffusion. Yet, to spread globally, memes need to negotiate their way through cultural and linguistic borders. This article introduces a new broad method, Web memetics, comprising extensive Web searches and combined quantitative and qualitative analyses, to identify and assess: (a) the different versions of a meme, (b) its evolution online, and (c) its Web presence and translation into common Internet languages. This method is demonstrated through one extensively circulated joke about men, women, and computers. The results show that the joke has mutated into several different versions and is widely translated, and that translations incorporate small, local adaptations while retaining the English versions' fundamental components. In conclusion, Web memetics has demonstrated its ability to identify and track the evolution and spread of memes online, with interesting results, albeit for only one case study.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.12, S.2567-2576
  13. Vaughan, L.; Thelwall, M.: Scholarly use of the Web : what are the key inducers of links to journal Web sites? (2003) 0.00
    0.0010801314 = product of:
      0.010801313 = sum of:
        0.0031180005 = weight(_text_:in in 1236) [ClassicSimilarity], result of:
          0.0031180005 = score(doc=1236,freq=4.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.10626988 = fieldWeight in 1236, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1236)
        0.006274772 = product of:
          0.018824315 = sum of:
            0.018824315 = weight(_text_:l in 1236) [ClassicSimilarity], result of:
              0.018824315 = score(doc=1236,freq=2.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.2195706 = fieldWeight in 1236, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1236)
          0.33333334 = coord(1/3)
        0.0014085418 = weight(_text_:s in 1236) [ClassicSimilarity], result of:
          0.0014085418 = score(doc=1236,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.060061958 = fieldWeight in 1236, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1236)
      0.1 = coord(3/30)
    
    Abstract
    Web links have been studied by information scientists for at least six years but it is only in the past two that clear evidence has emerged to show that counts of links to scholarly Web spaces (universities and departments) can correlate significantly with research measures, giving some credence to their use for the investigation of scholarly communication. This paper reports an a study to investigate the factors that influence the creation of links to journal Web sites. An empirical approach is used: collecting data and testing for significant patterns. The specific questions addressed are whether site age and site content are inducers of links to a journal's Web site as measured by the ratio of link counts to Journal Impact Factors, two variables previously discovered to be related. A new methodology for data collection is also introduced that uses the Internet Archive to obtain an earliest known creation date for Web sites. The results show that both site age and site content are significant factors for the disciplines studied: library and information science, and law. Comparisons between the two fields also show disciplinary differences in Web site characteristics. Scholars and publishers should be particularly aware that richer content an a journal's Web site tends to generate links and thus the traffic to the site.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.1, S.29-38
  14. Thelwall, M.; Vaughan, L.: Webometrics : an introduction to the special issue (2004) 0.00
    8.195535E-4 = product of:
      0.0122933015 = sum of:
        0.010039635 = product of:
          0.030118903 = sum of:
            0.030118903 = weight(_text_:l in 2908) [ClassicSimilarity], result of:
              0.030118903 = score(doc=2908,freq=2.0), product of:
                0.0857324 = queryWeight, product of:
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.021569785 = queryNorm
                0.35131297 = fieldWeight in 2908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9746525 = idf(docFreq=2257, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2908)
          0.33333334 = coord(1/3)
        0.002253667 = weight(_text_:s in 2908) [ClassicSimilarity], result of:
          0.002253667 = score(doc=2908,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.09609913 = fieldWeight in 2908, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0625 = fieldNorm(doc=2908)
      0.06666667 = coord(2/30)
    
    Source
    Journal of the American Society for Information Science and Technology. 55(2004) no.14, S.1213-1215
  15. Levitt, J.M.; Thelwall, M.: Is multidisciplinary research more highly cited? : a macrolevel study (2008) 0.00
    6.438664E-4 = product of:
      0.009657996 = sum of:
        0.008249454 = weight(_text_:in in 2375) [ClassicSimilarity], result of:
          0.008249454 = score(doc=2375,freq=28.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.2811637 = fieldWeight in 2375, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2375)
        0.0014085418 = weight(_text_:s in 2375) [ClassicSimilarity], result of:
          0.0014085418 = score(doc=2375,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.060061958 = fieldWeight in 2375, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2375)
      0.06666667 = coord(2/30)
    
    Abstract
    Interdisciplinary collaboration is a major goal in research policy. This study uses citation analysis to examine diverse subjects in the Web of Science and Scopus to ascertain whether, in general, research published in journals classified in more than one subject is more highly cited than research published in journals classified in a single subject. For each subject, the study divides the journals into two disjoint sets called Multi and Mono. Multi consists of all journals in the subject and at least one other subject whereas Mono consists of all journals in the subject and in no other subject. The main findings are: (a) For social science subject categories in both the Web of Science and Scopus, the average citation levels of articles in Mono and Multi are very similar; and (b) for Scopus subject categories within life sciences, health sciences, and physical sciences, the average citation level of Mono articles is roughly twice that of Multi articles. Hence, one cannot assume that in general, multidisciplinary research will be more highly cited, and the converse is probably true for many areas of science. A policy implication is that, at least in the sciences, multidisciplinary researchers should not be evaluated by citations on the same basis as monodisciplinary researchers.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.12, S.1973-1984
  16. Thelwall, M.: Directing students to new information types : a new role for Google in literature searches? (2005) 0.00
    5.9159653E-4 = product of:
      0.008873948 = sum of:
        0.006901989 = weight(_text_:in in 364) [ClassicSimilarity], result of:
          0.006901989 = score(doc=364,freq=10.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.23523843 = fieldWeight in 364, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=364)
        0.0019719584 = weight(_text_:s in 364) [ClassicSimilarity], result of:
          0.0019719584 = score(doc=364,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.08408674 = fieldWeight in 364, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0546875 = fieldNorm(doc=364)
      0.06666667 = coord(2/30)
    
    Abstract
    Conducting a literature review is an important activity for postgraduates and many undergraduates. Librarians can play an important role, directing students to digital libraries, compiling online subject reSource lists, and educating about the need to evaluate the quality of online resources. In order to conduct an effective literature search in a new area, however, in some subjects it is necessary to gain basic topic knowledge, including specialist vocabularies. Google's link-based page ranking algorithm makes this search engine an ideal tool for finding specialist topic introductory material, particularly in computer science, and so librarians should be teaching this as part of a strategic literature review approach.
    Pages
    S.159-166
  17. Kousha, K.; Thelwall, M.: Assessing the impact of disciplinary research on teaching : an automatic analysis of online syllabuses (2008) 0.00
    5.58707E-4 = product of:
      0.008380604 = sum of:
        0.006972062 = weight(_text_:in in 2383) [ClassicSimilarity], result of:
          0.006972062 = score(doc=2383,freq=20.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.2376267 = fieldWeight in 2383, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2383)
        0.0014085418 = weight(_text_:s in 2383) [ClassicSimilarity], result of:
          0.0014085418 = score(doc=2383,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.060061958 = fieldWeight in 2383, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2383)
      0.06666667 = coord(2/30)
    
    Abstract
    The impact of published academic research in the sciences and social sciences, when measured, is commonly estimated by counting citations from journal articles. The Web has now introduced new potential sources of quantitative data online that could be used to measure aspects of research impact. In this article we assess the extent to which citations from online syllabuses could be a valuable source of evidence about the educational utility of research. An analysis of online syllabus citations to 70,700 articles published in 2003 in the journals of 12 subjects indicates that online syllabus citations were sufficiently numerous to be a useful impact indictor in some social sciences, including political science and information and library science, but not in others, nor in any sciences. This result was consistent with current social science research having, in general, more educational value than current science research. Moreover, articles frequently cited in online syllabuses were not necessarily highly cited by other articles. Hence it seems that online syllabus citations provide a valuable additional source of evidence about the impact of journals, scholars, and research articles in some social sciences.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.13, S.2060-2069
  18. Thelwall, M.; Wilkinson, D.; Uppal, S.: Data mining emotion in social network communication : gender differences in MySpace (2009) 0.00
    5.537577E-4 = product of:
      0.008306365 = sum of:
        0.005915991 = weight(_text_:in in 3322) [ClassicSimilarity], result of:
          0.005915991 = score(doc=3322,freq=10.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.20163295 = fieldWeight in 3322, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3322)
        0.002390375 = weight(_text_:s in 3322) [ClassicSimilarity], result of:
          0.002390375 = score(doc=3322,freq=4.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.101928525 = fieldWeight in 3322, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=3322)
      0.06666667 = coord(2/30)
    
    Abstract
    Despite the rapid growth in social network sites and in data mining for emotion (sentiment analysis), little research has tied the two together, and none has had social science goals. This article examines the extent to which emotion is present in MySpace comments, using a combination of data mining and content analysis, and exploring age and gender. A random sample of 819 public comments to or from U.S. users was manually classified for strength of positive and negative emotion. Two thirds of the comments expressed positive emotion, but a minority (20%) contained negative emotion, confirming that MySpace is an extraordinarily emotion-rich environment. Females are likely to give and receive more positive comments than are males, but there is no difference for negative comments. It is thus possible that females are more successful social network site users partly because of their greater ability to textually harness positive affect.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.1, S.190-199
  19. Thelwall, M.: Can Google's PageRank be used to find the most important academic Web pages? (2003) 0.00
    5.447262E-4 = product of:
      0.0081708925 = sum of:
        0.0064806426 = weight(_text_:in in 4457) [ClassicSimilarity], result of:
          0.0064806426 = score(doc=4457,freq=12.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.22087781 = fieldWeight in 4457, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4457)
        0.0016902501 = weight(_text_:s in 4457) [ClassicSimilarity], result of:
          0.0016902501 = score(doc=4457,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.072074346 = fieldWeight in 4457, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.046875 = fieldNorm(doc=4457)
      0.06666667 = coord(2/30)
    
    Abstract
    Google's PageRank is an influential algorithm that uses a model of Web use that is dominated by its link structure in order to rank pages by their estimated value to the Web community. This paper reports on the outcome of applying the algorithm to the Web sites of three national university systems in order to test whether it is capable of identifying the most important Web pages. The results are also compared with simple inlink counts. It was discovered that the highest inlinked pages do not always have the highest PageRank, indicating that the two metrics are genuinely different, even for the top pages. More significantly, however, internal links dominated external links for the high ranks in either method and superficial reasons accounted for high scores in both cases. It is concluded that PageRank is not useful for identifying the top pages in a site and that it must be combined with a powerful text matching techniques in order to get the quality of information retrieval results provided by Google.
    Source
    Journal of documentation. 59(2003) no.2, S.205-217
  20. Kousha, K.; Thelwall, M.: Google book search : citation analysis for social science and the humanities (2009) 0.00
    5.3485465E-4 = product of:
      0.00802282 = sum of:
        0.006614278 = weight(_text_:in in 2946) [ClassicSimilarity], result of:
          0.006614278 = score(doc=2946,freq=18.0), product of:
            0.029340398 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.021569785 = queryNorm
            0.22543246 = fieldWeight in 2946, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2946)
        0.0014085418 = weight(_text_:s in 2946) [ClassicSimilarity], result of:
          0.0014085418 = score(doc=2946,freq=2.0), product of:
            0.023451481 = queryWeight, product of:
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.021569785 = queryNorm
            0.060061958 = fieldWeight in 2946, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.0872376 = idf(docFreq=40523, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2946)
      0.06666667 = coord(2/30)
    
    Abstract
    In both the social sciences and the humanities, books and monographs play significant roles in research communication. The absence of citations from most books and monographs from the Thomson Reuters/Institute for Scientific Information databases (ISI) has been criticized, but attempts to include citations from or to books in the research evaluation of the social sciences and humanities have not led to widespread adoption. This article assesses whether Google Book Search (GBS) can partially fill this gap by comparing citations from books with citations from journal articles to journal articles in 10 science, social science, and humanities disciplines. Book citations were 31% to 212% of ISI citations and, hence, numerous enough to supplement ISI citations in the social sciences and humanities covered, but not in the sciences (3%-5%), except for computing (46%), due to numerous published conference proceedings. A case study was also made of all 1,923 articles in the 51 information science and library science ISI-indexed journals published in 2003. Within this set, highly book-cited articles tended to receive many ISI citations, indicating a significant relationship between the two types of citation data, but with important exceptions that point to the additional information provided by book citations. In summary, GBS is clearly a valuable new source of citation data for the social sciences and humanities. One practical implication is that book-oriented scholars should consult it for additional citations to their work when applying for promotion and tenure.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.8, S.1537-1549