Search (31 results, page 1 of 2)

  • × theme_ss:"Retrievalalgorithmen"
  • × year_i:[2000 TO 2010}
  1. Shiri, A.A.; Revie, C.: Query expansion behavior within a thesaurus-enhanced search environment : a user-centered evaluation (2006) 0.01
    0.0144263785 = product of:
      0.043279134 = sum of:
        0.029076494 = weight(_text_:b in 56) [ClassicSimilarity], result of:
          0.029076494 = score(doc=56,freq=2.0), product of:
            0.14855953 = queryWeight, product of:
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.041930884 = queryNorm
            0.19572285 = fieldWeight in 56, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.0390625 = fieldNorm(doc=56)
        0.014202639 = product of:
          0.028405279 = sum of:
            0.028405279 = weight(_text_:22 in 56) [ClassicSimilarity], result of:
              0.028405279 = score(doc=56,freq=2.0), product of:
                0.1468348 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041930884 = queryNorm
                0.19345059 = fieldWeight in 56, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=56)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    The study reported here investigated the query expansion behavior of end-users interacting with a thesaurus-enhanced search system on the Web. Two groups, namely academic staff and postgraduate students, were recruited into this study. Data were collected from 90 searches performed by 30 users using the OVID interface to the CAB abstracts database. Data-gathering techniques included questionnaires, screen capturing software, and interviews. The results presented here relate to issues of search-topic and search-term characteristics, number and types of expanded queries, usefulness of thesaurus terms, and behavioral differences between academic staff and postgraduate students in their interaction. The key conclusions drawn were that (a) academic staff chose more narrow and synonymous terms than did postgraduate students, who generally selected broader and related terms; (b) topic complexity affected users' interaction with the thesaurus in that complex topics required more query expansion and search term selection; (c) users' prior topic-search experience appeared to have a significant effect on their selection and evaluation of thesaurus terms; (d) in 50% of the searches where additional terms were suggested from the thesaurus, users stated that they had not been aware of the terms at the beginning of the search; this observation was particularly noticeable in the case of postgraduate students.
    Date
    22. 7.2006 16:32:43
  2. Silveira, M.; Ribeiro-Neto, B.: Concept-based ranking : a case study in the juridical domain (2004) 0.01
    0.0116305975 = product of:
      0.06978358 = sum of:
        0.06978358 = weight(_text_:b in 2339) [ClassicSimilarity], result of:
          0.06978358 = score(doc=2339,freq=2.0), product of:
            0.14855953 = queryWeight, product of:
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.041930884 = queryNorm
            0.46973482 = fieldWeight in 2339, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.09375 = fieldNorm(doc=2339)
      0.16666667 = coord(1/6)
    
  3. Mandl, T.: Tolerantes Information Retrieval : Neuronale Netze zur Erhöhung der Adaptivität und Flexibilität bei der Informationssuche (2001) 0.01
    0.007123011 = product of:
      0.042738065 = sum of:
        0.042738065 = weight(_text_:kognitive in 5965) [ClassicSimilarity], result of:
          0.042738065 = score(doc=5965,freq=2.0), product of:
            0.28477833 = queryWeight, product of:
              6.7916126 = idf(docFreq=134, maxDocs=44218)
              0.041930884 = queryNorm
            0.15007485 = fieldWeight in 5965, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.7916126 = idf(docFreq=134, maxDocs=44218)
              0.015625 = fieldNorm(doc=5965)
      0.16666667 = coord(1/6)
    
    Abstract
    Ein wesentliches Bedürfnis im Rahmen der Mensch-Maschine-Interaktion ist die Suche nach Information. Um Information Retrieval (IR) Systeme kognitiv adäquat zu gestalten und sie an den Menschen anzupassen bieten sich Modelle des Soft Computing an. Ein umfassender state-of-the-art Bericht zu neuronalen Netzen im IR zeigt dass die meisten bestehenden Modelle das Potential neuronaler Netze nicht ausschöpfen. Das vorgestellte COSIMIR-Modell (Cognitive Similarity learning in Information Retrieval) basiert auf neuronalen Netzen und lernt, die Ähnlichkeit zwischen Anfrage und Dokument zu berechnen. Es trägt somit die kognitive Modellierung in den Kern eines IR Systems. Das Transformations-Netzwerk ist ein weiteres neuronales Netzwerk, das die Behandlung von Heterogenität anhand von Expertenurteilen lernt. Das COSIMIR-Modell und das Transformations-Netzwerk werden ausführlich diskutiert und anhand realer Datenmengen evaluiert
  4. Shah, B.; Raghavan, V.; Dhatric, P.; Zhao, X.: ¬A cluster-based approach for efficient content-based image retrieval using a similarity-preserving space transformation method (2006) 0.01
    0.006853395 = product of:
      0.04112037 = sum of:
        0.04112037 = weight(_text_:b in 6118) [ClassicSimilarity], result of:
          0.04112037 = score(doc=6118,freq=4.0), product of:
            0.14855953 = queryWeight, product of:
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.041930884 = queryNorm
            0.2767939 = fieldWeight in 6118, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6118)
      0.16666667 = coord(1/6)
    
    Abstract
    The techniques of clustering and space transformation have been successfully used in the past to solve a number of pattern recognition problems. In this article, the authors propose a new approach to content-based image retrieval (CBIR) that uses (a) a newly proposed similarity-preserving space transformation method to transform the original low-level image space into a highlevel vector space that enables efficient query processing, and (b) a clustering scheme that further improves the efficiency of our retrieval system. This combination is unique and the resulting system provides synergistic advantages of using both clustering and space transformation. The proposed space transformation method is shown to preserve the order of the distances in the transformed feature space. This strategy makes this approach to retrieval generic as it can be applied to object types, other than images, and feature spaces more general than metric spaces. The CBIR approach uses the inexpensive "estimated" distance in the transformed space, as opposed to the computationally inefficient "real" distance in the original space, to retrieve the desired results for a given query image. The authors also provide a theoretical analysis of the complexity of their CBIR approach when used for color-based retrieval, which shows that it is computationally more efficient than other comparable approaches. An extensive set of experiments to test the efficiency and effectiveness of the proposed approach has been performed. The results show that the approach offers superior response time (improvement of 1-2 orders of magnitude compared to retrieval approaches that either use pruning techniques like indexing, clustering, etc., or space transformation, but not both) with sufficiently high retrieval accuracy.
  5. Back, J.: ¬An evaluation of relevancy ranking techniques used by Internet search engines (2000) 0.01
    0.006627898 = product of:
      0.03976739 = sum of:
        0.03976739 = product of:
          0.07953478 = sum of:
            0.07953478 = weight(_text_:22 in 3445) [ClassicSimilarity], result of:
              0.07953478 = score(doc=3445,freq=2.0), product of:
                0.1468348 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041930884 = queryNorm
                0.5416616 = fieldWeight in 3445, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3445)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    25. 8.2005 17:42:22
  6. Zhu, B.; Chen, H.: Validating a geographical image retrieval system (2000) 0.01
    0.0058152988 = product of:
      0.03489179 = sum of:
        0.03489179 = weight(_text_:b in 4769) [ClassicSimilarity], result of:
          0.03489179 = score(doc=4769,freq=2.0), product of:
            0.14855953 = queryWeight, product of:
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.041930884 = queryNorm
            0.23486741 = fieldWeight in 4769, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.046875 = fieldNorm(doc=4769)
      0.16666667 = coord(1/6)
    
  7. Drucker, H.; Shahrary, B.; Gibbon, D.C.: Support vector machines : relevance feedback and information retrieval (2002) 0.01
    0.0058152988 = product of:
      0.03489179 = sum of:
        0.03489179 = weight(_text_:b in 2581) [ClassicSimilarity], result of:
          0.03489179 = score(doc=2581,freq=2.0), product of:
            0.14855953 = queryWeight, product of:
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.041930884 = queryNorm
            0.23486741 = fieldWeight in 2581, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.046875 = fieldNorm(doc=2581)
      0.16666667 = coord(1/6)
    
  8. Dominich, S.; Skrop, A.: PageRank and interaction information retrieval (2005) 0.01
    0.0058152988 = product of:
      0.03489179 = sum of:
        0.03489179 = weight(_text_:b in 3268) [ClassicSimilarity], result of:
          0.03489179 = score(doc=3268,freq=2.0), product of:
            0.14855953 = queryWeight, product of:
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.041930884 = queryNorm
            0.23486741 = fieldWeight in 3268, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.046875 = fieldNorm(doc=3268)
      0.16666667 = coord(1/6)
    
    Abstract
    The PageRank method is used by the Google Web search engine to compute the importance of Web pages. Two different views have been developed for the Interpretation of the PageRank method and values: (a) stochastic (random surfer): the PageRank values can be conceived as the steady-state distribution of a Markov chain, and (b) algebraic: the PageRank values form the eigenvector corresponding to eigenvalue 1 of the Web link matrix. The Interaction Information Retrieval (1**2 R) method is a nonclassical information retrieval paradigm, which represents a connectionist approach based an dynamic systems. In the present paper, a different Interpretation of PageRank is proposed, namely, a dynamic systems viewpoint, by showing that the PageRank method can be formally interpreted as a particular case of the Interaction Information Retrieval method; and thus, the PageRank values may be interpreted as neutral equilibrium points of the Web.
  9. Lin, J.; Katz, B.: Building a reusable test collection for question answering (2006) 0.01
    0.0058152988 = product of:
      0.03489179 = sum of:
        0.03489179 = weight(_text_:b in 5045) [ClassicSimilarity], result of:
          0.03489179 = score(doc=5045,freq=2.0), product of:
            0.14855953 = queryWeight, product of:
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.041930884 = queryNorm
            0.23486741 = fieldWeight in 5045, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.046875 = fieldNorm(doc=5045)
      0.16666667 = coord(1/6)
    
  10. Henzinger, M.R.: Link analysis in Web information retrieval (2000) 0.01
    0.0054827165 = product of:
      0.0328963 = sum of:
        0.0328963 = weight(_text_:b in 801) [ClassicSimilarity], result of:
          0.0328963 = score(doc=801,freq=4.0), product of:
            0.14855953 = queryWeight, product of:
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.041930884 = queryNorm
            0.22143513 = fieldWeight in 801, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.03125 = fieldNorm(doc=801)
      0.16666667 = coord(1/6)
    
    Content
    The goal of information retrieval is to find all documents relevant for a user query in a collection of documents. Decades of research in information retrieval were successful in developing and refining techniques that are solely word-based (see e.g., [2]). With the advent of the web new sources of information became available, one of them being the hyperlinks between documents and records of user behavior. To be precise, hypertexts (i.e., collections of documents connected by hyperlinks) have existed and have been studied for a long time. What was new was the large number of hyperlinks created by independent individuals. Hyperlinks provide a valuable source of information for web information retrieval as we will show in this article. This area of information retrieval is commonly called link analysis. Why would one expect hyperlinks to be useful? Ahyperlink is a reference of a web page B that is contained in a web page A. When the hyperlink is clicked on in a web browser, the browser displays page B. This functionality alone is not helpful for web information retrieval. However, the way hyperlinks are typically used by authors of web pages can give them valuable information content. Typically, authors create links because they think they will be useful for the readers of the pages. Thus, links are usually either navigational aids that, for example, bring the reader back to the homepage of the site, or links that point to pages whose content augments the content of the current page. The second kind of links tend to point to high-quality pages that might be on the same topic as the page containing the link.
  11. Mayr, P.: Re-Ranking auf Basis von Bradfordizing für die verteilte Suche in Digitalen Bibliotheken (2009) 0.01
    0.0053441613 = product of:
      0.032064967 = sum of:
        0.032064967 = product of:
          0.06412993 = sum of:
            0.06412993 = weight(_text_:psychologie in 4302) [ClassicSimilarity], result of:
              0.06412993 = score(doc=4302,freq=2.0), product of:
                0.24666919 = queryWeight, product of:
                  5.8827567 = idf(docFreq=334, maxDocs=44218)
                  0.041930884 = queryNorm
                0.25998357 = fieldWeight in 4302, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.8827567 = idf(docFreq=334, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4302)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Trotz großer Dokumentmengen für datenbankübergreifende Literaturrecherchen erwarten akademische Nutzer einen möglichst hohen Anteil an relevanten und qualitativen Dokumenten in den Trefferergebnissen. Insbesondere die Reihenfolge und Struktur der gelisteten Ergebnisse (Ranking) spielt, neben dem direkten Volltextzugriff auf die Dokumente, inzwischen eine entscheidende Rolle beim Design von Suchsystemen. Nutzer erwarten weiterhin flexible Informationssysteme, die es unter anderem zulassen, Einfluss auf das Ranking der Dokumente zu nehmen bzw. alternative Rankingverfahren zu verwenden. In dieser Arbeit werden zwei Mehrwertverfahren für Suchsysteme vorgestellt, die die typischen Probleme bei der Recherche nach wissenschaftlicher Literatur behandeln und damit die Recherchesituation messbar verbessern können. Die beiden Mehrwertdienste semantische Heterogenitätsbehandlung am Beispiel Crosskonkordanzen und Re-Ranking auf Basis von Bradfordizing, die in unterschiedlichen Phasen der Suche zum Einsatz kommen, werden hier ausführlich beschrieben und im empirischen Teil der Arbeit bzgl. der Effektivität für typische fachbezogene Recherchen evaluiert. Vorrangiges Ziel der Promotion ist es, zu untersuchen, ob das hier vorgestellte alternative Re-Rankingverfahren Bradfordizing im Anwendungsbereich bibliographischer Datenbanken zum einen operabel ist und zum anderen voraussichtlich gewinnbringend in Informationssystemen eingesetzt und dem Nutzer angeboten werden kann. Für die Tests wurden Fragestellungen und Daten aus zwei Evaluationsprojekten (CLEF und KoMoHe) verwendet. Die intellektuell bewerteten Dokumente stammen aus insgesamt sieben wissenschaftlichen Fachdatenbanken der Fächer Sozialwissenschaften, Politikwissenschaft, Wirtschaftswissenschaften, Psychologie und Medizin. Die Evaluation der Crosskonkordanzen (insgesamt 82 Fragestellungen) zeigt, dass sich die Retrievalergebnisse signifikant für alle Crosskonkordanzen verbessern; es zeigt sich zudem, dass interdisziplinäre Crosskonkordanzen den stärksten (positiven) Effekt auf die Suchergebnisse haben. Die Evaluation des Re-Ranking nach Bradfordizing (insgesamt 164 Fragestellungen) zeigt, dass die Dokumente der Kernzone (Kernzeitschriften) für die meisten Testreihen eine signifikant höhere Precision als Dokumente der Zone 2 und Zone 3 (Peripheriezeitschriften) ergeben. Sowohl für Zeitschriften als auch für Monographien kann dieser Relevanzvorteil nach Bradfordizing auf einer sehr breiten Basis von Themen und Fragestellungen an zwei unabhängigen Dokumentkorpora empirisch nachgewiesen werden.
  12. Chen, H.; Lally, A.M.; Zhu, B.; Chau, M.: HelpfulMed : Intelligent searching for medical information over the Internet (2003) 0.00
    0.0048460825 = product of:
      0.029076494 = sum of:
        0.029076494 = weight(_text_:b in 1615) [ClassicSimilarity], result of:
          0.029076494 = score(doc=1615,freq=2.0), product of:
            0.14855953 = queryWeight, product of:
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.041930884 = queryNorm
            0.19572285 = fieldWeight in 1615, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1615)
      0.16666667 = coord(1/6)
    
  13. Fuhr, N.: Theorie des Information Retrieval I : Modelle (2004) 0.00
    0.0048460825 = product of:
      0.029076494 = sum of:
        0.029076494 = weight(_text_:b in 2912) [ClassicSimilarity], result of:
          0.029076494 = score(doc=2912,freq=2.0), product of:
            0.14855953 = queryWeight, product of:
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.041930884 = queryNorm
            0.19572285 = fieldWeight in 2912, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2912)
      0.16666667 = coord(1/6)
    
    Abstract
    Information-Retrieval-(IR-)Modelle spezifizieren, wie zur einer gegebenen Anfrage die Antwortdokumente aus einer Dokumentenkollektion bestimmt werden. Dabei macht jedes Modell bestimmte Annahmen über die Struktur von Dokumenten und Anfragen und definiert dann die so genannte Retrievalfunktion, die das Retrievalgewicht eines Dokumentes bezüglich einer Anfrage bestimmt - im Falle des Booleschen Retrieval etwa eines der Gewichte 0 oder 1. Die Dokumente werden dann nach fallenden Gewichten sortiert und dem Benutzer präsentiert. Zunächst sollen hier einige grundlegende Charakteristika von Retrievalmodellen beschrieben werden, bevor auf die einzelnen Modelle näher eingegangen wird. Wie eingangs erwähnt, macht jedes Modell Annahmen über die Struktur von Dokumenten und Fragen. Ein Dokument kann entweder als Menge oder Multimenge von so genannten Termen aufgefasst werden, wobei im zweiten Fall das Mehrfachvorkommen berücksichtigt wird. Dabei subsummiert 'Term' einen Suchbegriff, der ein einzelnes Wort, ein mehrgliedriger Begriff oder auch ein komplexes Freitextmuster sein kann. Diese Dokumentrepräsentation wird wiederum auf eine so genannte Dokumentbeschreibung abgebildet, in der die einzelnen Terme gewichtet sein können; dies ist Aufgabe der in Kapitel B 5 beschriebenen Indexierungsmodelle. Im Folgenden unterscheiden wir nur zwischen ungewichteter (Gewicht eines Terms ist entweder 0 oderl) und gewichteter Indexierung (das Gewicht ist eine nichtnegative reelle Zahl). Ebenso wie bei Dokumenten können auch die Terme in der Frage entweder ungewichtet oder gewichtet sein. Daneben unterscheidet man zwischen linearen (Frage als Menge von Termen, ungewichtet oder gewichtet) und Booleschen Anfragen.
  14. Chen, Z.; Meng, X.; Fowler, R.H.; Zhu, B.: Real-time adaptive feature and document learning for Web search (2001) 0.00
    0.0048460825 = product of:
      0.029076494 = sum of:
        0.029076494 = weight(_text_:b in 5209) [ClassicSimilarity], result of:
          0.029076494 = score(doc=5209,freq=2.0), product of:
            0.14855953 = queryWeight, product of:
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.041930884 = queryNorm
            0.19572285 = fieldWeight in 5209, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5209)
      0.16666667 = coord(1/6)
    
  15. Weiß, B.: Verwandte Seiten finden : "Ähnliche Seiten" oder "What's Related" (2005) 0.00
    0.0048460825 = product of:
      0.029076494 = sum of:
        0.029076494 = weight(_text_:b in 868) [ClassicSimilarity], result of:
          0.029076494 = score(doc=868,freq=2.0), product of:
            0.14855953 = queryWeight, product of:
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.041930884 = queryNorm
            0.19572285 = fieldWeight in 868, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.0390625 = fieldNorm(doc=868)
      0.16666667 = coord(1/6)
    
  16. Dannenberg, R.B.; Birmingham, W.P.; Pardo, B.; Hu, N.; Meek, C.; Tzanetakis, G.: ¬A comparative evaluation of search techniques for query-by-humming using the MUSART testbed (2007) 0.00
    0.0048460825 = product of:
      0.029076494 = sum of:
        0.029076494 = weight(_text_:b in 269) [ClassicSimilarity], result of:
          0.029076494 = score(doc=269,freq=2.0), product of:
            0.14855953 = queryWeight, product of:
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.041930884 = queryNorm
            0.19572285 = fieldWeight in 269, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.0390625 = fieldNorm(doc=269)
      0.16666667 = coord(1/6)
    
  17. Chen, Z.; Fu, B.: On the complexity of Rocchio's similarity-based relevance feedback algorithm (2007) 0.00
    0.0048460825 = product of:
      0.029076494 = sum of:
        0.029076494 = weight(_text_:b in 578) [ClassicSimilarity], result of:
          0.029076494 = score(doc=578,freq=2.0), product of:
            0.14855953 = queryWeight, product of:
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.041930884 = queryNorm
            0.19572285 = fieldWeight in 578, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.0390625 = fieldNorm(doc=578)
      0.16666667 = coord(1/6)
    
  18. Efthimiadis, E.N.: Interactive query expansion : a user-based evaluation in a relevance feedback environment (2000) 0.00
    0.0038768656 = product of:
      0.023261193 = sum of:
        0.023261193 = weight(_text_:b in 5701) [ClassicSimilarity], result of:
          0.023261193 = score(doc=5701,freq=2.0), product of:
            0.14855953 = queryWeight, product of:
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.041930884 = queryNorm
            0.15657827 = fieldWeight in 5701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.03125 = fieldNorm(doc=5701)
      0.16666667 = coord(1/6)
    
    Abstract
    A user-centered investigation of interactive query expansion within the context of a relevance feedback system is presented in this article. Data were collected from 25 searches using the INSPEC database. The data collection mechanisms included questionnaires, transaction logs, and relevance evaluations. The results discuss issues that relate to query expansion, retrieval effectiveness, the correspondence of the on-line-to-off-line relevance judgments, and the selection of terms for query expansion by users (interactive query expansion). The main conclusions drawn from the results of the study are that: (1) one-third of the terms presented to users in a list of candidate terms for query expansion was identified by the users as potentially useful for query expansion. (2) These terms were mainly judged as either variant expressions (synonyms) or alternative (related) terms to the initial query terms. However, a substantial portion of the selected terms were identified as representing new ideas. (3) The relationships identified between the five best terms selected by the users for query expansion and the initial query terms were that: (a) 34% of the query expansion terms have no relationship or other type of correspondence with a query term; (b) 66% of the remaining query expansion terms have a relationship to the query terms. These relationships were: narrower term (46%), broader term (3%), related term (17%). (4) The results provide evidence for the effectiveness of interactive query expansion. The initial search produced on average three highly relevant documents; the query expansion search produced on average nine further highly relevant documents. The conclusions highlight the need for more research on: interactive query expansion, the comparative evaluation of automatic vs. interactive query expansion, the study of weighted Webbased or Web-accessible retrieval systems in operational environments, and for user studies in searching ranked retrieval systems in general
  19. Henzinger, M.R.: Hyperlink analysis for the Web (2001) 0.00
    0.0038768656 = product of:
      0.023261193 = sum of:
        0.023261193 = weight(_text_:b in 8) [ClassicSimilarity], result of:
          0.023261193 = score(doc=8,freq=2.0), product of:
            0.14855953 = queryWeight, product of:
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.041930884 = queryNorm
            0.15657827 = fieldWeight in 8, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.542962 = idf(docFreq=3476, maxDocs=44218)
              0.03125 = fieldNorm(doc=8)
      0.16666667 = coord(1/6)
    
    Content
    Information retrieval is a computer science subfield whose goal is to find all documents relevant to a user query in a given collection of documents. As such, information retrieval should really be called document retrieval. Before the advent of the Web, IR systems were typically installed in libraries for use mostly by reference librarians. The retrieval algorithm for these systems was usually based exclusively on analysis of the words in the document. The Web changed all this. Now each Web user has access to various search engines whose retrieval algorithms often use not only the words in the documents but also information like the hyperlink structure of the Web or markup language tags. How are hyperlinks useful? The hyperlink functionality alone-that is, the hyperlink to Web page B that is contained in Web page A-is not directly useful in information retrieval. However, the way Web page authors use hyperlinks can give them valuable information content. Authors usually create hyperlinks they think will be useful to readers. Some may be navigational aids that, for example, take the reader back to the site's home page; others provide access to documents that augment the content of the current page. The latter tend to point to highquality pages that might be on the same topic as the page containing the hyperlink. Web information retrieval systems can exploit this information to refine searches for relevant documents. Hyperlink analysis significantly improves the relevance of the search results, so much so that all major Web search engines claim to use some type of hyperlink analysis. However, the search engines do not disclose details about the type of hyperlink analysis they perform- mostly to avoid manipulation of search results by Web-positioning companies. In this article, I discuss how hyperlink analysis can be applied to ranking algorithms, and survey other ways Web search engines can use this analysis.
  20. MacFarlane, A.; Robertson, S.E.; McCann, J.A.: Parallel computing for passage retrieval (2004) 0.00
    0.0037873704 = product of:
      0.022724222 = sum of:
        0.022724222 = product of:
          0.045448445 = sum of:
            0.045448445 = weight(_text_:22 in 5108) [ClassicSimilarity], result of:
              0.045448445 = score(doc=5108,freq=2.0), product of:
                0.1468348 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041930884 = queryNorm
                0.30952093 = fieldWeight in 5108, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5108)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    20. 1.2007 18:30:22