Search (179 results, page 1 of 9)

  • × theme_ss:"Visualisierung"
  1. Hemmje, M.: LyberWorld : eine 3D-basierte Benutzerschnittstelle für die computerunterstützte Informationssuche in Dokumentmengen (1993) 0.07
    0.06500076 = product of:
      0.16250189 = sum of:
        0.008533326 = weight(_text_:a in 1534) [ClassicSimilarity], result of:
          0.008533326 = score(doc=1534,freq=2.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.17835285 = fieldWeight in 1534, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.109375 = fieldNorm(doc=1534)
        0.15396856 = weight(_text_:63 in 1534) [ClassicSimilarity], result of:
          0.15396856 = score(doc=1534,freq=2.0), product of:
            0.20323344 = queryWeight, product of:
              4.8978314 = idf(docFreq=896, maxDocs=44218)
              0.041494574 = queryNorm
            0.75759465 = fieldWeight in 1534, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8978314 = idf(docFreq=896, maxDocs=44218)
              0.109375 = fieldNorm(doc=1534)
      0.4 = coord(2/5)
    
    Source
    GMD-Spiegel. 1993. H.1, S.56-63
    Type
    a
  2. Vizine-Goetz, D.: DeweyBrowser (2006) 0.03
    0.03303497 = product of:
      0.08258742 = sum of:
        0.0073900777 = weight(_text_:a in 5774) [ClassicSimilarity], result of:
          0.0073900777 = score(doc=5774,freq=6.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.1544581 = fieldWeight in 5774, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5774)
        0.07519735 = product of:
          0.1503947 = sum of:
            0.1503947 = weight(_text_:dewey in 5774) [ClassicSimilarity], result of:
              0.1503947 = score(doc=5774,freq=6.0), product of:
                0.21583907 = queryWeight, product of:
                  5.2016215 = idf(docFreq=661, maxDocs=44218)
                  0.041494574 = queryNorm
                0.6967909 = fieldWeight in 5774, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.2016215 = idf(docFreq=661, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5774)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The DeweyBrowser allows users to search and browse collections of library resources organized by the Dewey Decimal Classification (DDC) system. The visual interface provides access to several million records from the OCLC WorldCat database and to a collection of records derived from the abridged edition of DDC. The prototype was developed out of a desire to make the most of Dewey numbers assigned to library materials and to explore new ways of providing access to the DDC.
    Footnote
    Beitrag in einem Themenheft "Moving beyond the presentation layer: content and context in the Dewey Decimal Classification (DDC) System"
    Type
    a
  3. Su, H.-N.: Visualization of global science and technology policy research structure (2012) 0.03
    0.029320324 = product of:
      0.07330081 = sum of:
        0.0073142797 = weight(_text_:a in 4969) [ClassicSimilarity], result of:
          0.0073142797 = score(doc=4969,freq=8.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.15287387 = fieldWeight in 4969, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4969)
        0.06598653 = weight(_text_:63 in 4969) [ClassicSimilarity], result of:
          0.06598653 = score(doc=4969,freq=2.0), product of:
            0.20323344 = queryWeight, product of:
              4.8978314 = idf(docFreq=896, maxDocs=44218)
              0.041494574 = queryNorm
            0.32468343 = fieldWeight in 4969, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8978314 = idf(docFreq=896, maxDocs=44218)
              0.046875 = fieldNorm(doc=4969)
      0.4 = coord(2/5)
    
    Abstract
    This study proposes an approach for visualizing knowledge structures that creates a "research-focused parallelship network," "keyword co-occurrence network," and a knowledge map to visualize Sci-Tech policy research structure. A total of 1,125 Sci-Tech policy-related papers (873 journal papers [78%], 205 conference papers [18%], and 47 review papers [4%]) have been retrieved from the Web of Science database for quantitative analysis and mapping. Different network and contour maps based on these 1,125 papers can be constructed by choosing different information as the main actor, such as the paper title, the institute, the country, or the author keywords, to reflect Sci-Tech policy research structures in micro-, meso-, and macro-levels, respectively. The quantitative way of exploring Sci-Tech policy research papers is investigated to unveil important or emerging Sci-Tech policy implications as well as to demonstrate the dynamics and visualization of the evolution of Sci-Tech policy research.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.2, S.242-255
    Type
    a
  4. Koch, T.; Golub, K.; Ardö, A.: Users browsing behaviour in a DDC-based Web service : a log analysis (2006) 0.02
    0.024321917 = product of:
      0.06080479 = sum of:
        0.008177614 = weight(_text_:a in 2234) [ClassicSimilarity], result of:
          0.008177614 = score(doc=2234,freq=10.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.1709182 = fieldWeight in 2234, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2234)
        0.05262718 = product of:
          0.10525436 = sum of:
            0.10525436 = weight(_text_:dewey in 2234) [ClassicSimilarity], result of:
              0.10525436 = score(doc=2234,freq=4.0), product of:
                0.21583907 = queryWeight, product of:
                  5.2016215 = idf(docFreq=661, maxDocs=44218)
                  0.041494574 = queryNorm
                0.487652 = fieldWeight in 2234, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.2016215 = idf(docFreq=661, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2234)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This study explores the navigation behaviour of all users of a large web service, Renardus, using web log analysis. Renardus provides integrated searching and browsing access to quality-controlled web resources from major individual subject gateway services. The main navigation feature is subject browsing through the Dewey Decimal Classification (DDC) based on mapping of classes of resources from the distributed gateways to the DDC structure. Among the more surprising results are the hugely dominant share of browsing activities, the good use of browsing support features like the graphical fish-eye overviews, rather long and varied navigation sequences, as well as extensive hierarchical directory-style browsing through the large DDC system.
    Footnote
    Beitrag in einem Themenheft "Moving beyond the presentation layer: content and context in the Dewey Decimal Classification (DDC) System"
    Type
    a
  5. Choi, I.: Visualizations of cross-cultural bibliographic classification : comparative studies of the Korean Decimal Classification and the Dewey Decimal Classification (2017) 0.02
    0.020528436 = product of:
      0.05132109 = sum of:
        0.0074651055 = weight(_text_:a in 3869) [ClassicSimilarity], result of:
          0.0074651055 = score(doc=3869,freq=12.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.15602624 = fieldWeight in 3869, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3869)
        0.043855984 = product of:
          0.08771197 = sum of:
            0.08771197 = weight(_text_:dewey in 3869) [ClassicSimilarity], result of:
              0.08771197 = score(doc=3869,freq=4.0), product of:
                0.21583907 = queryWeight, product of:
                  5.2016215 = idf(docFreq=661, maxDocs=44218)
                  0.041494574 = queryNorm
                0.4063767 = fieldWeight in 3869, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.2016215 = idf(docFreq=661, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3869)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The changes in KO systems induced by sociocultural influences may include those in both classificatory principles and cultural features. The proposed study will examine the Korean Decimal Classification (KDC)'s adaptation of the Dewey Decimal Classification (DDC) by comparing the two systems. This case manifests the sociocultural influences on KOSs in a cross-cultural context. Therefore, the study aims at an in-depth investigation of sociocultural influences by situating a KOS in a cross-cultural environment and examining the dynamics between two classification systems designed to organize information resources in two distinct sociocultural contexts. As a preceding stage of the comparison, the analysis was conducted on the changes that result from the meeting of different sociocultural feature in a descriptive method. The analysis aims to identify variations between the two schemes in comparison of the knowledge structures of the two classifications, in terms of the quantity of class numbers that represent concepts and their relationships in each of the individual main classes. The most effective analytic strategy to show the patterns of the comparison was visualizations of similarities and differences between the two systems. Increasing or decreasing tendencies in the class through various editions were analyzed. Comparing the compositions of the main classes and distributions of concepts in the KDC and DDC discloses the differences in their knowledge structures empirically. This phase of quantitative analysis and visualizing techniques generates empirical evidence leading to interpretation.
    Type
    a
  6. Wainer, H.: Picturing the uncertain world : how to understand, communicate, and control uncertainty through graphical display (2009) 0.02
    0.019546881 = product of:
      0.048867203 = sum of:
        0.004876186 = weight(_text_:a in 1451) [ClassicSimilarity], result of:
          0.004876186 = score(doc=1451,freq=8.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.10191591 = fieldWeight in 1451, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=1451)
        0.043991018 = weight(_text_:63 in 1451) [ClassicSimilarity], result of:
          0.043991018 = score(doc=1451,freq=2.0), product of:
            0.20323344 = queryWeight, product of:
              4.8978314 = idf(docFreq=896, maxDocs=44218)
              0.041494574 = queryNorm
            0.21645561 = fieldWeight in 1451, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8978314 = idf(docFreq=896, maxDocs=44218)
              0.03125 = fieldNorm(doc=1451)
      0.4 = coord(2/5)
    
    Abstract
    In his entertaining and informative book "Graphic Discovery", Howard Wainer unlocked the power of graphical display to make complex problems clear. Now he's back with Picturing the Uncertain World, a book that explores how graphs can serve as maps to guide us when the information we have is ambiguous or incomplete. Using a visually diverse sampling of graphical display, from heartrending autobiographical displays of genocide in the Kovno ghetto to the 'Pie Chart of Mystery' in a "New Yorker" cartoon, Wainer illustrates the many ways graphs can be used - and misused - as we try to make sense of an uncertain world. "Picturing the Uncertain World" takes readers on an extraordinary graphical adventure, revealing how the visual communication of data offers answers to vexing questions yet also highlights the measure of uncertainty in almost everything we do. Are cancer rates higher or lower in rural communities? How can you know how much money to sock away for retirement when you don't know when you'll die? And where exactly did nineteenth-century novelists get their ideas? These are some of the fascinating questions Wainer invites readers to consider. Along the way he traces the origins and development of graphical display, from William Playfair, who pioneered the use of graphs in the eighteenth century, to instances today where the public has been misled through poorly designed graphs. We live in a world full of uncertainty, yet it is within our grasp to take its measure. Read "Picturing the Uncertain World" and learn how.
    Signature
    63 AGD 136
  7. Tufte, E.R.: ¬The visual display of quantitative information (1983) 0.02
    0.015396856 = product of:
      0.07698428 = sum of:
        0.07698428 = weight(_text_:63 in 3734) [ClassicSimilarity], result of:
          0.07698428 = score(doc=3734,freq=2.0), product of:
            0.20323344 = queryWeight, product of:
              4.8978314 = idf(docFreq=896, maxDocs=44218)
              0.041494574 = queryNorm
            0.37879732 = fieldWeight in 3734, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8978314 = idf(docFreq=896, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3734)
      0.2 = coord(1/5)
    
    Signature
    63 QFA 2036
  8. Platis, N. et al.: Visualization of uncertainty in tag clouds (2016) 0.01
    0.013681978 = product of:
      0.034204945 = sum of:
        0.006095233 = weight(_text_:a in 2755) [ClassicSimilarity], result of:
          0.006095233 = score(doc=2755,freq=2.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.12739488 = fieldWeight in 2755, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=2755)
        0.02810971 = product of:
          0.05621942 = sum of:
            0.05621942 = weight(_text_:22 in 2755) [ClassicSimilarity], result of:
              0.05621942 = score(doc=2755,freq=2.0), product of:
                0.14530693 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041494574 = queryNorm
                0.38690117 = fieldWeight in 2755, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2755)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Date
    1. 2.2016 18:25:22
    Type
    a
  9. Hearst, M.A.: Search user interfaces (2009) 0.01
    0.012442539 = product of:
      0.062212694 = sum of:
        0.062212694 = weight(_text_:63 in 4029) [ClassicSimilarity], result of:
          0.062212694 = score(doc=4029,freq=4.0), product of:
            0.20323344 = queryWeight, product of:
              4.8978314 = idf(docFreq=896, maxDocs=44218)
              0.041494574 = queryNorm
            0.30611446 = fieldWeight in 4029, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.8978314 = idf(docFreq=896, maxDocs=44218)
              0.03125 = fieldNorm(doc=4029)
      0.2 = coord(1/5)
    
    Footnote
    Rez. in: JASIST 63(2012) no.12, S. 2555-2556 (M. Efron)
    Signature
    63 TXM 128
  10. Burnett, R.: How images think (2004) 0.01
    0.011284581 = product of:
      0.028211452 = sum of:
        0.006215943 = weight(_text_:a in 3884) [ClassicSimilarity], result of:
          0.006215943 = score(doc=3884,freq=52.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.12991782 = fieldWeight in 3884, product of:
              7.2111025 = tf(freq=52.0), with freq of:
                52.0 = termFreq=52.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.015625 = fieldNorm(doc=3884)
        0.021995509 = weight(_text_:63 in 3884) [ClassicSimilarity], result of:
          0.021995509 = score(doc=3884,freq=2.0), product of:
            0.20323344 = queryWeight, product of:
              4.8978314 = idf(docFreq=896, maxDocs=44218)
              0.041494574 = queryNorm
            0.108227804 = fieldWeight in 3884, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8978314 = idf(docFreq=896, maxDocs=44218)
              0.015625 = fieldNorm(doc=3884)
      0.4 = coord(2/5)
    
    Footnote
    Rez. in: JASIST 56(2005) no.10, S.1126-1128 (P.K. Nayar): "How Images Think is an exercise both in philosophical meditation and critical theorizing about media, images, affects, and cognition. Burnett combines the insights of neuroscience with theories of cognition and the computer sciences. He argues that contemporary metaphors - biological or mechanical - about either cognition, images, or computer intelligence severely limit our understanding of the image. He suggests in his introduction that "image" refers to the "complex set of interactions that constitute everyday life in image-worlds" (p. xviii). For Burnett the fact that increasing amounts of intelligence are being programmed into technologies and devices that use images as their main form of interaction and communication-computers, for instance-suggests that images are interfaces, structuring interaction, people, and the environment they share. New technologies are not simply extensions of human abilities and needs-they literally enlarge cultural and social preconceptions of the relationship between body and mind. The flow of information today is part of a continuum, with exceptional events standing as punctuation marks. This flow connects a variety of sources, some of which are continuous - available 24 hours - or "live" and radically alters issues of memory and history. Television and the Internet, notes Burnett, are not simply a simulated world-they are the world, and the distinctions between "natural" and "non-natural" have disappeared. Increasingly, we immerse ourselves in the image, as if we are there. We rarely become conscious of the fact that we are watching images of events-for all perceptioe, cognitive, and interpretive purposes, the image is the event for us. The proximity and distance of viewer from/with the viewed has altered so significantly that the screen is us. However, this is not to suggest that we are simply passive consumers of images. As Burnett points out, painstakingly, issues of creativity are involved in the process of visualization-viewwes generate what they see in the images. This involves the historical moment of viewing-such as viewing images of the WTC bombings-and the act of re-imagining. As Burnett puts it, "the questions about what is pictured and what is real have to do with vantage points [of the viewer] and not necessarily what is in the image" (p. 26). In his second chapter Burnett moves an to a discussion of "imagescapes." Analyzing the analogue-digital programming of images, Burnett uses the concept of "reverie" to describe the viewing experience. The reverie is a "giving in" to the viewing experience, a "state" in which conscious ("I am sitting down an this sofa to watch TV") and unconscious (pleasure, pain, anxiety) processes interact. Meaning emerges in the not-always easy or "clean" process of hybridization. This "enhances" the thinking process beyond the boundaries of either image or subject. Hybridization is the space of intelligence, exchange, and communication.
    Moving an to virtual images, Burnett posits the existence of "microcultures": places where people take control of the means of creation and production in order to makes sense of their social and cultural experiences. Driven by the need for community, such microcultures generate specific images as part of a cultural movement (Burnett in fact argues that microcultures make it possible for a "small cinema of twenty-five seats to become part of a cultural movement" [p. 63]), where the process of visualization-which involves an awareness of the historical moment - is central to the info-world and imagescapes presented. The computer becomms an archive, a history. The challenge is not only of preserving information, but also of extracting information. Visualization increasingly involves this process of picking a "vantage point" in order to selectively assimilate the information. In virtual reality systems, and in the digital age in general, the distance between what is being pictured and what is experienced is overcome. Images used to be treated as opaque or transparent films among experience, perception, and thought. But, now, images are taken to another level, where the viewer is immersed in the image-experience. Burnett argues-though this is hardly a fresh insight-that "interactivity is only possible when images are the raw material used by participants to change if not transform the purpose of their viewing experience" (p. 90). He suggests that a work of art, "does not start its life as an image ... it gains the status of image when it is placed into a context of viewing and visualization" (p. 90). With simulations and cyberspace the viewing experience has been changed utterly. Burnett defines simulation as "mapping different realities into images that have an environmental, cultural, and social form" (p. 95). However, the emphasis in Burnett is significant-he suggests that interactivity is not achieved through effects, but as a result of experiences attached to stories. Narrative is not merely the effect of technology-it is as much about awareness as it is about Fantasy. Heightened awareness, which is popular culture's aim at all times, and now available through head-mounted displays (HMD), also involves human emotions and the subtleties of human intuition.
    The sixth chapter looks at this interfacing of humans and machines and begins with a series of questions. The crucial one, to my mind, is this: "Does the distinction between humans and technology contribute to a lack of understanding of the continuous interrelationship and interdependence that exists between humans and all of their creations?" (p. 125) Burnett suggests that to use biological or mechanical views of the computer/mind (the computer as an input/output device) Limits our understanding of the ways in which we interact with machines. He thus points to the role of language, the conversations (including the one we held with machines when we were children) that seem to suggest a wholly different kind of relationship. Peer-to-peer communication (P2P), which is arguably the most widely used exchange mode of images today, is the subject of chapter seven. The issue here is whether P2P affects community building or community destruction. Burnett argues that the trope of community can be used to explore the flow of historical events that make up a continuum-from 17th-century letter writing to e-mail. In the new media-and Burnett uses the example of popular music which can be sampled, and reedited to create new compositions - the interpretive space is more flexible. Private networks can be set up, and the process of information retrieval (about which Burnett has already expended considerable space in the early chapters) involves a lot more of visualization. P2P networks, as Burnett points out, are about information management. They are about the harmony between machines and humans, and constitute a new ecology of communications. Turning to computer games, Burnett looks at the processes of interaction, experience, and reconstruction in simulated artificial life worlds, animations, and video images. For Burnett (like Andrew Darley, 2000 and Richard Doyle, 2003) the interactivity of the new media games suggests a greater degree of engagement with imageworlds. Today many facets of looking, listening, and gazing can be turned into aesthetic forms with the new media. Digital technology literally reanimates the world, as Burnett demonstrates in bis concluding chapter. Burnett concludes that images no longer simply represent the world-they shape our very interaction with it; they become the foundation for our understanding the spaces, places, and historical moments that we inhabit. Burnett concludes his book with the suggestion that intelligence is now a distributed phenomenon (here closely paralleling Katherine Hayles' argument that subjectivity is dispersed through the cybernetic circuit, 1999). There is no one center of information or knowledge. Intersections of human creativity, work, and connectivity "spread" (Burnett's term) "intelligence through the use of mediated devices and images, as well as sounds" (p. 221).
    Burnett's work is a useful basic primer an the new media. One of the chief attractions here is his clear language, devoid of the jargon of either computer sciences or advanced critical theory. This makes How Images Think an accessible introduction to digital cultures. Burnett explores the impact of the new technologies an not just image-making but an image-effects, and the ways in which images constitute our ecologies of identity, communication, and subject-hood. While some of the sections seem a little too basic (especially where he speaks about the ways in which we constitute an object as an object of art, see above), especially in the wake of reception theory, it still remains a starting point for those interested in cultural studies of the new media. The Gase Burnett makes out for the transformation of the ways in which we look at images has been strengthened by his attention to the history of this transformation-from photography through television and cinema and now to immersive virtual reality systems. Joseph Koemer (2004) has pointed out that the iconoclasm of early modern Europe actually demonstrates how idolatory was integral to the image-breakers' core belief. As Koerner puts it, "images never go away ... they persist and function by being perpetually destroyed" (p. 12). Burnett, likewise, argues that images in new media are reformed to suit new contexts of meaning-production-even when they appear to be destroyed. Images are recast, and the degree of their realism (or fantasy) heightened or diminished-but they do not "go away." Images do think, but-if I can parse Burnett's entire work-they think with, through, and in human intelligence, emotions, and intuitions. Images are uncanny-they are both us and not-us, ours and not-ours. There is, surprisingly, one factual error. Burnett claims that Myron Kreuger pioneered the term "virtual reality." To the best of my knowledge, it was Jaron Lanier who did so (see Featherstone & Burrows, 1998 [1995], p. 5)."
  11. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.01
    0.011003609 = product of:
      0.02750902 = sum of:
        0.0036571398 = weight(_text_:a in 3355) [ClassicSimilarity], result of:
          0.0036571398 = score(doc=3355,freq=2.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.07643694 = fieldWeight in 3355, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3355)
        0.02385188 = product of:
          0.04770376 = sum of:
            0.04770376 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.04770376 = score(doc=3355,freq=4.0), product of:
                0.14530693 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041494574 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Content
    One of a series of three publications influenced by the travelling exhibit Places & Spaces: Mapping Science, curated by the Cyberinfrastructure for Network Science Center at Indiana University. - Additional materials can be found at http://http://scimaps.org/atlas2. Erweitert durch: Börner, Katy. Atlas of Science: Visualizing What We Know.
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  12. Beagle, D.: Visualizing keyword distribution across multidisciplinary c-space (2003) 0.01
    0.010794431 = product of:
      0.026986077 = sum of:
        0.00837956 = weight(_text_:a in 1202) [ClassicSimilarity], result of:
          0.00837956 = score(doc=1202,freq=42.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.17513901 = fieldWeight in 1202, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1202)
        0.018606517 = product of:
          0.037213035 = sum of:
            0.037213035 = weight(_text_:dewey in 1202) [ClassicSimilarity], result of:
              0.037213035 = score(doc=1202,freq=2.0), product of:
                0.21583907 = queryWeight, product of:
                  5.2016215 = idf(docFreq=661, maxDocs=44218)
                  0.041494574 = queryNorm
                0.17241102 = fieldWeight in 1202, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.2016215 = idf(docFreq=661, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1202)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The concept of c-space is proposed as a visualization schema relating containers of content to cataloging surrogates and classification structures. Possible applications of keyword vector clusters within c-space could include improved retrieval rates through the use of captioning within visual hierarchies, tracings of semantic bleeding among subclasses, and access to buried knowledge within subject-neutral publication containers. The Scholastica Project is described as one example, following a tradition of research dating back to the 1980's. Preliminary focus group assessment indicates that this type of classification rendering may offer digital library searchers enriched entry strategies and an expanded range of re-entry vocabularies. Those of us who work in traditional libraries typically assume that our systems of classification: Library of Congress Classification (LCC) and Dewey Decimal Classification (DDC), are descriptive rather than prescriptive. In other words, LCC classes and subclasses approximate natural groupings of texts that reflect an underlying order of knowledge, rather than arbitrary categories prescribed by librarians to facilitate efficient shelving. Philosophical support for this assumption has traditionally been found in a number of places, from the archetypal tree of knowledge, to Aristotelian categories, to the concept of discursive formations proposed by Michel Foucault. Gary P. Radford has elegantly described an encounter with Foucault's discursive formations in the traditional library setting: "Just by looking at the titles on the spines, you can see how the books cluster together...You can identify those books that seem to form the heart of the discursive formation and those books that reside on the margins. Moving along the shelves, you see those books that tend to bleed over into other classifications and that straddle multiple discursive formations. You can physically and sensually experience...those points that feel like state borders or national boundaries, those points where one subject ends and another begins, or those magical places where one subject has morphed into another..."
    But what happens to this awareness in a digital library? Can discursive formations be represented in cyberspace, perhaps through diagrams in a visualization interface? And would such a schema be helpful to a digital library user? To approach this question, it is worth taking a moment to reconsider what Radford is looking at. First, he looks at titles to see how the books cluster. To illustrate, I scanned one hundred books on the shelves of a college library under subclass HT 101-395, defined by the LCC subclass caption as Urban groups. The City. Urban sociology. Of the first 100 titles in this sequence, fifty included the word "urban" or variants (e.g. "urbanization"). Another thirty-five used the word "city" or variants. These keywords appear to mark their titles as the heart of this discursive formation. The scattering of titles not using "urban" or "city" used related terms such as "town," "community," or in one case "skyscrapers." So we immediately see some empirical correlation between keywords and classification. But we also see a problem with the commonly used search technique of title-keyword. A student interested in urban studies will want to know about this entire subclass, and may wish to browse every title available therein. A title-keyword search on "urban" will retrieve only half of the titles, while a search on "city" will retrieve just over a third. There will be no overlap, since no titles in this sample contain both words. The only place where both words appear in a common string is in the LCC subclass caption, but captions are not typically indexed in library Online Public Access Catalogs (OPACs). In a traditional library, this problem is mitigated when the student goes to the shelf looking for any one of the books and suddenly discovers a much wider selection than the keyword search had led him to expect. But in a digital library, the issue of non-retrieval can be more problematic, as studies have indicated. Micco and Popp reported that, in a study funded partly by the U.S. Department of Education, 65 of 73 unskilled users searching for material on U.S./Soviet foreign relations found some material but never realized they had missed a large percentage of what was in the database.
    Type
    a
  13. Palm, F.: QVIZ : Query and context based visualization of time-spatial cultural dynamics (2007) 0.01
    0.010017375 = product of:
      0.02504344 = sum of:
        0.008177614 = weight(_text_:a in 1289) [ClassicSimilarity], result of:
          0.008177614 = score(doc=1289,freq=10.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.1709182 = fieldWeight in 1289, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1289)
        0.016865825 = product of:
          0.03373165 = sum of:
            0.03373165 = weight(_text_:22 in 1289) [ClassicSimilarity], result of:
              0.03373165 = score(doc=1289,freq=2.0), product of:
                0.14530693 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041494574 = queryNorm
                0.23214069 = fieldWeight in 1289, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1289)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    QVIZ will research and create a framework for visualizing and querying archival resources by a time-space interface based on maps and emergent knowledge structures. The framework will also integrate social software, such as wikis, in order to utilize knowledge in existing and new communities of practice. QVIZ will lead to improved information sharing and knowledge creation, easier access to information in a user-adapted context and innovative ways of exploring and visualizing materials over time, between countries and other administrative units. The common European framework for sharing and accessing archival information provided by the QVIZ project will open a considerably larger commercial market based on archival materials as well as a richer understanding of European history.
    Content
    Vortrag anlässlich des Workshops: "Extending the multilingual capacity of The European Library in the EDL project Stockholm, Swedish National Library, 22-23 November 2007".
  14. Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006) 0.01
    0.009665064 = product of:
      0.024162658 = sum of:
        0.010107801 = weight(_text_:a in 5272) [ClassicSimilarity], result of:
          0.010107801 = score(doc=5272,freq=22.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.21126054 = fieldWeight in 5272, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5272)
        0.014054855 = product of:
          0.02810971 = sum of:
            0.02810971 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
              0.02810971 = score(doc=5272,freq=2.0), product of:
                0.14530693 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041494574 = queryNorm
                0.19345059 = fieldWeight in 5272, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5272)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This article describes the latest development of a generic approach to detecting and visualizing emerging trends and transient patterns in scientific literature. The work makes substantial theoretical and methodological contributions to progressive knowledge domain visualization. A specialty is conceptualized and visualized as a time-variant duality between two fundamental concepts in information science: research fronts and intellectual bases. A research front is defined as an emergent and transient grouping of concepts and underlying research issues. The intellectual base of a research front is its citation and co-citation footprint in scientific literature - an evolving network of scientific publications cited by research-front concepts. Kleinberg's (2002) burst-detection algorithm is adapted to identify emergent research-front concepts. Freeman's (1979) betweenness centrality metric is used to highlight potential pivotal points of paradigm shift over time. Two complementary visualization views are designed and implemented: cluster views and time-zone views. The contributions of the approach are that (a) the nature of an intellectual base is algorithmically and temporally identified by emergent research-front terms, (b) the value of a co-citation cluster is explicitly interpreted in terms of research-front concepts, and (c) visually prominent and algorithmically detected pivotal points substantially reduce the complexity of a visualized network. The modeling and visualization process is implemented in CiteSpace II, a Java application, and applied to the analysis of two research fields: mass extinction (1981-2004) and terrorism (1990-2003). Prominent trends and pivotal points in visualized networks were verified in collaboration with domain experts, who are the authors of pivotal-point articles. Practical implications of the work are discussed. A number of challenges and opportunities for future studies are identified.
    Date
    22. 7.2006 16:11:05
    Type
    a
  15. Wu, K.-C.; Hsieh, T.-Y.: Affective choosing of clustering and categorization representations in e-book interfaces (2016) 0.01
    0.008847237 = product of:
      0.022118092 = sum of:
        0.008063235 = weight(_text_:a in 3070) [ClassicSimilarity], result of:
          0.008063235 = score(doc=3070,freq=14.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.1685276 = fieldWeight in 3070, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3070)
        0.014054855 = product of:
          0.02810971 = sum of:
            0.02810971 = weight(_text_:22 in 3070) [ClassicSimilarity], result of:
              0.02810971 = score(doc=3070,freq=2.0), product of:
                0.14530693 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041494574 = queryNorm
                0.19345059 = fieldWeight in 3070, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3070)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Purpose - The purpose of this paper is to investigate user experiences with a touch-wall interface featuring both clustering and categorization representations of available e-books in a public library to understand human information interactions under work-focused and recreational contexts. Design/methodology/approach - Researchers collected questionnaires from 251 New Taipei City Library visitors who used the touch-wall interface to search for new titles. The authors applied structural equation modelling to examine relationships among hedonic/utilitarian needs, clustering and categorization representations, perceived ease of use (EU) and the extent to which users experienced anxiety and uncertainty (AU) while interacting with the interface. Findings - Utilitarian users who have an explicit idea of what they intend to find tend to prefer the categorization interface. A hedonic-oriented user tends to prefer clustering interfaces. Users reported EU regardless of which interface they engaged with. Results revealed that use of the clustering interface had a negative correlation with AU. Users that seek to satisfy utilitarian needs tended to emphasize the importance of perceived EU, whilst pleasure-seeking users were a little more tolerant of anxiety or uncertainty. Originality/value - The Online Public Access Catalogue (OPAC) encourages library visitors to borrow digital books through the implementation of an information visualization system. This situation poses an opportunity to validate uses and gratification theory. People with hedonic/utilitarian needs displayed different risk-control attitudes and affected uncertainty using the interface. Knowledge about user interaction with such interfaces is vital when launching the development of a new OPAC.
    Date
    20. 1.2015 18:30:22
    Type
    a
  16. Osinska, V.; Bala, P.: New methods for visualization and improvement of classification schemes : the case of computer science (2010) 0.01
    0.008815121 = product of:
      0.022037802 = sum of:
        0.0051719765 = weight(_text_:a in 3693) [ClassicSimilarity], result of:
          0.0051719765 = score(doc=3693,freq=4.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.10809815 = fieldWeight in 3693, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3693)
        0.016865825 = product of:
          0.03373165 = sum of:
            0.03373165 = weight(_text_:22 in 3693) [ClassicSimilarity], result of:
              0.03373165 = score(doc=3693,freq=2.0), product of:
                0.14530693 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041494574 = queryNorm
                0.23214069 = fieldWeight in 3693, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3693)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Generally, Computer Science (CS) classifications are inconsistent in taxonomy strategies. t is necessary to develop CS taxonomy research to combine its historical perspective, its current knowledge and its predicted future trends - including all breakthroughs in information and communication technology. In this paper we have analyzed the ACM Computing Classification System (CCS) by means of visualization maps. The important achievement of current work is an effective visualization of classified documents from the ACM Digital Library. From the technical point of view, the innovation lies in the parallel use of analysis units: (sub)classes and keywords as well as a spherical 3D information surface. We have compared both the thematic and semantic maps of classified documents and results presented in Table 1. Furthermore, the proposed new method is used for content-related evaluation of the original scheme. Summing up: we improved an original ACM classification in the Computer Science domain by means of visualization.
    Date
    22. 7.2010 19:36:46
    Type
    a
  17. Osinska, V.; Kowalska, M.; Osinski, Z.: ¬The role of visualization in the shaping and exploration of the individual information space : part 1 (2018) 0.01
    0.008347814 = product of:
      0.020869534 = sum of:
        0.006814678 = weight(_text_:a in 4641) [ClassicSimilarity], result of:
          0.006814678 = score(doc=4641,freq=10.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.14243183 = fieldWeight in 4641, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4641)
        0.014054855 = product of:
          0.02810971 = sum of:
            0.02810971 = weight(_text_:22 in 4641) [ClassicSimilarity], result of:
              0.02810971 = score(doc=4641,freq=2.0), product of:
                0.14530693 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041494574 = queryNorm
                0.19345059 = fieldWeight in 4641, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4641)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Studies on the state and structure of digital knowledge concerning science generally relate to macro and meso scales. Supported by visualizations, these studies can deliver knowledge about emerging scientific fields or collaboration between countries, scientific centers, or groups of researchers. Analyses of individual activities or single scientific career paths are rarely presented and discussed. The authors decided to fill this gap and developed a web application for visualizing the scientific output of particular researchers. This free software based on bibliographic data from local databases, provides six layouts for analysis. Researchers can see the dynamic characteristics of their own writing activity, the time and place of publication, and the thematic scope of research problems. They can also identify cooperation networks, and consequently, study the dependencies and regularities in their own scientific activity. The current article presents the results of a study of the application's usability and functionality as well as attempts to define different user groups. A survey about the interface was sent to select researchers employed at Nicolaus Copernicus University. The results were used to answer the question as to whether such a specialized visualization tool can significantly augment the individual information space of the contemporary researcher.
    Date
    21.12.2018 17:22:13
    Type
    a
  18. Thissen, F.: Screen-Design-Manual : Communicating Effectively Through Multimedia (2003) 0.01
    0.007733393 = product of:
      0.019333482 = sum of:
        0.005278627 = weight(_text_:a in 1397) [ClassicSimilarity], result of:
          0.005278627 = score(doc=1397,freq=6.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.11032722 = fieldWeight in 1397, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1397)
        0.014054855 = product of:
          0.02810971 = sum of:
            0.02810971 = weight(_text_:22 in 1397) [ClassicSimilarity], result of:
              0.02810971 = score(doc=1397,freq=2.0), product of:
                0.14530693 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041494574 = queryNorm
                0.19345059 = fieldWeight in 1397, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1397)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The "Screen Design Manual" provides designers of interactive media with a practical working guide for preparing and presenting information that is suitable for both their target groups and the media they are using. It describes background information and relationships, clarifies them with the help of examples, and encourages further development of the language of digital media. In addition to the basics of the psychology of perception and learning, ergonomics, communication theory, imagery research, and aesthetics, the book also explores the design of navigation and orientation elements. Guidelines and checklists, along with the unique presentation of the book, support the application of information in practice.
    Classification
    ST 253 Informatik / Monographien / Software und -entwicklung / Web-Programmierwerkzeuge (A-Z)
    Date
    22. 3.2008 14:29:25
    RVK
    ST 253 Informatik / Monographien / Software und -entwicklung / Web-Programmierwerkzeuge (A-Z)
  19. Batorowska, H.; Kaminska-Czubala, B.: Information retrieval support : visualisation of the information space of a document (2014) 0.01
    0.00773205 = product of:
      0.019330125 = sum of:
        0.008086241 = weight(_text_:a in 1444) [ClassicSimilarity], result of:
          0.008086241 = score(doc=1444,freq=22.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.16900843 = fieldWeight in 1444, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=1444)
        0.011243884 = product of:
          0.022487769 = sum of:
            0.022487769 = weight(_text_:22 in 1444) [ClassicSimilarity], result of:
              0.022487769 = score(doc=1444,freq=2.0), product of:
                0.14530693 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041494574 = queryNorm
                0.15476047 = fieldWeight in 1444, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1444)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Acquiring knowledge in any field involves information retrieval, i.e. searching the available documents to identify answers to the queries concerning the selected objects. Knowing the keywords which are names of the objects will enable situating the user's query in the information space organized as a thesaurus or faceted classification. Objectives: Identification the areas in the information space which correspond to gaps in the user's personal knowledge or in the domain knowledge might become useful in theory or practice. The aim of this paper is to present a realistic information-space model of a self-authored full-text document on information culture, indexed by the author of this article. Methodology: Having established the relations between the terms, particular modules (sets of terms connected by relations used in facet classification) are situated on a plain, similarly to a communication map. Conclusions drawn from the "journey" on the map, which is a visualization of the knowledge contained in the analysed document, are the crucial part of this paper. Results: The direct result of the research is the created model of information space visualization of a given document (book, article, website). The proposed procedure can practically be used as a new form of representation in order to map the contents of academic books and articles, beside the traditional index form, especially as an e-book auxiliary tool. In teaching, visualization of the information space of a document can be used to help students understand the issues of: classification, categorization and representation of new knowledge emerging in human mind.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Type
    a
  20. Wu, I.-C.; Vakkari, P.: Effects of subject-oriented visualization tools on search by novices and intermediates (2018) 0.01
    0.0073459344 = product of:
      0.018364836 = sum of:
        0.0043099807 = weight(_text_:a in 4573) [ClassicSimilarity], result of:
          0.0043099807 = score(doc=4573,freq=4.0), product of:
            0.047845192 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.041494574 = queryNorm
            0.090081796 = fieldWeight in 4573, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4573)
        0.014054855 = product of:
          0.02810971 = sum of:
            0.02810971 = weight(_text_:22 in 4573) [ClassicSimilarity], result of:
              0.02810971 = score(doc=4573,freq=2.0), product of:
                0.14530693 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041494574 = queryNorm
                0.19345059 = fieldWeight in 4573, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4573)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This study explores how user subject knowledge influences search task processes and outcomes, as well as how search behavior is influenced by subject-oriented information visualization (IV) tools. To enable integrated searches, the proposed WikiMap + integrates search functions and IV tools (i.e., a topic network and hierarchical topic tree) and gathers information from Wikipedia pages and Google Search results. To evaluate the effectiveness of the proposed interfaces, we design subject-oriented tasks and adopt extended evaluation measures. We recruited 48 novices and 48 knowledgeable users, that is, intermediates, for the evaluation. Our results show that novices using the proposed interface demonstrate better search performance than intermediates using Wikipedia. We therefore conclude that our tools help close the gap between novices and intermediates in information searches. The results also show that intermediates can take advantage of the search tool by leveraging the IV tools to browse subtopics, and formulate better queries with less effort. We conclude that embedding the IV and the search tools in the interface can result in different search behavior but improved task performance. We provide implications to design search systems to include IV features adapted to user levels of subject knowledge to help them achieve better task performance.
    Date
    9.12.2018 16:22:25
    Type
    a

Years

Languages

  • e 147
  • d 31
  • a 1
  • More… Less…

Types

  • a 157
  • el 30
  • m 12
  • x 4
  • s 2
  • b 1
  • p 1
  • r 1
  • More… Less…

Subjects

Classifications